• This record comes from PubMed

Perturbations both trigger and delay seizures due to generic properties of slow-fast relaxation oscillators

. 2021 Mar ; 17 (3) : e1008521. [epub] 20210329

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 33780437
PubMed Central PMC8032201
DOI 10.1371/journal.pcbi.1008521
PII: PCOMPBIOL-D-20-02085
Knihovny.cz E-resources

The mechanisms underlying the emergence of seizures are one of the most important unresolved issues in epilepsy research. In this paper, we study how perturbations, exogenous or endogenous, may promote or delay seizure emergence. To this aim, due to the increasingly adopted view of epileptic dynamics in terms of slow-fast systems, we perform a theoretical analysis of the phase response of a generic relaxation oscillator. As relaxation oscillators are effectively bistable systems at the fast time scale, it is intuitive that perturbations of the non-seizing state with a suitable direction and amplitude may cause an immediate transition to seizure. By contrast, and perhaps less intuitively, smaller amplitude perturbations have been found to delay the spontaneous seizure initiation. By studying the isochrons of relaxation oscillators, we show that this is a generic phenomenon, with the size of such delay depending on the slow flow component. Therefore, depending on perturbation amplitudes, frequency and timing, a train of perturbations causes an occurrence increase, decrease or complete suppression of seizures. This dependence lends itself to analysis and mechanistic understanding through methods outlined in this paper. We illustrate this methodology by computing the isochrons, phase response curves and the response to perturbations in several epileptic models possessing different slow vector fields. While our theoretical results are applicable to any planar relaxation oscillator, in the motivating context of epilepsy they elucidate mechanisms of triggering and abating seizures, thus suggesting stimulation strategies with effects ranging from mere delaying to full suppression of seizures.

See more in PubMed

Rubin JE, Terman D. Geometric singular perturbation analysis of neuronal dynamics. In: Handbook of dynamical systems. vol. 2. Elsevier; 2002. p. 93–146.

Rinaldi S, Scheffer M. Geometric analysis of ecological models with slow and fast processes. Ecosystems. 2000;3(6):507–521. 10.1007/s100210000045 DOI

Ashwin P, Ditlevsen P. The middle Pleistocene transition as a generic bifurcation on a slow manifold. Climate dynamics. 2015;45(9-10):2683–2695. 10.1007/s00382-015-2501-9 DOI

Moehlis J. Canards in a Surface Oxidation Reaction. Journal of Nonlinear Science. 2002;12(4). 10.1007/s00332-002-0467-3 DOI

Coombes S, Terry JR. The dynamics of neurological disease: integrating computational, experimental and clinical neuroscience. European Journal of Neuroscience. 2012;36(2):2118–2120. 10.1111/j.1460-9568.2012.08185.x PubMed DOI

Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al.. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55(4):475–482. 10.1111/epi.12550 PubMed DOI

Jiruska P, De Curtis M, Jefferys JG, Schevon CA, Schiff SJ, Schindler K. Synchronization and desynchronization in epilepsy: controversies and hypotheses. The Journal of physiology. 2013;591(4):787–797. 10.1113/jphysiol.2012.239590 PubMed DOI PMC

Milton J, Jung P. Epilepsy as a dynamic disease. Springer Science & Business Media; 2013.

Breakspear M, Roberts J, Terry JR, Rodrigues S, Mahant N, Robinson P. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cerebral Cortex. 2006;16(9):1296–1313. 10.1093/cercor/bhj072 PubMed DOI

Da Silva FL, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis DN. Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia. 2003;44:72–83. 10.1111/j.0013-9580.2003.12005.x PubMed DOI

Baier G, Goodfellow M, Taylor PN, Wang Y, Garry DJ. The importance of modeling epileptic seizure dynamics as spatio-temporal patterns. Frontiers in physiology. 2012;3:281. PubMed PMC

Goodfellow M, Schindler K, Baier G. Intermittent spike–wave dynamics in a heterogeneous, spatially extended neural mass model. Neuroimage. 2011;55(3):920–932. 10.1016/j.neuroimage.2010.12.074 PubMed DOI

Suffczynski P, Kalitzin S, Da Silva FL. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience. 2004;126(2):467–484. 10.1016/j.neuroscience.2004.03.014 PubMed DOI

Saggio ML, Spiegler A, Bernard C, Jirsa VK. Fast–slow bursters in the unfolding of a high codimension singularity and the ultra-slow transitions of classes. The Journal of Mathematical Neuroscience. 2017;7(1):7. 10.1186/s13408-017-0050-8 PubMed DOI PMC

Wang Y, Goodfellow M, Taylor PN, Baier G. Phase space approach for modeling of epileptic dynamics. Physical Review E. 2012;85(6):061918. 10.1103/PhysRevE.85.061918 PubMed DOI

Taylor PN, Baier G. A spatially extended model for macroscopic spike-wave discharges. Journal of computational neuroscience. 2011;31(3):679–684. 10.1007/s10827-011-0332-1 PubMed DOI

Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C. On the nature of seizure dynamics. Brain. 2014;137(8):2210–2230. 10.1093/brain/awu133 PubMed DOI PMC

Desroches M, Faugeras O, Krupa M. Slow-fast transitions to seizure states in the Wendling-Chauvel neural mass model. Opera Medica et Physiologica. 2016;(3-4).

Chizhov AV, Zefirov AV, Amakhin DV, Smirnova EY, Zaitsev AV. Minimal model of interictal and ictal discharges “Epileptor-2”. PLoS computational biology. 2018;14(5):e1006186. 10.1371/journal.pcbi.1006186 PubMed DOI PMC

Baier G, Taylor PN, Wang Y. Understanding epileptiform after-discharges as rhythmic oscillatory transients. Frontiers in computational neuroscience. 2017;11:25. PubMed PMC

Ersöz EK, Modolo J, Bartolomei F, Wendling F. Neural mass modeling of slow-fast dynamics of seizure initiation and abortion. PLoS computational biology. 2020;16(11):e1008430. 10.1371/journal.pcbi.1008430 PubMed DOI PMC

Chang WC, Kudlacek J, Hlinka J, Chvojka J, Hadrava M, Kumpost V, et al.. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nature neuroscience. 2018;21(12):1742. 10.1038/s41593-018-0278-y PubMed DOI PMC

Barbarosie M, Avoli M. CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. Journal of Neuroscience. 1997;17(23):9308–9314. 10.1523/JNEUROSCI.17-23-09308.1997 PubMed DOI PMC

Karoly PJ, Freestone DR, Boston R, Grayden DB, Himes D, Leyde K, et al.. Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity. Brain. 2016;139(4):1066–1078. 10.1093/brain/aww019 PubMed DOI

Avoli M, de Curtis M. GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Progress in neurobiology. 2011;95(2):104–132. 10.1016/j.pneurobio.2011.07.003 PubMed DOI PMC

Huberfeld G, de La Prida LM, Pallud J, Cohen I, Le Van Quyen M, Adam C, et al.. Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nature neuroscience. 2011;14(5):627–634. 10.1038/nn.2790 PubMed DOI

Hoppensteadt FC, Izhikevich EM. Weakly connected neural networks. vol. 126. Springer Science & Business Media; 2012.

Izhikevich EM. Dynamical systems in neuroscience. MIT press; 2007.

Desroches M, Guckenheimer J, Krauskopf B, Kuehn C, Osinga HM, Wechselberger M. Mixed-mode oscillations with multiple time scales. Siam Review. 2012;54(2):211–288. 10.1137/100791233 DOI

Berglund N, Gentz B. Noise-induced phenomena in slow-fast dynamical systems: a sample-paths approach. Springer Science & Business Media; 2006.

Grasman J. Asymptotic methods for relaxation oscillations and applications. vol. 63. Springer Science & Business Media; 2012.

Mishchenko E. Differential equations with small parameters and relaxation oscillations. vol. 13. Springer Science & Business Media; 2013.

Krupa M, Szmolyan P. Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions. SIAM journal on mathematical analysis. 2001;33(2):286–314. 10.1137/S0036141099360919 DOI

Guckenheimer J. Isochrons and phaseless sets. Journal of Mathematical Biology. 1975;1(3):259–273. 10.1007/BF01273747 PubMed DOI

Fenichel N. Persistence and smoothness of invariant manifolds for flows. Indiana Univ Math J. 1971/1972;21:193–226. 10.1512/iumj.1972.21.21017 DOI

Tikhonov AN. Systems of differential equations containing small parameters in the derivatives. Matematicheskii sbornik. 1952;73(3):575–586.

Gradshtein I. Application of AM Lyapunov’s theory of stability to the theory of differential equations with small coefficients in the derivatives. Matematicheskii Sbornik. 1953;74(2):263–286.

Pontryagin LS, Rodygin L. Periodic solution of a system of ordinary differential equations with a small parameter in the terms containing derivatives. In: Doklady Akademii Nauk. vol. 132. Russian Academy of Sciences; 1960. p. 537–540.

Sacré P, Franci A. Singularly perturbed phase response curves for relaxation oscillators. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE; 2016. p. 4680–4685.

Langfield P, Krauskopf B, Osinga HM. Solving Winfree’s puzzle: The isochrons in the FitzHugh-Nagumo model. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2014;24(1):013131. 10.1063/1.4867877 PubMed DOI

Wendling F, Bartolomei F, Bellanger J, Chauvel P. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. European Journal of Neuroscience. 2002;15(9):1499–1508. 10.1046/j.1460-9568.2002.01985.x PubMed DOI

El Houssaini K, Bernard C, Jirsa VK. The Epileptor model: a systematic mathematical analysis linked to the dynamics of seizures, refractory status epilepticus and depolarization block. Eneuro. 2020;. PubMed PMC

Proix T, Bartolomei F, Guye M, Jirsa VK. Individual brain structure and modelling predict seizure propagation. Brain. 2017;140(3):641–654. 10.1093/brain/awx004 PubMed DOI PMC

Ashwin P, Coombes S, Nicks R. Mathematical frameworks for oscillatory network dynamics in neuroscience. The Journal of Mathematical Neuroscience. 2016;6(1):2. 10.1186/s13408-015-0033-6 PubMed DOI PMC

Schultheiss NW, Prinz AA, Butera RJ. Phase response curves in neuroscience: theory, experiment, and analysis. Springer Science & Business Media; 2011.

Rinzel J, Ermentrout GB. Analysis of neural excitability and oscillations. Methods in neuronal modeling. 1998;2:251–292.

Izhikevich EM. Phase equations for relaxation oscillators. SIAM Journal on Applied Mathematics. 2000;60(5):1789–1804. 10.1137/S0036139999351001 DOI

Pérez-Cervera A, M-Seara T, Huguet G. Global phase-amplitude description of oscillatory dynamics via the parameterization method. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2020;30(8):083117. 10.1063/5.0010149 PubMed DOI

Gast R, Schmidt H, Knösche TR. A mean-field description of bursting dynamics in spiking neural networks with short-term adaptation. Neural Computation. 2020;32(9):1615–1634. 10.1162/neco_a_01300 PubMed DOI

El Houssaini K, Ivanov AI, Bernard C, Jirsa VK. Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities. Physical Review E. 2015;91(1):010701. 10.1103/PhysRevE.91.010701 PubMed DOI

Proix T, Bartolomei F, Chauvel P, Bernard C, Jirsa VK. Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy. Journal of Neuroscience. 2014;34(45):15009–15021. 10.1523/JNEUROSCI.1570-14.2014 PubMed DOI PMC

Fisher RS, Velasco AL. Electrical brain stimulation for epilepsy. Nature Reviews Neurology. 2014;10(5):261–270. 10.1038/nrneurol.2014.59 PubMed DOI

Guillamon A, Huguet G. A computational and geometric approach to phase resetting curves and surfaces. SIAM Journal on Applied Dynamical Systems. 2009;8(3):1005–1042. 10.1137/080737666 DOI

Fenichel N. Asymptotic stability with rate conditions. Indiana University Mathematics Journal. 1974;23(12):1109–1137. 10.1512/iumj.1974.23.23090 DOI

Pérez-Cervera A, Tere M, Huguet G, et al.. A geometric approach to Phase Response Curves and its numerical computation through the parameterization method. Journal of Nonlinear Science. 2019;29(6):2877–2910. 10.1007/s00332-019-09561-4 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...