MRI Diffusion-Weighted Imaging to Measure Infarct Volume: Assessment of Manual Segmentation Variability

. 2021 May ; 31 (3) : 541-550. [epub] 20210330

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33783929

BACKGROUND AND PURPOSE: Manual segmentation of infarct volume on follow-up MRI diffusion-weighted imaging (MRI-DWI) is considered the gold standard but is prone to rater variability. We assess the variability of manual segmentations of MRI-DWI infarct volume. METHODS: Consecutive patients (May 2018 to May 2019) with the anterior circulation stroke and endovascularly treated were enrolled. All patients underwent 24- to 32-hour follow-up MRI. Three users manually segmented DWI infarct volumes slice by slice twice. The reference standard of DWI infarct volume was generated by the STAPLE algorithm. Intra- and interrater reliability was evaluated using the intraclass correlation coefficient (ICC) by comparing manual segmentations with the reference standard. Spatial measurements were evaluated using metrics of the Dice similarity coefficient (DSC). Volumetric measurements were compared using the lesion volume. RESULTS: The dataset consisted of 44 patients, mean (SD) age was 70.1 years (±10.3), 43% were women, and median baseline NIHSS score was 16. Among three users, the mean DSC for MRI-DWI infarct volume segmentations ranged from 80.6% ± 11.7% to 88.6% ± 7.5%, and the mean absolute volume difference was 2.8 ± 6.8 to 13.0 ± 14.0 ml. Interrater ICC among the users for DSC and infarct volume was .86 (95% confidence interval [95% CI]: .78-.91) and .997 (95% CI: .995-.998). Intrarater ICC for the three users was .83 (95% CI: .69-.93), .84 (95% CI: .72-.91), and .80 (95% CI: .64-.89) for DSC, and .99 (95% CI: .987-.996), .991 (95% CI: .983-.995), and .996 (95% CI: .993-.998) for infarct volume. CONCLUSIONS: Manual segmentation of infarct volume on follow-up MRI-DWI shows excellent agreement and good spatial overlap with the reference standard, suggesting its usefulness for measuring infarct volume on 24- to 32-hour MRI-DWI.

Zobrazit více v PubMed

Rha JH, Saver JL. The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke 2007;38:967-73.

Fonarow GC, Saver JL, Smith EE, et al. Relationship of national institutes of health stroke scale to 30-day mortality in medicare beneficiaries with acute ischemic stroke. J Am Heart Assoc 2012;1:42-50.

Nogueira RG, Smith WS, Sung G, et al. Effect of time to reperfusion on clinical outcome of anterior circulation strokes treated with thrombectomy: pooled analysis of the MERCI and multi MERCI trials. Stroke 2011;42:3144-9.

Zaidi SF, Aghaebrahim A, Urra X, et al. Final infarct volume is a stronger predictor of outcome than recanalization in patients with proximal middle cerebral artery occlusion treated with endovascular therapy. Stroke 2012;43:3238-44.

Yoo AJ, Chaudhry ZA, Nogueira RG, et al. Infarct volume is a pivotal biomarker after intra-arterial stroke therapy. Stroke 2012;43:1323-30.

Bucker A, Boers AM, Bot JCJ, et al. Associations of ischemic lesion volume with functional outcome in patients with acute ischemic stroke: 24-hour versus 1-week imaging. Stroke 2017;48:1233-40.

Albers GW, Marks MP, Kemp S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 2018;378:708-18.

Hill MD, Goyal M, Menon BK, et al. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. Lancet 2020;395:878-87.

Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 2018;378:11-21.

Albers GW, Goyal M, Jahan R, et al. Relationships between imaging assessments and outcomes in solitaire with the intention for thrombectomy as primary endovascular treatment for acute ischemic stroke. Stroke 2015;46:2786-94.

Warfield SK, Zou KH, Wells WM. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 2004;23:903-21.

Rivers CS, Wardlaw JM, Armitage PA, et al. Acute ischemic stroke lesion measurement on diffusion-weighted imaging-important considerations in designing acute stroke trials with magnetic resonance imaging. J Stroke Cerebrovasc Dis 2007;16:64-70.

Ay H, Arsava EM, Vangel M, et al. Interexaminer difference in infarct volume measurements on MRI: a source of variance in stroke research. Stroke 2008;39:1171-6.

Luby M, Bykowski JL, Schellinger PD, et al. Intra- and interrater reliability of ischemic lesion volume measurements on diffusion-weighted, mean transit time and fluid-attenuated inversion recovery MRI. Stroke 2006;37:2951-6.

Dewalle-Vignion A-S, Betrouni N, Baillet C. Is staple algorithm confident to assess segmentation methods in PET imaging? Phys Med Biol 2015;60:9473-91.

Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006;31:1116-28.

Qiu W, Yuan J, Ukwatta E, et al. Prostate segmentation: an efficient convex optimization approach with axial symmetry using 3-D trus and MR images. IEEE Trans Med Imaging 2014;33:947-60.

Litjens G, Toth R, van de Ven W, et al. Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal 2014;18:359-73.

Mahtani K, Spencer EA, Brassey J, et al. Catalogue of bias: observer bias. BMJ evidence-based Med 2018;23:23-4.

Thomalla G, Simonsen CZ, Boutitie F, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med 2018;379:611-22.

Bratane BT, Bastan B, Fisher M, et al. Ischemic lesion volume determination on diffusion weighted images vs. apparent diffusion coefficient maps. Brain Res 2009;1279:182-8.

Han M, Choi JW, Rim NJ, et al. Cerebral infarct volume measurements to improve patient selection for endovascular treatment. Medicine 2016;95:e4702.

Khoury N, Dargazanli C, Zuber K, et al. Diffusion-weighted-imaging infarct volume measurement tools show discrepancies leading to diverging thrombectomy decisions. J Neuroradiol 2020;S0150-9861(20)30128-0.

Rosenblum WI. Cytotoxic edema. J Neuropathol Exp Neurol 2007;66:771-8.

Sibon I, Ménégon P, Orgogozo JM, et al. Inter- and intraobserver reliability of five MRI sequences in the evaluation of the final volume of cerebral infarct. J Magn Reson Imaging 2009;29:1280-4.

Inoue M, Mlynash M, Christensen S, et al. Early diffusion-weighted imaging reversal after endovascular reperfusion is typically transient in patients imaged 3 to 6 hours after onset. Stroke 2014;45:1024-8.

Barber PA, Demchuk AM, Zhang J, et al. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 2000;355:1670-4.

De Margerie-Mellon C, Turc G, Tisserand M, et al. Can DWI-ASPECTS substitute for lesion volume in acute stroke? Stroke 2013;44:3565-7.

Sarraj A, Hassan AE, Savitz S, et al. Outcomes of endovascular thrombectomy vs medical management alone in patients with large ischemic cores: a secondary analysis of the optimizing patient's selection for endovascular treatment in acute ischemic stroke (SELECT) study. JAMA Neurol 2019;76:1147-56.

Maier O, Menze BH, von der Gablentz J, et al. ISLES 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral mri. Med Image Anal 2017;35:250-69.

Chen L, Bentley P, Rueckert D. Fully automatic acute ischemic lesion segmentation in dwi using convolutional neural networks. Neuroimage Clin 2017;15:633-43.

Zhang R, Zhao L, Lou W, et al. Automatic segmentation of acute ischemic stroke from DWI using 3-D fully convolutional densenets. IEEE Trans Med Imaging 2018;37:2149-60.

Straka M, Albers GW, Bammer R. Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging 2010;32:1024-37.

Albers GW, Goyal M, Jahan R, et al. Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME. Ann Neurol 2016;79:76-89.

Wheeler HM, Mlynash M, Inoue M, et al. Early diffusion-weighted imaging and perfusion-weighted imaging lesion volumes forecast final infarct size in DEFUSE 2. Stroke 2013;44:681-5.

Rao V, Christensen S, Yennu A, et al. Ischemic core and hypoperfusion volumes correlate with infarct size 24 hours after randomization in DEFUSE 3. Stroke 2019;50:626-31.

Boers AMM, Jansen IGH, Beenen LFM, et al. Association of follow-up infarct volume with functional outcome in acute ischemic stroke: a pooled analysis of seven randomized trials. J Neurointerv Surg 2018;10:1137-42.

Menon BK, Al-Ajlan FS, Najm M, et al. Association of clinical, imaging, and thrombus characteristics with recanalization of visible intracranial occlusion in patients with acute ischemic stroke. JAMA 2018;320:1017-26.

Cheng B, Forkert ND, Zavaglia M, et al. Influence of stroke infarct location on functional outcome measured by the modified rankin scale. Stroke 2014;45:1695-702.

Ganesh A, Menon BK, Assis ZA, et al. Discrepancy between post-treatment infarct volume and 90-day outcome in the ESCAPE randomized controlled trial. Int J Stroke 2020; https://doi.org/10.1177/1747493020929943.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...