Lipid binding by the N-terminal motif mediates plasma membrane localization of Bordetella effector protein BteA
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33789161
PubMed Central
PMC8100071
DOI
10.1016/j.jbc.2021.100607
PII: S0021-9258(21)00387-2
Knihovny.cz E-zdroje
- Klíčová slova
- Bordetella pertussis, BteA effector protein, Saccharomyces cerevisiae, lipid–protein interaction, membrane localization domain, plasma membrane, protein motif, surface plasmon resonance, type III secretion system, virulence factor,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Bordetella bronchiseptica genetika růst a vývoj metabolismus MeSH
- buněčná membrána metabolismus MeSH
- fosfolipidy metabolismus MeSH
- HeLa buňky MeSH
- lidé MeSH
- lipidové dvojvrstvy metabolismus MeSH
- membránové mikrodomény metabolismus MeSH
- proteinové domény MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fosfolipidy MeSH
- lipidové dvojvrstvy MeSH
The respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica employ a type III secretion system (T3SS) to inject a 69-kDa BteA effector protein into host cells. This effector is known to contain two functional domains, including an N-terminal lipid raft targeting (LRT) domain and a cytotoxic C-terminal domain that induces nonapoptotic and caspase-1-independent host cell death. However, the exact molecular mechanisms underlying the interaction of BteA with plasma membrane (PM) as well as its cytotoxic activity in the course of Bordetella infections remain poorly understood. Using a protein-lipid overlay assay and surface plasmon resonance, we show here that the recombinant LRT domain binds negatively charged membrane phospholipids. Specifically, we determined that the dissociation constants of the LRT domain-binding liposomes containing phosphatidylinositol 4,5-bisphosphate, phosphatidic acid, and phosphatidylserine were ∼450 nM, ∼490 nM, and ∼1.2 μM, respectively. Both phosphatidylserine and phosphatidylinositol 4,5-bisphosphate were required to target the LRT domain and/or full-length BteA to the PM of yeast cells. The membrane association further involved electrostatic and hydrophobic interactions of LRT and depended on a leucine residue in the L1 loop between the first two helices of the four-helix bundle. Importantly, charge-reversal substitutions within the L1 region disrupted PM localization of the BteA effector without hampering its cytotoxic activity during B. bronchiseptica infection of HeLa cells. The LRT-mediated targeting of BteA to the cytosolic leaflet of the PM of host cells is, therefore, dispensable for effector cytotoxicity.
Zobrazit více v PubMed
Varela-Chavez C., Blondel A., Popoff M.R. Bacterial intracellularly active toxins: Membrane localisation of the active domain. Cell Microbiol. 2020;22 PubMed
Bayer-Santos E., Durkin C.H., Rigano L.A., Kupz A., Alix E., Cerny O., Jennings E., Liu M., Ryan A.S., Lapaque N., Kaufmann S.H.E., Holden D.W. The Salmonella effector SteD mediates MARCH8-dependent ubiquitination of MHC II molecules and inhibits T cell activation. Cell Host Microbe. 2016;20:584–595. PubMed PMC
Hicks S.W., Charron G., Hang H.C., Galan J.E. Subcellular targeting of Salmonella virulence proteins by host-mediated S-palmitoylation. Cell Host Microbe. 2011;10:9–20. PubMed PMC
Brombacher E., Urwyler S., Ragaz C., Weber S.S., Kami K., Overduin M., Hilbi H. Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J. Biol. Chem. 2009;284:4846–4856. PubMed PMC
Del Campo C.M., Mishra A.K., Wang Y.H., Roy C.R., Janmey P.A., Lambright D.G. Structural basis for PI(4)P-specific membrane recruitment of the Legionella pneumophila effector DrrA/SidM. Structure. 2014;22:397–408. PubMed PMC
Kamitani S., Kitadokoro K., Miyazawa M., Toshima H., Fukui A., Abe H., Miyake M., Horiguchi Y. Characterization of the membrane-targeting C1 domain in Pasteurella multocida toxin. J. Biol. Chem. 2010;285:25467–25475. PubMed PMC
Geissler B., Tungekar R., Satchell K.J. Identification of a conserved membrane localization domain within numerous large bacterial protein toxins. Proc. Natl. Acad. Sci. U. S. A. 2010;107:5581–5586. PubMed PMC
Geissler B., Ahrens S., Satchell K.J. Plasma membrane association of three classes of bacterial toxins is mediated by a basic-hydrophobic motif. Cell Microbiol. 2012;14:286–298. PubMed PMC
Varela Chavez C., Haustant G.M., Baron B., England P., Chenal A., Pauillac S., Blondel A., Popoff M.R. The tip of the four N-terminal alpha-helices of Clostridium sordellii lethal toxin contains the interaction site with membrane phosphatidylserine facilitating small GTPases glucosylation. Toxins (Basel) 2016;8:90. PubMed PMC
Craven R., Lacy D.B. Clostridium sordellii lethal-toxin autoprocessing and membrane localization activities drive GTPase glucosylation profiles in endothelial cells. mSphere. 2016;1:e00012–e00015. PubMed PMC
Kamanova J. Bordetella type III secretion injectosome and effector proteins. Front. Cell. Infect. Microbiol. 2020;10:466. PubMed PMC
Mattoo S., Cherry J.D. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin. Microbiol. Rev. 2005;18:326–382. PubMed PMC
Goodnow R.A. Biology of Bordetella bronchiseptica. Microbiol. Rev. 1980;44:722–738. PubMed PMC
Yuk M.H., Harvill E.T., Miller J.F. The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol. Microbiol. 1998;28:945–959. PubMed
Pilione M.R., Harvill E.T. The Bordetella bronchiseptica type III secretion system inhibits gamma interferon production that is required for efficient antibody-mediated bacterial clearance. Infect. Immun. 2006;74:1043–1049. PubMed PMC
Nicholson T.L., Brockmeier S.L., Loving C.L., Register K.B., Kehrli M.E., Jr., Shore S.M. The Bordetella bronchiseptica type III secretion system is required for persistence and disease severity but not transmission in swine. Infect. Immun. 2014;82:1092–1103. PubMed PMC
Stockbauer K.E., Foreman-Wykert A.K., Miller J.F. Bordetella type III secretion induces caspase 1-independent necrosis. Cell Microbiol. 2003;5:123–132. PubMed
Bayram J., Malcova I., Sinkovec L., Holubova J., Streparola G., Jurnecka D., Kucera J., Sedlacek R., Sebo P., Kamanova J. Cytotoxicity of the effector protein BteA was attenuated in Bordetella pertussis by insertion of an alanine residue. PLoS Pathog. 2020;16 PubMed PMC
French C.T., Panina E.M., Yeh S.H., Griffith N., Arambula D.G., Miller J.F. The Bordetella type III secretion system effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts. Cell Microbiol. 2009;11:1735–1749. PubMed PMC
Geissler B. Bacterial toxin effector-membrane targeting: Outside in, then back again. Front. Cell. Infect. Microbiol. 2012;2:75. PubMed PMC
Yahalom A., Davidov G., Kolusheva S., Shaked H., Barber-Zucker S., Zarivach R., Chill J.H. Structure and membrane-targeting of a Bordetella pertussis effector N-terminal domain. Biochim. Biophys. Acta Biomembr. 2019;1861:183054. PubMed
Kuwae A., Momose F., Nagamatsu K., Suyama Y., Abe A. BteA secreted from the Bordetella bronchiseptica type III secetion system induces necrosis through an actin cytoskeleton signaling pathway and inhibits phagocytosis by macrophages. PLoS One. 2016;11 PubMed PMC
Han G.S., O'Hara L., Siniossoglou S., Carman G.M. Characterization of the yeast DGK1-encoded CTP-dependent diacylglycerol kinase. J. Biol. Chem. 2008;283:20443–20453. PubMed PMC
Nakanishi H., de los Santos P., Neiman A.M. Positive and negative regulation of a SNARE protein by control of intracellular localization. Mol. Biol. Cell. 2004;15:1802–1815. PubMed PMC
McLaughlin S., Wang J., Gambhir A., Murray D. PIP(2) and proteins: Interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 2002;31:151–175. PubMed
Tyson G.H., Halavaty A.S., Kim H., Geissler B., Agard M., Satchell K.J., Cho W., Anderson W.F., Hauser A.R. A novel phosphatidylinositol 4,5-bisphosphate binding domain mediates plasma membrane localization of ExoU and other patatin-like phospholipases. J. Biol. Chem. 2015;290:2919–2937. PubMed PMC
Guttman C., Davidov G., Yahalom A., Shaked H., Kolusheva S., Bitton R., Barber-Zucker S., Chill J.H., Zarivach R. BtcA, A class IA type III chaperone, interacts with the BteA N-terminal domain through a globular/non-globular mechanism. PLoS One. 2013;8 PubMed PMC
Lemmon M.A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 2008;9:99–111. PubMed
McLaughlin S., Murray D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature. 2005;438:605–611. PubMed
Chierico L., Joseph A.S., Lewis A.L., Battaglia G. Live cell imaging of membrane/cytoskeleton interactions and membrane topology. Sci. Rep. 2014;4:6056. PubMed PMC
Ji C., Zhang Y., Xu P., Xu T., Lou X. Nanoscale landscape of phosphoinositides revealed by specific pleckstrin homology (PH) domains using single-molecule superresolution imaging in the plasma membrane. J. Biol. Chem. 2015;290:26978–26993. PubMed PMC
Wang J., Richards D.A. Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane. Biol. Open. 2012;1:857–862. PubMed PMC
van Rheenen J., Achame E.M., Janssen H., Calafat J., Jalink K. PIP2 signaling in lipid domains: A critical re-evaluation. EMBO J. 2005;24:1664–1673. PubMed PMC
Hope H.R., Pike L.J. Phosphoinositides and phosphoinositide-utilizing enzymes in detergent-insoluble lipid domains. Mol. Biol. Cell. 1996;7:843–851. PubMed PMC
Vance J.E., Steenbergen R. Metabolism and functions of phosphatidylserine. Prog. Lipid Res. 2005;44:207–234. PubMed
Fairn G.D., Hermansson M., Somerharju P., Grinstein S. Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity. Nat. Cell Biol. 2011;13:1424–1430. PubMed
Stefan C.J., Audhya A., Emr S.D. The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol. Biol. Cell. 2002;13:542–557. PubMed PMC
Aronov S., Gerst J.E. Involvement of the late secretory pathway in actin regulation and mRNA transport in yeast. J. Biol. Chem. 2004;279:36962–36971. PubMed
Tuller G., Nemec T., Hrastnik C., Daum G. Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources. Yeast. 1999;15:1555–1564. PubMed
Horvath S.E., Daum G. Lipids of mitochondria. Prog. Lipid Res. 2013;52:590–614. PubMed
Zegarlinska J., Piascik M., Sikorski A.F., Czogalla A. Phosphatidic acid - a simple phospholipid with multiple faces. Acta Biochim. Pol. 2018;65:163–171. PubMed
Grycova L., Holendova B., Lansky Z., Bumba L., Jirku M., Bousova K., Teisinger J. Ca(2+) binding protein S100A1 competes with calmodulin and PIP2 for binding site on the C-terminus of the TPRV1 receptor. ACS Chem. Neurosci. 2015;6:386–392. PubMed
Chen D.C., Yang B.C., Kuo T.T. One-step transformation of yeast in stationary phase. Curr. Genet. 1992;21:83–84. PubMed
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. PubMed PMC
Volland C., Urban-Grimal D., Geraud G., Haguenauer-Tsapis R. Endocytosis and degradation of the yeast uracil permease under adverse conditions. J. Biol. Chem. 1994;269:9833–9841. PubMed
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. PubMed PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. PubMed
Simon R., Priefer U., Pühler A. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Nat. Biotechnol. 1983;1:784–791.
Skopova K., Tomalova B., Kanchev I., Rossmann P., Svedova M., Adkins I., Bibova I., Tomala J., Masin J., Guiso N., Osicka R., Sedlacek R., Kovar M., Sebo P. Cyclic AMP-elevating capacity of adenylate cyclase toxin-hemolysin is sufficient for lung infection but not for full virulence of Bordetella pertussis. Infect. Immun. 2017;85 PubMed PMC
Bart M.J., Zeddeman A., van der Heide H.G., Heuvelman K., van Gent M., Mooi F.R. Complete genome sequences of Bordetella pertussis isolates B1917 and B1920, representing two predominant global lineages. Genome Announc. 2014;2 PubMed PMC
Bart M.J., Harris S.R., Advani A., Arakawa Y., Bottero D., Bouchez V., Cassiday P.K., Chiang C.S., Dalby T., Fry N.K., Gaillard M.E., van Gent M., Guiso N., Hallander H.O., Harvill E.T. Global population structure and evolution of Bordetella pertussis and their relationship with vaccination. mBio. 2014;5 PubMed PMC
Cotter P.A., Miller J.F. BvgAS-mediated signal transduction: Analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect. Immun. 1994;62:3381–3390. PubMed PMC
Diavatopoulos D.A., Cummings C.A., Schouls L.M., Brinig M.M., Relman D.A., Mooi F.R. Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog. 2005;1 PubMed PMC
Brachmann C.B., Davies A., Cost G.J., Caputo E., Li J., Hieter P., Boeke J.D. Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998;14:115–132. PubMed
Robinson J.S., Klionsky D.J., Banta L.M., Emr S.D. Protein sorting in Saccharomyces cerevisiae: Isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol. Cell. Biol. 1988;8:4936–4948. PubMed PMC
Inatsuka C.S., Xu Q., Vujkovic-Cvijin I., Wong S., Stibitz S., Miller J.F., Cotter P.A. Pertactin is required for Bordetella species to resist neutrophil-mediated clearance. Infect. Immun. 2010;78:2901–2909. PubMed PMC
Posfai G., Kolisnychenko V., Bereczki Z., Blattner F.R. Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res. 1999;27:4409–4415. PubMed PMC
The Bordetella effector protein BteA induces host cell death by disruption of calcium homeostasis
BopN is a Gatekeeper of the Bordetella Type III Secretion System