• This record comes from PubMed

Loss of FADD and Caspases Affects the Response of T-Cell Leukemia Jurkat Cells to Anti-Cancer Drugs

. 2021 Mar 07 ; 22 (5) : . [epub] 20210307

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
MUNI/A/1325/2020 Ministerstvo Školství, Mládeže a Tělovýchovy

Programmed cell death (PCD) pathways play a crucial role in the response of cancer cells to treatment. Their dysregulation is one of the cancer hallmarks and one of the reasons of drug resistance. Here, we studied the significance of the individual members of PCD signaling pathways in response to treatment with common anti-cancer drugs using the T-cell leukemia Jurkat cells with single or double knockouts of necroptosis and/or apoptosis genes. We identified apoptosis as the primary cell death pathway upon anti-cancer drugs treatment. The cells with knocked out either Fas-associated protein with death domain (FADD) or all executioner caspases were resistant. This resistance could be partially overcome by induction of RIP1-dependent necroptosis through TNFR1 activation using combined treatment with TNF-α and smac mimetic (LCL161). RIP1 was essential for cellular response to TNF-α and smac mimetic, but dispensable for the response to anti-cancer drugs. Here, we demonstrated the significance of FADD and executioner caspases in carrying out programmed cell death upon anti-cancer drug treatments and the ability of combined treatment with TNF-α and smac mimetic to partially overcome drug resistance of FADD and/or CASP3/7/6-deficient cells via RIP1-dependent necroptosis. Thus, a combination of TNF-α and smac mimetic could be a suitable strategy for overcoming resistance to therapy in cells unable to trigger apoptosis.

See more in PubMed

Galluzzi L., Vitale I., Abrams J.M., Alnemri E.S., Baehrecke E.H., Blagosklonny M.V., Dawson T.M., Dawson V.L., El-Deiry W.S., Fulda S., et al. Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19:107–120. doi: 10.1038/cdd.2011.96. PubMed DOI PMC

Galluzzi L., Kepp O., Kroemer G. Mitochondria: Master regulators of danger signalling. Nat. Rev. Mol. Cell Biol. 2012;13:780–788. doi: 10.1038/nrm3479. PubMed DOI

Lakhani S.A., Masud A., Kuida K., Porter G.A., Booth C.J., Mehal W.Z., Inayat I., Flavell R.A. Caspases 3 and 7: Key mediators of mitochondrial events of apoptosis. Science. 2006;311:847–851. doi: 10.1126/science.1115035. PubMed DOI PMC

Degterev A., Huang Z., Boyce M., Li Y., Jagtap P., Mizushima N., Cuny G.D., Mitchison T.J., Moskowitz M.A., Yuan J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 2005;1:112–119. doi: 10.1038/nchembio711. PubMed DOI

Galluzzi L., Kepp O., Chan F.K.-M., Kroemer G. Necroptosis: Mechanisms and Relevance to Disease. Annu. Rev. Pathol. Mech. Dis. 2017;12:103–130. doi: 10.1146/annurev-pathol-052016-100247. PubMed DOI PMC

Vandenabeele P., Galluzzi L., Vanden Berghe T., Kroemer G. Molecular mechanisms of necroptosis: An ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 2010;11:700–714. doi: 10.1038/nrm2970. PubMed DOI

Christofferson D.E., Li Y., Yuan J. Control of Life-or-Death Decisions by RIP1 Kinase. Annu. Rev. Physiol. 2014;76:129–150. doi: 10.1146/annurev-physiol-021113-170259. PubMed DOI

Micheau O., Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–190. doi: 10.1016/S0092-8674(03)00521-X. PubMed DOI

Wang X.-J., Cao Q., Liu X., Wang K.-T., Mi W., Zhang Y., Li L.-F., LeBlanc A.C., Su X.-D. Crystal structures of human caspase 6 reveal a new mechanism for intramolecular cleavage self-activation. EMBO Rep. 2010;11:841–847. doi: 10.1038/embor.2010.141. PubMed DOI PMC

Cho Y., Challa S., Moquin D., Genga R., Ray T.D., Guildford M., Chan F.K.-M. Phosphorylation-Driven Assembly of the RIP1-RIP3 Complex Regulates Programmed Necrosis and Virus-Induced Inflammation. Cell. 2009;137:1112–1123. doi: 10.1016/j.cell.2009.05.037. PubMed DOI PMC

He S., Wang L., Miao L., Wang T., Du F., Zhao L., Wang X. Receptor Interacting Protein Kinase-3 Determines Cellular Necrotic Response to TNF-α. Cell. 2009;137:1100–1111. doi: 10.1016/j.cell.2009.05.021. PubMed DOI

Christofferson D.E., Yuan J. Necroptosis as an alternative form of programmed cell death. Curr. Opin. Cell Biol. 2010;22:263–268. doi: 10.1016/j.ceb.2009.12.003. PubMed DOI PMC

Feoktistova M., Geserick P., Kellert B., Dimitrova D.P., Langlais C., Hupe M., Cain K., MacFarlane M., Häcker G., Leverkus M. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell. 2011;43:449–463. doi: 10.1016/j.molcel.2011.06.011. PubMed DOI PMC

Tenev T., Bianchi K., Darding M., Broemer M., Langlais C., Wallberg F., Zachariou A., Lopez J., MacFarlane M., Cain K., et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell. 2011;43:432–448. doi: 10.1016/j.molcel.2011.06.006. PubMed DOI

Hanahan D., Weinberg R.A. Hallmarks of Cancer: The Next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Lafont E., Milhas D., Teissié J., Therville N., Andrieu-Abadie N., Levade T., Benoist H., Ségui B. Caspase-10-dependent cell death in Fas/CD95 signalling is not abrogated by caspase inhibitor zVAD-fmk. PLoS ONE. 2010;5:e13638. doi: 10.1371/journal.pone.0013638. PubMed DOI PMC

Filomenko R., Prévotat L., Rébé C., Cortier M., Jeannin J.-F., Solary E., Bettaieb A. Caspase-10 involvement in cytotoxic drug-induced apoptosis of tumor cells. Oncogene. 2006;25:7635–7645. doi: 10.1038/sj.onc.1209733. PubMed DOI

Park S.-J., Wu C.-H., Gordon J.D., Zhong X., Emami A., Safa A.R. Taxol Induces Caspase-10-dependent Apoptosis. J. Biol. Chem. 2004;279:51057–51067. doi: 10.1074/jbc.M406543200. PubMed DOI

Tanzer M.C., Khan N., Rickard J.A., Etemadi N., Lalaoui N., Spall S.K., Hildebrand J.M., Segal D., Miasari M., Chau D., et al. Combination of IAP antagonist and IFNγ activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death Differ. 2017;24:481–491. doi: 10.1038/cdd.2016.147. PubMed DOI PMC

Chang X., Wang L., Wang Z., Wu S., Zhu X., Hu S., Wang Y., Yu J., Chen G. TRADD mediates the tumor necrosis factor-induced apoptosis of L929 cells in the absence of RIP3. Sci. Rep. 2017;7:16111. doi: 10.1038/s41598-017-16390-6. PubMed DOI PMC

Mandal P., Berger S.B., Pillay S., Moriwaki K., Huang C., Guo H., Lich J.D., Finger J., Kasparcova V., Votta B., et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol. Cell. 2014;56:481–495. doi: 10.1016/j.molcel.2014.10.021. PubMed DOI PMC

Lee E.-W., Kim J.-H., Ahn Y.-H., Seo J., Ko A., Jeong M., Kim S.-J., Ro J.Y., Park K.-M., Lee H.-W., et al. Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. Nat. Commun. 2012;3:978. doi: 10.1038/ncomms1981. PubMed DOI

Lee E.-W., Seo J.H., Jeong M., Lee S.S., Song J.W. The roles of FADD in extrinsic apoptosis and necroptosis. BMB Rep. 2012;45:496–508. doi: 10.5483/BMBRep.2012.45.9.186. PubMed DOI

Matsumura H., Shimizu Y., Ohsawa Y., Kawahara A., Uchiyama Y., Nagata S. Necrotic death pathway in Fas receptor signaling. J. Cell Biol. 2000;151:1247–1256. doi: 10.1083/jcb.151.6.1247. PubMed DOI PMC

Kawahara A., Ohsawa Y., Matsumura H., Uchiyama Y., Nagata S. Caspase-independent Cell Killing by Fas-associated Protein with Death Domain. J. Cell Biol. 1998;143:1353–1360. doi: 10.1083/jcb.143.5.1353. PubMed DOI PMC

Irrinki K.M., Mallilankaraman K., Thapa R.J., Chandramoorthy H.C., Smith F.J., Jog N.R., Gandhirajan R.K., Kelsen S.G., Houser S.R., May M.J., et al. Requirement of FADD, NEMO, and BAX/BAK for aberrant mitochondrial function in tumor necrosis factor alpha-induced necrosis. Mol. Cell. Biol. 2011;31:3745–3758. doi: 10.1128/MCB.05303-11. PubMed DOI PMC

Holler N., Zaru R., Micheau O., Thome M., Attinger A., Valitutti S., Bodmer J.-L., Schneider P., Seed B., Tschopp J. Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 2000;1:489–495. doi: 10.1038/82732. PubMed DOI

Vanlangenakker N., Bertrand M.J.M., Bogaert P., Vandenabeele P., Vanden Berghe T. TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis. 2011;2:e230. doi: 10.1038/cddis.2011.111. PubMed DOI PMC

Feldmann F., Schenk B., Martens S., Vandenabeele P., Fulda S. Sorafenib inhibits therapeutic induction of necroptosis in acute leukemia cells. Oncotarget. 2017;8:68208–68220. doi: 10.18632/oncotarget.19919. PubMed DOI PMC

Hannes S., Abhari B.A., Fulda S. Smac mimetic triggers necroptosis in pancreatic carcinoma cells when caspase activation is blocked. Cancer Lett. 2016;380:31–38. doi: 10.1016/j.canlet.2016.05.036. PubMed DOI

McComb S., Aguadé-Gorgorió J., Harder L., Marovca B., Cario G., Eckert C., Schrappe M., Stanulla M., von Stackelberg A., Bourquin J.-P., et al. Activation of concurrent apoptosis and necroptosis by SMAC mimetics for the treatment of refractory and relapsed ALL. Sci. Transl. Med. 2016;8:339ra70. doi: 10.1126/scitranslmed.aad2986. PubMed DOI

Abhari B.A., Cristofanon S., Kappler R., von Schweinitz D., Humphreys R., Fulda S. RIP1 is required for IAP inhibitor-mediated sensitization for TRAIL-induced apoptosis via a RIP1/FADD/caspase-8 cell death complex. Oncogene. 2013;32:3263–3273. doi: 10.1038/onc.2012.337. PubMed DOI

Löder S., Fakler M., Schoeneberger H., Cristofanon S., Leibacher J., Vanlangenakker N., Bertrand M.J.M., Vandenabeele P., Jeremias I., Debatin K.-M., et al. RIP1 is required for IAP inhibitor-mediated sensitization of childhood acute leukemia cells to chemotherapy-induced apoptosis. Leukemia. 2012;26:1020–1029. doi: 10.1038/leu.2011.353. PubMed DOI

Wang L., Du F., Wang X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell. 2008;133:693–703. doi: 10.1016/j.cell.2008.03.036. PubMed DOI

Laukens B., Jennewein C., Schenk B., Vanlangenakker N., Schier A., Cristofanon S., Zobel K., Deshayes K., Vucic D., Jeremias I., et al. Smac mimetic bypasses apoptosis resistance in FADD- or caspase-8-deficient cells by priming for tumor necrosis factor α-induced necroptosis. Neoplasia. 2011;13:971–979. doi: 10.1593/neo.11610. PubMed DOI PMC

Scaffidi C., Fulda S., Srinivasan A., Friesen C., Li F., Tomaselli K.J., Debatin K.M., Krammer P.H., Peter M.E. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17:1675–1687. doi: 10.1093/emboj/17.6.1675. PubMed DOI PMC

Karpinich N.O., Tafani M., Schneider T., Russo M.A., Farber J.L. The course of etoposide-induced apoptosis in Jurkat cells lacking p53 and Bax. J. Cell. Physiol. 2006;208:55–63. doi: 10.1002/jcp.20638. PubMed DOI

Amin P., Florez M., Najafov A., Pan H., Geng J., Ofengeim D., Dziedzic S.A., Wang H., Barrett V.J., Ito Y., et al. Regulation of a distinct activated RIPK1 intermediate bridging complex I and complex II in TNFα-mediated apoptosis. Proc. Natl. Acad. Sci. USA. 2018;115:E5944–E5953. doi: 10.1073/pnas.1806973115. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...