Selenium Alleviates the Adverse Effect of Drought in Oilseed Crops Camelina (Camelina sativa L.) and Canola (Brassica napus L.)

. 2021 Mar 18 ; 26 (6) : . [epub] 20210318

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33803724

Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 μM), foliar application of Se (7.06 μM), foliar application of Se + Seed priming with Se (7.06 μM and 75 μM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.

Cholistan Institute of Desert Studies The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan

Department of Agriculture and Agribusiness Management University of Karachi Karachi 75270 Pakistan

Department of Agronomy Bahadur Sub Campus Layyah College of Agriculture Bahauddin Zakariya University Punjab 31200 Pakistan

Department of Agronomy Bangladesh Wheat and Maize Research Institute Dinajpur 5200 Bangladesh

Department of Agronomy Faculty of Agriculture University of Kafrelsheikh Kafr El Sheikh 33516 Egypt

Department of Agronomy Faculty of Agriculture University of Poonch Rawalakot Rawalakot 12350 Pakistan

Department of Agronomy Hajee Mohammad Danesh Science and Technology University Dinajpur 5200 Bangladesh

Department of Agronomy MNS University of Agriculture Multan Pakistan Punjab 66000 Pakistan

Department of Agronomy University of Agriculture Faisalabad Punjab 38000 Pakistan

Department of Biology College of Science Taif University P O Box 11099 Taif 21944 Saudi Arabia

Department of Botany and Plant Physiology Faculty of Agrobiology Food and Natural Resources Czech University of Life Sciences Prague 165 00 Prague Czech Republic

Department of Botany University of Central Punjab Bahawalpur Campus Bahawalpur 63100 Pakistan

Department of Crop Science Institute of Crop Science and Resource Conservation University Bonn 53115 Bonn Germany

Department of Plant Physiology Slovak University of Agriculture Nitra 949 01 Nitra Slovakia

Institute of Soil and Environmental Sciences University of Agriculture Faisalabad 78000 Pakistan

Zobrazit více v PubMed

Ahmad Z., Waraich E.A., Barutçular C., Hossain A., Erman M., ÇIĞ F., Gharib H., EL Sabagh A. Enhancing drought tolerance in wheat through improving morpho-physiological and antioxidants activities of plants by the supplementation of foliar silicon. Phyton Int. J. Exp. Bot. 2020;89:529–539.

Wang L., D’Odorico P., Evans J.P., Eldridge D.J., McCabe M.F., Caylor K.K., King E.G. Dryland ecohydrology and climate change: Critical issues and technical advances. Hydrol. Earth Syst. Sci. 2012;16:2585–2603. doi: 10.5194/hess-16-2585-2012. DOI

Hao Z., Singh V.P. Drought characterization from a multivariate perspective: A review. J. Hydrol. 2015;527:668–678. doi: 10.1016/j.jhydrol.2015.05.031. DOI

Zhang Q., Gu X., Singh V.P., Kong D., Chen X. Spatiotemporal behavior of floods and droughts and their impacts on agriculture in China. Glob. Planet Chang. 2015;131:63–72. doi: 10.1016/j.gloplacha.2015.05.007. DOI

Miao Y., Zhu Z., Guo Q., Ma H., Zhu L. Alternate wetting and drying irrigation-mediated changes in the growth, photosynthesis and yield of the medicinal plant Tulipa edulis. Ind. Crops Prod. 2015;66:81–88. doi: 10.1016/j.indcrop.2014.12.002. DOI

Madadgar S., AghaKouchak A., Farahmand A., Davis S.J. Probabilistic estimates of drought impacts on agricultural production. Geophys. Res. Lett. 2017;44:7799–7807. doi: 10.1002/2017GL073606. DOI

Filgueiras L., Silva R., Almeida I., Vidal M., Baldani J.I., Meneses C.H.S.G. Gluconacetobacter diazotrophicus mitigates drought stress in Oryza sativa. Plant Soil. 2020;451:57–73. doi: 10.1007/s11104-019-04163-1. DOI

Mohtashami R., Movahhedi M.D., Balouchi H., Faraji H. Improving yield, oil content and water productivity of dryland canola by supplementary irrigation and selenium spraying. Agric. Water Manag. 2020;232:106046. doi: 10.1016/j.agwat.2020.106046. DOI

Boldrin P.F., Faquin V., Ramos S.J., Boldrin K.V.F., Ávila F.W., Guilherme L.R.G. Soil and foliar application of selenium in rice biofortification. J. Food Compos. Anal. 2013;31:238–244. doi: 10.1016/j.jfca.2013.06.002. DOI

Kápolna E., Hillestrøm P.R., Laursen K.H., Husted S., Larsen E.H. Effect of foliar application of selenium on its uptake and speciation in carrot. Food Chem. 2009;115:1357–1363. doi: 10.1016/j.foodchem.2009.01.054. DOI

Kápolna E., Laursen K.H., Husted S., Larsen E.H. Bio-fortification and isotopic labelling of Se metabolites in onions and carrots following foliar application of Se and 77Se. Food Chem. 2012;133:650–657. doi: 10.1016/j.foodchem.2012.01.043. DOI

Põldma P., Tõnutare T., Viitak A., Luik A., Moor U. Effect of selenium treatment on mineral nutrition, bulbsize, and antioxidant properties of garlic (Allium sativum L.) Agric. Food Chem. 2011;59:5498–5503. doi: 10.1021/jf200226p. PubMed DOI

Šindelářová K., Száková J., Tremlová J., Mestek O., Praus L., Kaňa A., Najmanová J.T.P. The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: Uptake, translocation, and speciation. Food Addit. Contam. Part A. 2015;32:2027–2038. doi: 10.1080/19440049.2015.1099744. PubMed DOI

Mozafariyan M., Pessarakli M., Saghafi K. Effects of selenium on some morphological and physiological traits of tomato plants grown under hydroponic condition. J. Plant Nutr. 2017;40:139–144. doi: 10.1080/01904167.2016.1201500. DOI

Helaly M.N., El-Hoseiny H., El-Sheery N.I., Rastogi A., Kalaji H.M. Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiol. Biochem. 2017;118:31–44. doi: 10.1016/j.plaphy.2017.05.021. PubMed DOI

Hasanuzzaman M., Hossain M.A., Fujita M. Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol. Trace Elem. Res. 2011;143:1704–1721. doi: 10.1007/s12011-011-8958-4. PubMed DOI

Hasanuzzaman M., Hossain M.A., Fujita M. Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol. Trace Elem. Res. 2012;149:248–261. doi: 10.1007/s12011-012-9419-4. PubMed DOI

Lyons G.H., Genc Y., Soole K., Stangoulis J.C.R., Liu F., Graham R.D. Selenium increases seed production in Brassica. Plant Soil. 2009;318:73–80. doi: 10.1007/s11104-008-9818-7. DOI

Száková J., Praus L., Tremlová J., Kulhánek M., Tlustoš P. Efficiency of foliar selenium application on oilseed rape (Brassica napus L.) as influenced by rainfall and soil characteristics. Arch. Agron. Soil Sci. 2017;63:1240–1254. doi: 10.1080/03650340.2016.1275581. DOI

Djanaguiraman M., Prasad P.V.V., Seppanen M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol. Biochem. 2010;48:999–1007. doi: 10.1016/j.plaphy.2010.09.009. PubMed DOI

Ellis D.R., Salt D.E. Plants, selenium and human health. Curr. Opin. Plant Biol. 2003;6:273–279. doi: 10.1016/S1369-5266(03)00030-X. PubMed DOI

Klognerová K., Vosmanská M., Száková J., Mestek O. Effect of growing conditions on selenium speciation in rapeseed (Brassica napus) tissue. Chem. List. 2015;109:216–222.

Seppänen M.M., Kontturi J., Heras I.L., Madrid Y., Cámara C., Hartikainen H. Agronomic biofortification of Brassica with selenium-enrichment of SeMet and its identification in Brassica seeds and meal. Plant Soil. 2010;337:273–283. doi: 10.1007/s11104-010-0523-y. DOI

Feng J., Shi Q., Wang X., Wei M., Yang F., Xu H. Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci. Hortic. 2010;123:521–530. doi: 10.1016/j.scienta.2009.10.013. DOI

Kaur N., Sharma S., Kaur S., Nayyar H. Selenium in agriculture: A nutrient or contaminant for crops? Arch. Agron. Soil Sci. 2014;60:1593–1624. doi: 10.1080/03650340.2014.918258. DOI

Drahoňovský J., Száková J., Mestek O., Tremlová J., Kaňa A., Najmanová J., Tlustoš P. Selenium uptake, transformation and inter-element interactions by selected wildlife plant species after foliar selenate application. Environ. Exp. Bot. 2016;125:12–19. doi: 10.1016/j.envexpbot.2016.01.006. DOI

Filek M., Zembala M., Kornaś A., Walas S., Mrowiec H., Hartikainen H. The uptake and translocation of macro- and microelements in rape and wheat seedlings as affected by selenium supply level. Plant Soil. 2010;336:303–312. doi: 10.1007/s11104-010-0481-4. DOI

El-Ramady H., Abdalla N., Taha H.S.T., Alshaal A., El-Henawy S.E.D.A., Faizy M.S., Shams S.M., Youssef T., Shalaby Y., Bayoumi N., et al. Selenium and NanoSelenium in Plant Nutrition. Environ. Chem. Lett. 2016;14:123–147. doi: 10.1007/s10311-015-0535-1. DOI

FAO . Food Outlook. Food and Agriculture Organization; Rome, Italy: 2015. Global Information and Early Warning System. DOI

Habibi G. Contrastive response of Brassica napus L. to exogenous salicylic acid, selenium and silicon supplementation under water stress. Arch. Biol. Sci. 2015;67:397–404. doi: 10.2298/ABS140411006H. DOI

Kerr C., Walker E., Booth J. Agricultural aspects of rape and other Brassica products. Eur. J. Lipid Sci. Technol. 2001;103:441–446. doi: 10.1002/1438-9312(200107)103:7<441::AID-EJLT441>3.0.CO;2-D. DOI

Jahangir M., Abdel-Farid I.B., Simoh S., Kim H.K., Verpoorte R.C.Y. Investigation of Brassica biochemical status by NMR-based metabolomics. Acta Hortic. 2012;936:163–172. doi: 10.17660/ActaHortic.2012.936.19. DOI

Murphy E.J. Industrial Oil Crops. Elsevier Inc.; Amsterdam, The Netherlands: 2016. Camelina (Camelina sativa) pp. 207–230.

Ahmad Z., Waraich E.A., Ahmad R., Shahbaz M. Modulation in water relations, chlorophyll contents and antioxidants activity of maize by foliar phosphorus application under drought stress. Pak. J. Bot. 2017;49:11–19.

Latef A.A.A., Tran L.-S.P. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front. Plant Sci. 2016;7:243. doi: 10.3389/fpls.2016.00243. PubMed DOI PMC

Mohd R.S., Fisal A., Azwan A., Chye F.Y., Matanjun P. Crude proteins, total soluble proteins, total phenolic contents and SDS-PAGE profile of fifteen varieties of seaweed from Semporna, Sabah, Malaysia. Int. Food Res. J. 2015;22:1483–1493.

Sood V., Rawat D., Khanna R., Sharma S., Gupta P.K., Alam S., Sarin S.K. Study of carnitine/acylcarnitine and amino acid profile in children and adults with acute liver failure. J. Pediatr. Gastroenterol. Nutr. 2017;64:869–875. doi: 10.1097/MPG.0000000000001510. PubMed DOI

Sinay H., Karuwal R.L. Proline and total soluble sugar content at the vegetative phase of six corn cultivars from Kisar Island Maluku, grown under drought stress conditions. IJAAR. 2014;2:77–82.

Cao B., Li W.L., Gao S., Xia J., Xu K. Silicon-mediated changes in radial hydraulic conductivity and cell wall stability are involved in silicon-induced drought resistance in tomato. Protoplasma. 2017;254:2295–2304. doi: 10.1007/s00709-017-1115-y. PubMed DOI

Ribera-Fonseca A., Rumpel C., Mora M.D.L.L., Nikolic M., Cartes P. Sodium silicate and calcium silicate differentially affect silicon and aluminium uptake, antioxidant performance and phenolics metabolism of ryegrass in an acid Andisol. Crop Pasture Sci. 2018;69:205–215. doi: 10.1071/CP17202. DOI

Zhao L., Temelli F., Chen L. Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. J. Funct. Foods. 2017;34:159–167. doi: 10.1016/j.jff.2017.04.021. DOI

Wang J.Y., Xiong Y.C., Li F.M., Siddique K.H., Turner N.C. Effects of drought stress on morphophysiological traits, biochemical characteristics, yield, and yield components in different ploidy wheat: A meta-analysis. Adv. Agron. 2017;143:139–173. doi: 10.1016/bs.agron.2017.01.002. DOI

Salama K.H.A., Mansour M.M.F., Al-Malawi H.A. Glycinebetaine priming improves salt tolerance of wheat. Biologia. 2015;70:1334–1339. doi: 10.1515/biolog-2015-0150. DOI

Tale A.S., Haddad R. Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech J. Genet. Plant Breed. 2011;47:17–27. doi: 10.17221/92/2010-CJGPB. DOI

R Core Team . R: A Language and Environment for Statistical Computing. The R Foundation for Statistical Computing; Vienna, Austria: 2014. [(accessed on 31 January 2021)]. Available online: http//www.R-project.org/

Kuznetsov V. Selenium regulates the water status of plants exposed to drought. Dokl. Biol. Sci. 2003;390:266–268. doi: 10.1023/A:1024426104894. PubMed DOI

Nawaz F., Ashraf M.Y., Ahmad R., Waraich E.A., Shabbir R.N., Bukhari M.A. Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chem. 2015;175:350–357. doi: 10.1016/j.foodchem.2014.11.147. PubMed DOI

Ahmad R., Waraich E.A., Nawaz F., Ashraf M.Y., Khalid M. Selenium (Se) improves drought tolerance in crop plants—A myth or fact? J. Sci. Food Agric. 2016;96:372–380. doi: 10.1002/jsfa.7231. PubMed DOI

Yao X., Chu J., Wang G. Effects of selenium on wheat seedlings under drought stress. Biol. Trace Elem. Res. 2009;130:283–290. doi: 10.1007/s12011-009-8328-7. PubMed DOI

Ahmad Z., Waraich E.A., Akhtar S., Anjum S., Ahmad T., Mahboob W., Hafeez O.B.A., Tapera T., Labuschagne M., Rizwan M. Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiol. Plant. 2018;40:80. doi: 10.1007/s11738-018-2651-6. DOI

Nageswara R.R.C., Talwar H.S., Wright G.C. Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using a chlorophyll meter. J. Agron. Crop Sci. 2001;186:175–182. doi: 10.1046/j.1439-037X.2001.00472.x. DOI

Iturbe-Ormaetxe I., Escuredo P.R., Arrese-Igor C., Becana M. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol. 1998;116:173–181. doi: 10.1104/pp.116.1.173. DOI

Waraich E.A., Rashid F., Ahmad Z., Ahmad R., Ahmad M. Foliar applied potassium stimulate drought tolerance in canola under water deficit conditions. J. Plant Nutr. 2020;43:1923–1934. doi: 10.1080/01904167.2020.1758132. DOI

Manivannan P., Jaleel C.A., Sankar B., Kishorekumar A., Somasundaram R., Lakshmanan G.A., Panneerselvam R. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids Surf. B Biointerfaces. 2007;59:141–149. doi: 10.1016/j.colsurfb.2007.05.002. PubMed DOI

Fotovat R., Valizadeh M., Toorchi M. Association between water-use efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions. J. Food Agric. Environ. 2007;5:225–227.

Khayatnezhad M., Gholamin R., Jamaati-e-Somarin S., Zabihi-e-Mahmoodabad R. The leaf chlorophyll content and stress resistance relationship considering in corn cultivars (Zea mays) Adv. Environ. Biol. 2011;5:118–122.

EL Sabagh A., Hossain A., Barutçular C., Khaled A.A., Fahad S., Anjorin F.B., Islam M.S., Ratnasekera D., Kizilgeçi F., Singh G., et al. Sustainable maize (Zea mays L.) production under drought stress by understanding its adverse effect, survival mechanism and drought tolerance indices. J. Exp. Biol. Agric. Sci. 2018;6:282–295. doi: 10.18006/2018.6(2).282.295. DOI

EL Sabagh A., Hossain A., Barutçular C., Gormus O., Ahmad Z., Hussain S., Islam M.S., Alharby H., Bamagoos A., Kumar N., et al. Effects of drought stress on the quality of major oilseed crops: Implications and possible mitigation strategies—A review. Appl. Ecol. Environ. Res. 2019;17:4019–4043. doi: 10.15666/aeer/1702_40194043. DOI

Ahmadizadeh M. Physiological and agro-morphological response to drought stress. Middle East J. Sci. Res. 2013;13:998–1009. doi: 10.5829/idosi.mejsr.2013.13.8.3531. DOI

Shabbir R.N., Waraich E.A., Ali H., Nawaz F., Ashraf M.Y., Ahmad R., Awan M.I., Ahmad S., Irfan M., Hussain S., et al. Supplemental exogenous NPK application alters biochemical processes to improve yield and drought tolerance in wheat (Triticum aestivum L.) Environ. Sci. Pollut. Res. 2015;23:2651–2662. doi: 10.1007/s11356-015-5452-0. PubMed DOI

Zhao Y., Wu P., Wang Y., Feng H. Different approaches for selenium biofortification of pear-jujube (Zizyphus jujuba M. cv. Lizao) and associated effects on fruit quality. J. Food Agric. Environ. 2013;225:1–5.

Silva R., Filgueiras L., Santos B., Coelho M., Silva M., Estrada-Bonilla G., Vidal M., Baldani J.I., Meneses C. Gluconacetobacter diazotrophicus changes the molecular mechanisms of root development in Oryza sativa growing under water stress. Int. J. Mol. Sci. 2020;21:333. doi: 10.3390/ijms21010333. PubMed DOI PMC

Schiavon M., Pilon-Smits E.A.H. The fascinating facets of plant selenium accumulation—Biochemistry, physiology, evolution and ecology. New Phytol. 2017;213:1582–1596. doi: 10.1111/nph.14378. PubMed DOI

Yao X., Chu J., Liang L., Geng W., Li J., Hou G. Selenium improves recovery of wheat seedlings at rewatering after drought stress. Russ. J. Plant Physiol. 2012;59:701–707. doi: 10.1134/S1021443712060192. DOI

Hawrylak-Nowak B. Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol. Trace Elem. Res. 2009;132:259–269. doi: 10.1007/s12011-009-8402-1. PubMed DOI

Abbas S.M. Low levels of selenium application attenuate low temperature stress in Sorghum [Sorghum bicolor (L.) moench.] seedlings. Pak. J. Bot. 2013;45:1597–1604.

Akbulut M., Çakir S. The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol. Biochem. 2009;48:160–166. doi: 10.1016/j.plaphy.2009.11.001. PubMed DOI

Cechin I., Corniani N., De Fátima F.T., Cataneo A.C. Ultraviolet-B and water stress effects on growth, gas exchange and oxidative stress in sunflower plants. Radiat. Environ. Biophys. 2008;47:405–413. doi: 10.1007/s00411-008-0167-y. PubMed DOI

Zahedi H., Rad A.H.S., Moghadam H.R.T. Effects of zeolite and selenium applications on some agronomic traits of three Canola cultivars under drought stress. Pesqui. Agropecuária Trop. 2011;41:179–185. doi: 10.5216/pat.v41i2.9554. DOI

Pazoki A.R., Rad A.H.S., Habibi D., Paknejad F., Kobraee S., Hadayat N. Effect of drought stress and selenium spraying on superoxide dismotase activity of winter rapeseed (Brassica napus L.) cultivars. Int. J. Agric. Biosyst. Eng. 2010;4:655–658. doi: 10.5281/zenodo.1332794. DOI

Zhang L., Li Q., Yang X., Xia Z. Effects of sodium selenite and germination on the sprouting of chickpeas (Cicer arietinum L.) and its content of selenium, formononetin and biochanin A in the sprouts. Biol. Trace Elem. Res. 2011;146:376–380. doi: 10.1007/s12011-011-9261-0. PubMed DOI

Germ M., Stibilj V., Osvald J., Kreft I. Effect of selenium foliar application on chicory (Cichorium intybus L) J. Agric. Food Chem. 2007;55:795–798. doi: 10.1021/jf0629888. PubMed DOI

Gao L., Caldwell C.D., Jiang Y. Photosynthesis and growth of Camelina and Canola in response to water deficit and applied nitrogen. Crop Sci. 2018;58:393–401. doi: 10.2135/cropsci2017.07.0406. DOI

Ahmad Z., Waraich E.A., Barutçular C., Alharby H., Bamagoos A., Kizilgeci F., Öztürk F., Hossain A., Bayoumi Y., EL Sabagh A. Enhancing drought tolerance in Camelina sativa L. and Canola napus L. through application of selenium. Pak. J. Bot. 2020;52 doi: 10.30848/PJB2020-6(31). DOI

Curtin D., Hanson R., Van Der Weerden T.J. Effect of selenium fertiliser formulation and rate of application on selenium concentrations in irrigated and dryland wheat (Triticum aestivum) N. Z. J. Crop Hortic. Sci. 2008;36:1–7. doi: 10.1080/01140670809510216. DOI

Proietti P., Nasini L., Del Buono D., D’Amato R., Tedeschini E., Businelli D. Selenium protects olive (Olea europaea L.) from drought stress. Sci. Hortic. 2013;164:165–171. doi: 10.1016/j.scienta.2013.09.034. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...