Selenite foliar application increased the accumulation of medicinal components in Paeonia ostii by promoting antioxidant capacity, reducing oxidative stress, and improving photosynthetic capacity
Status PubMed-not-MEDLINE Language English Country Czech Republic Media electronic-ecollection
Document type Journal Article
PubMed
39651417
PubMed Central
PMC11613835
DOI
10.32615/ps.2024.012
PII: PS62168
Knihovny.cz E-resources
- Keywords
- Paeonia ostii, chlorophyll fluorescence, photosynthesis, secondary metabolites, selenite,
- Publication type
- Journal Article MeSH
The effects of selenite (0, 15, 30, 45 mg L-1) on physiological characteristics and medicinal components of Paeonia ostii were analyzed. The results showed that selenite application promoted the activity of superoxide dismutase and the contents of soluble sugar, proline, carotenoids, total flavonoids, and total polyphenols, and decreased the contents of reactive oxygen species, relative electrical conductivity, and malondialdehyde. In addition, selenite also increased chlorophyll content, improved electron transfer ability, PSI and PSII performance, and the coordination between PSI and PSII, which significantly improved photosynthetic capacity. Moreover, selenite treatment also greatly increased the contents of gallic acid, catechin, albiflorin, paeoniflorin, benzoic acid, and paeonol in Moutan cortex radicis (MCR). These results showed that selenite effectively protected the photosynthetic apparatus from photooxidative damage by enhancing antioxidant capacity, improving photosynthetic capacity, and increasing the content of the medicinal compounds in MCR.
See more in PubMed
Ahmad Z., Anjum S., Skalicky M. et al.: Selenium alleviates the adverse effect of drought in oilseed crops camelina (Camelina sativa L.) and canola (Brassica napus L.). – Molecules 26: 1699, 2021. 10.3390/molecules26061699 PubMed DOI PMC
Alyemeni M.N., Ahanger M.A., Wijaya L. et al.: Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. – Protoplasma 255: 459-469, 2018. 10.1007/s00709-017-1162-4 PubMed DOI
Azimi F., Oraei M., Gohari G. et al.: Chitosan-selenium nanoparticles (Cs–Se NPs) modulate the photosynthesis parameters, antioxidant enzymes activities and essential oils in Dracocephalum moldavica L. under cadmium toxicity stress. – Plant Physiol. Biochem. 167: 257-268, 2021. 10.1016/j.plaphy.2021.08.013 PubMed DOI
Balasundram N., Sundram K., Samman S.: Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. – Food Chem. 99: 191-203, 2006. 10.1016/j.foodchem.2005.07.042 DOI
Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. – Plant Soil 39: 205-207, 1973. 10.1007/BF00018060 DOI
Cai H.L., Xie P.F., Zeng W.A. et al.: Root-specific expression of rice OsHMA3 reduces shoot cadmium accumulation in transgenic tobacco. – Mol. Breeding 39: 49, 2019. 10.1007/s11032-019-0964-9 DOI
Chalanika De Silva H.C., Asaeda T.: Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes. – J. Plant Interact. 12: 228-236, 2017. 10.1080/17429145.2017.1322153 DOI
Chang Q.S., Zhang L.X., Chen S.C. et al.: Exogenous melatonin enhances the yield and secondary metabolite contents of Prunella vulgaris by modulating antioxidant system, root architecture and photosynthetic capacity. – Plants-Basel 12: 1129, 2023. 10.3390/plants12051129 PubMed DOI PMC
Chauhan R., Awasthi S., Srivastava S. et al.: Understanding selenium metabolism in plants and its role as a beneficial element. – Crit. Rev. Env. Sci. Tec. 49: 1937-1958, 2019. 10.1080/10643389.2019.1598240 DOI
Cheeseman J.M.: Hydrogen peroxide concentrations in leaves under natural conditions. – J. Exp. Bot. 57: 2435-2444, 2006. 10.1093/jxb/erl004 PubMed DOI
Chen H.U., Cheng Q., Chen Q.L. et al.: Effects of selenium on growth and selenium content distribution of virus-free sweet potato seedlings in water culture. – Front. Plant Sci. 13: 965649, 2022. 10.3389/fpls.2022.965649 PubMed DOI PMC
Chen Y.H., Zhang X.R., Guo Q.S. et al.: Plant morphology, physiological characteristics, accumulation of secondary metabolites and antioxidant activities of Prunella vulgaris L. under UV solar exclusion. – Biol. Res. 52: 17, 2019. 10.1186/s40659-019-0225-8 PubMed DOI PMC
Cruz J.A., Avenson T.J.: Photosynthesis: A multiscopic view. – J. Plant Res. 134: 665-682, 2021. 10.1007/s10265-021-01321-4 PubMed DOI
de Almeida H.J., Carmona V.V., Dutra A.F., Filho A.B.C.: Growth and physiological responses of cabbage cultivars biofortified with inorganic selenium fertilizers. – Sci. Hortic.-Amsterdam 302: 111154, 2022. 10.1016/j.scienta.2022.111154 DOI
Dong F., Wang C.Z., Sun X.D. et al.: Sugar metabolic changes in protein expression associated with different light quality combinations in tomato fruit. – Plant Growth Regul. 88: 267-282, 2019. 10.1007/s10725-019-00506-1 DOI
Dong Z., Xiao Y., Wu H.: Selenium accumulation, speciation, and its effect on nutritive value of Flammulina velutipes (Golden needle mushroom). – Food Chem. 350: 128667, 2021. 10.1016/j.foodchem.2020.128667 PubMed DOI
Feng S.M., Luo Z.S., Zhang Y.B. et al.: Phytochemical contents and antioxidant capacities of different parts of two sugarcane (Saccharum officinarum L.) cultivars. – Food Chem. 151: 452-458, 2014. 10.1016/j.foodchem.2013.11.057 PubMed DOI
Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. – BBA-Gen. Subjects 990: 87-92, 1989. 10.1016/S0304-4165(89)80016-9 DOI
Guo Y.Y., Li H.J., Liu J. et al.: Melatonin alleviates drought-induced damage of photosynthetic apparatus in maize seedlings. – Russ. J. Plant Physiol. 67: 312-322, 2020.
Hasanuzzaman M., Raihan M.R.H., Masud A.A.C. et al.: Regulation of reactive oxygen species and antioxidant defense in plants under salinity. – Int. J. Mol. Sci. 22: 9326, 2021. 10.3390/ijms22179326 PubMed DOI PMC
Hawrylak-Nowak B.: Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. – Biol. Trace Elem. Res. 132: 259-269, 2009. 10.1007/s12011-009-8402-1 PubMed DOI
Hu L., Wang X.L., Zou Y.T. et al.: Effects of inorganic and organic selenium intervention on resistance of radish to arsenic stress. – Ital. J. Food Sci. 34: 44-58, 2022. 10.15586/ijfs.v34i1.2105 DOI
Jucá M.M., Cysne Filho F.M.S., de Almeida J.C et al.: Flavonoids: biological activities and therapeutic potential. – Nat. Prod. Res. 34: 692-705, 2020. 10.1080/14786419.2018.1493588 PubMed DOI
Kalaei M.H.R., Abdossi V., Danaee E.: Evaluation of foliar application of selenium and flowering stages on selected properties of Iranian Borage as a medicinal plant. – Sci. Rep.-UK 12: 12568, 2022. 10.1038/s41598-022-16241-z PubMed DOI PMC
Kápolna E., Laursen K.H., Husted S., Larsen E.H.: Bio-fortification and isotopic labelling of Se metabolites in onions and carrots following foliar application of Se and 77Se. – Food Chem. 133: 650-657, 2012. 10.1016/j.foodchem.2012.01.043 DOI
Khalofah A., Migdadi H., El-Harty E.: Antioxidant enzymatic activities and growth response of quinoa (Chenopodium quinoa Willd) to exogenous selenium application. – Plants-Basel 10: 719, 2021. 10.3390/plants10040719 PubMed DOI PMC
Lanza M.G.D.B., Reis A.R.D.: Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. – Plant Physiol. Biochem. 164: 27-43, 2021. 10.1016/j.plaphy.2021.04.026 PubMed DOI
Li L., Wu S., Wang S. et al.: Molecular mechanism of exogenous selenium affecting the nutritional quality, species and content of organic selenium in mustard. – Agronomy 13: 1425, 2023. 10.3390/agronomy13051425 DOI
Li L.L., Yu J., Li L. et al.: Treatment of Ginkgo biloba with exogenous sodium selenite affects its physiological growth, changes its phytohormones, and synthesizes its terpene lactones. – Molecules 27: 7548, 2022a. 10.3390/molecules27217548 PubMed DOI PMC
Li L.L., Yu J., Yuan H.H. et al.: High-Density kinetic analysis of the metabolomic and transcriptomic response of Ginkgo biloba flavonoids biosynthesis to selenium treatments. – Not. Bot. Horti. Agrobo. 47: 792-803, 2019. 10.15835/nbha47311477 DOI
Li X.N., Brestic M., Tan D.X. et al.: Melatonin alleviates low PS I-limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b- deficient mutant wheat. – J. Pineal Res. 64: e12453, 2018. 10.1111/jpi.12453 PubMed DOI
Li Y., Xiao Y., Hao J. et al.: Effects of selenate and selenite on selenium accumulation and speciation in lettuce. – Plant Physiol. Biochem. 192: 162-171, 2022b. 10.1016/j.plaphy.2022.10.007 PubMed DOI
Li Y.-T., Xu W.-W., Ren B.-Z. et al.: High temperature reduces photosynthesis in maize leaves by damaging chloroplast ultrastructure and photosystem II. – J. Agron. Crop Sci. 206: 548-564, 2020. 10.1111/jac.12401 DOI
Lichtenthaler H.K.: Chlorophyll and carotenoids: Pigments of photosynthetic biomembranes. – Method. Enzymol. 148: 350-382, 1987. 10.1016/0076-6879(87)48036-1 DOI
Liu L., Wang L.X., Lv L.H. et al.: Improvement of growth and quality and regulation of the antioxidant system and lipid peroxidation in Chinese cabbage (Brassica pekinensis (Lour.) Rupr.) by exogenous sodium selenite. – Appl. Ecol. Env. Res. 18: 7473-7481, 2020. 10.15666/aeer/1806_74737481 DOI
Longchamp M., Castrec-Rouelle M., Biron P., Bariac T.: Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. – Food Chem. 182: 128-135, 2015. 10.1016/j.foodchem.2015.02.137 PubMed DOI
Malagoli M., Schiavon M., dall'Acqua S., Pilon-Smits E.A.H.: Effects of selenium biofortification on crop nutritional quality. – Front. Plant Sci. 6: 280, 2015. 10.3389/fpls.2015.00280 PubMed DOI PMC
Malik Z., Afzal S., Dawood M. et al.: Exogenous melatonin mitigates chromium toxicity in maize seedlings by modulating antioxidant system and suppresses chromium uptake and oxidative stress. – Environ. Geochem. Hlth. 44: 1451-1469, 2022. 10.1007/s10653-021-00908-z PubMed DOI
Morales-Espinoza M.C., Cadenas-Pliego G., Pérez-Alvarez M. et al.: Se nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under NaCl stress. – Molecules 24: 3030, 2019. 10.3390/molecules24173030 PubMed DOI PMC
Poggi V., Arcioni A., Filippini P., Pifferi P.G.: Foliar application of selenite and selenate to potato (Solanum tuberosum): Effect of a ligand agent on selenium content of tubers. – J. Agr. Food Chem. 48: 4749-4751, 2000. 10.1021/jf000368f PubMed DOI
Puccinelli M., Pezzarossa B., Rosellini I., Malorgio F.: Selenium enrichment enhances the quality and shelf life of basil leaves. – Plants-Basel 9: 801, 2020. 10.3390/plants9060801 PubMed DOI PMC
Rahmanto A.S., Davies M.J.: Selenium-containing amino acids as direct and indirect antioxidants. – IUBMB Life 64: 863-871, 2012. 10.1002/iub.1084 PubMed DOI
Rider S.A., Davies S.J., Jha A.N. et al.: Bioavailability of co-supplemented organic and inorganic zinc and selenium sources in a white fishmeal-based rainbow trout (Oncorhynchus mykiss) diet. – J. Anim. Physiol. Anim. Nutr. 94: 99-110, 2010. 10.1111/j.1439-0396.2008.00888.x PubMed DOI
Sattar A., Cheema M.A., Sher A. et al.: Physiological and biochemical attributes of bread wheat (Triticum aestivum L.) seedlings are influenced by foliar application of silicon and selenium under water deficit. – Acta Physiol. Plant. 41: 146, 2019. 10.1007/s11738-019-2938-2 DOI
Souza A.F.C., Martins J.P.R., Gontijo A.B.P.L., Falqueto A.R.: Selenium improves the transport dynamics and energy conservation of the photosynthetic apparatus of in vitro grown Billbergia zebrina (Bromeliaceae). – Photosynthetica 57: 931-941, 2019. 10.32615/ps.2019.105 DOI
Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. – BBA-Bioenergetics 1797: 1313-1326, 2010. 10.1016/j.bbabio.2010.03.008 PubMed DOI
Sun J., Chen T., Liu M. et al.: Analysis and functional verification of PoWRI1 gene associated with oil accumulation process in Paeonia ostii. – Int. J. Mol. Sci. 22: 6996, 2021. 10.3390/ijms22136996 PubMed DOI PMC
Varghese N., Alyammahi O., Nasreddine S. et al.: Melatonin positively influences the photosynthetic machinery and antioxidant system of Avena sativa during salinity stress. – Plants-Basel 8: 610, 2019. 10.3390/plants8120610 PubMed DOI PMC
Wang G., Wu L.Y., Zhang H. et al.: Regulation of the phenylpropanoid pathway: A mechanism of selenium tolerance in peanut (Arachis hypogaea L.) seedlings. – J. Agr. Food Chem. 64: 3626-3635, 2016. 10.1021/acs.jafc.6b01054 PubMed DOI
Wang H., Cui X.X., Zhao X.G. et al.: Differences of biochemical constituents and contents of eight cultivars flowers of Camellia sinensis. – J. Essent. Oil Bear. Pl. 18: 320-328, 2015. 10.1080/0972060X.2014.961036 DOI
Wang M., Ali F., Wang M. et al.: Understanding boosting selenium accumulation in wheat (Triticum aestivum L.) following foliar selenium application at different stages, forms, and doses. – Environ. Sci. Pollut. R. 27: 717-728, 2020a. 10.1007/s11356-019-06914-0 PubMed DOI
Wang Q.D., Hu J.K., Hu H.F. et al.: Integrated eco-physiological, biochemical, and molecular biological analyses of selenium fortification mechanism in alfalfa. – Planta 256: 114, 2022. 10.1007/s00425-022-04027-6 PubMed DOI
Wang Z.Q., He C.N., Peng Y. et al.: Origins, phytochemistry, pharmacology, analytical methods and safety of cortex moutan (Paeonia suffruticosa Andrew): a systematic review. – Molecules 22: 946, 2017. 10.3390/molecules22060946 PubMed DOI PMC
Wang Z.Q., Zhu C.J., Liu S.S. et al.: Comprehensive metabolic profile analysis of the root bark of different species of tree peonies (Paeonia Sect. Moutan). – Phytochemistry 163: 118-125, 2019. 10.1016/j.phytochem.2019.04.005 PubMed DOI
Wang Z.Y., Li S.Y., Ge S.H., Lin S.L.: Review of distribution, extraction methods, and health benefits of bound phenolics in food plants. – J. Agr. Food Chem. 68: 3330-3343, 2020b. 10.1021/acs.jafc.9b06574 PubMed DOI
Xu X., Wang J., Wu H. et al.: Effects of selenium fertilizer application and tomato varieties on tomato fruit quality: A meta-analysis. – Sci. Hortic.-Amsterdam 304: 111242, 2022. 10.1016/j.scienta.2022.111242 DOI
Yang H., Zhang J.T., Zhang H.W. et al.: Effect of 5-aminolevulinic acid (5-ALA) on leaf chlorophyll fast fluorescence characteristics and mineral element content of Buxus megistophylla grown along urban roadsides. – Horticulturae 7: 95, 2021. 10.3390/horticulturae7050095 DOI
Yu K., Wang Y.W., Cheng Y.Y.: Determination of the active components in Chinese herb cortex moutan by MEKC and LC. – Chromatographia 63: 359-364, 2006. 10.1365/s10337-006-0760-7 DOI
Zhang L.X., Chang Q.S., Hou X.G. et al.: Biochemical and photosystem characteristics of wild-type and Chl b-deficient mutant in tree peony (Paeonia suffruticosa). – Photosynthetica 59: 256-265, 2021. 10.32615/ps.2021.019 DOI
Zhang L.X., Chang Q.S., Hou X.G. et al.: The effect of high temperature stress on the physiological indexes, chloroplast ultrastructure, photosystems of two herbaceous peony cultivars. – J. Plant Growth Regul. 42: 1631-1646, 2023. 10.1007/s00344-022-10647-9 DOI
Zhang M., Tang S.H., Huang X. et al.: Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). – Environ. Exp. Bot. 107: 39-45, 2014. 10.1016/j.envexpbot.2014.05.005 DOI
Zhang X., He H., Xiang J.Q. et al.: Selenium-containing proteins/peptides from plants: A review on the structures and functions. – J. Agr. Food Chem. 68: 15061-15073, 2020. 10.1021/acs.jafc.0c05594 PubMed DOI
Zhang Z.S., Liu M.J., Scheibe R. et al.: Contribution of the alternative respiratory pathway to PSII photoprotection in C3 and C4 plants. – Mol. Plant 10: 131-142, 2017. 10.1016/j.molp.2016.10.004 PubMed DOI
Zhu L.X., Wang P., Zhang W.J. et al.: Effects of selenium application on nutrient uptake and nutritional quality of Codonopsis lanceolata. – Sci. Hortic.-Amsterdam 225: 574-580, 2017. 10.1016/j.scienta.2017.06.064 DOI
Zhu S., Du C.D., Yu T. et al.: Antioxidant activity of selenium-enriched peptides from the protein hydrolysate of Cardamine violifolia. – J. Food Sci. 84: 3504-3511, 2019. 10.1111/1750-3841.14843 PubMed DOI