Mechanical Vibration Damping and Compression Properties of a Lattice Structure

. 2021 Mar 18 ; 14 (6) : . [epub] 20210318

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33803878

Grantová podpora
APVV-19-0550 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
KEGA 005TUKE-4/2021 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
CZ.02.1.01/0.0/0.0/16_019/0000867 European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems Operational Programme Research, Development, and Education

The development of additive technology has made it possible to produce metamaterials with a regularly recurring structure, the properties of which can be controlled, predicted, and purposefully implemented into the core of components used in various industries. Therefore, knowing the properties and behavior of these structures is a very important aspect in their application in real practice from the aspects of safety and operational reliability. This article deals with the effect of cell size and volume ratio of a body-centered cubic (BCC) lattice structure made from Acrylonitrile Butadiene Styrene (ABS) plastic on mechanical vibration damping and compression properties. The samples were produced in three sizes of a basic cell and three volume ratios by the fused deposition modeling (FDM) technique. Vibration damping properties of the tested 3D-printed ABS samples were investigated under harmonic excitation at three employed inertial masses. The metamaterial behavior and response under compressive loading were studied under a uniaxial full range (up to failure) quasi-static compression test. Based on the experimental data, a correlation between the investigated ABS samples' stiffness evaluated through both compressive stress and mechanical vibration damping can be found.

Zobrazit více v PubMed

Mamalis A.G., Manolakos D.E., Szalay A., Pantazopoulos G. Processing of High-Temperature Superconductors at High Strain Rates. Volume 4. CRC Press; New York, NY, USA: 2019. Processing of High-Temperature Superconductors at High Strain Rates; p. 94.

Hasanain S.A., Ahsan M. Effect of strut length and orientation on elastic mechanical response of modified body-centered cubic lattice structures. Proc. Inst. Mech. Eng. L. 2019;233:2219–2233.

Tahseen A., Mian A. Developing and Equivalent Solid Material Model for BCC Lattice Cell Structures Involving Vertical and Horizontal Struts. J. Compos. Sci. 2020;4:1–12.

Alwattar T.A., Mian A. Development of an Elastic Material Model for BCC Lattice Cell Structures Using Finite Element Analysis and Neural Networks Approaches. J. Compos. Sci. 2019;3:33. doi: 10.3390/jcs3020033. DOI

Iyibilgin O., Yigit C. Experimental investigation of different cellular lattice structures manufactured by fused deposition modeling; Proceedings of the Solid Freeform Fabrication Symposium; Austin, TX, USA. 12–14 August 2013; pp. 895–907.

Fadeel A., Mian A., Al Rifaie M., Srinivasan R. Effect of Vertical Strut Arrangements of Compression Characteristics of 3D Printed Polymer Lattice Structures: Experimental and Computational Study. J. Mater. Eng. Perform. 2019;28:709–716. doi: 10.1007/s11665-018-3810-z. DOI

Gautam R., Idapalati S. Compressive Properties of Additively Manufactured Functionally Graded Kagome Lattice Structure. Metals. 2019;9:517. doi: 10.3390/met9050517. DOI

Cantrell J.T., Rohde S., Damiani D., Gurnani R., DiSandro L., Anton J., Young A., Jerez A., Steinbach D., Kroese C., et al. Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyp. J. 2017;23:811–824. doi: 10.1108/RPJ-03-2016-0042. DOI

Al Rifaie M., Lian A., Srinivasan R. Compression behavior of three-dimensional printed polymer lattice structures. Proc. Inst. Mech. Eng. L. 2018;233:1574–1584. doi: 10.1177/1464420718770475. DOI

Calise G.J., Saigal A. Anisotropy and failure in octahedral lattice structure parts fabricated using the fdm technology; Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition; Tampa, FL, USA. 3–9 November 2017.

Helou M., Vongbunyong S., Kara S. Finite Element Analysis and Validation of Cellular Structures. Procedia CIRP. 2016;50:94–99. doi: 10.1016/j.procir.2016.05.018. DOI

Bauer J., Hengsbach S., Tesari I., Schwaiger R., Kraft O. High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl. Acad. Sci. USA. 2014;111:2453–2458. doi: 10.1073/pnas.1315147111. PubMed DOI PMC

Messner M.C. Optimal lattice-structured materials. J. Mech. Phys. Solids. 2016;96:162–183. doi: 10.1016/j.jmps.2016.07.010. DOI

Hou A., Gramoll K. Compressive Strength of Composite Lattice Structures. J. Reinf. Plast. Comp. 2016;17:462–493. doi: 10.1177/073168449801700505. DOI

Gawrońska E., Dyja R. A Numerical Study of Geometry’s Impact on the Thermal and Mechanical Properties of Periodic Surface Structures. Materials. 2021;14:427. doi: 10.3390/ma14020427. PubMed DOI PMC

Mahshid R., Hansen H.N., Hojbjerre K.L. Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications. Mater. Des. 2016;104:276–283. doi: 10.1016/j.matdes.2016.05.020. DOI

Utomo M.S., Whulanza Y., Lestari E.P., Erryani A., Kartika I., Alief N.A. Determination of compressive strength of 3D polymeric lattice structure as template in powder metallurgy. IOP Conf. Ser. Mater. Sci. Eng. 2019;541:1–7. doi: 10.1088/1757-899X/541/1/012042. DOI

Ozdemir Z., Hernandez-Nava E., Tyas A., Warren J.A., Fay S.D., Goodall R., Todd I., Askes H. Energy absorption in lattice structures in dynamics: Experiments. Int. J. Impact Eng. 2016;89:49–61. doi: 10.1016/j.ijimpeng.2015.10.007. DOI

Azmi M.S., Ismail R., Hasan R., Alkahari M.R. Vibration Analysis of Fused Deposition Modelling Printed Lattice Structure Bar for Application in Automated Device. Int. J. Eng. Technol. 2018;7:21–24. doi: 10.14419/ijet.v7i3.17.16614. DOI

Simssek U., Arslan T., Kavas B., Gayir C.E., Sendur P. Parametric studies on vibration characteristics of triply periodic minimum surface sandwich lattice structures. Int. J. Adv. Manuf. Technol. 2020 doi: 10.1007/s00170-020-06136-6. DOI

Tyburec M., Zeman J., Novak J. Design modular 3D Printed reinforcement of wound composite bellow beams with semidefinite programming. Mater. Des. 2019;183:1–11. doi: 10.1016/j.matdes.2019.108131. DOI

Pantazopoulos G.A. Pantazopoulos, G.A., 2019. A short review on fracture mechanisms of mechanical components operated under industrial process conditions: Fractographic analysis and selected prevention strategies. Metals. 2019;9:148. doi: 10.3390/met9020148. DOI

Rybachuk M., Alice Mauger C., Fiedler T., Öchsner A. Anisotropic mechanical properties of fused deposition modeled parts fabricated by using Acrylonitrile Butadiene Styrene polymer. J. Polym. Eng. 2017;37:699–706. doi: 10.1515/polyeng-2016-0263. DOI

Rao S.S. Mechanical Vibrations. 5th ed. Pearson Education, Inc.; Upper Saddle River, NJ, USA: 2011. pp. 281–287.

Carrella A., Brennan M.J., Waters T.P., Lopes V., Jr. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 2012;55:22–29. doi: 10.1016/j.ijmecsci.2011.11.012. DOI

Latif N.A., Rus A.Z.M. Vibration transmissibility study of high density solid waste biopolymer foam; Proceedings of the International Conference on Mechanical Engineering Research; High Tatras, Slovakia. 28–31 May 2012; pp. 426–429.

Kelly S.G. Mechanical Vibrations: Theory and Applications, SI. 1st ed. Cengage Learning; Stamford, CT, USA: 2012. pp. 228–233.

Liu K., Liu J. The damped dynamic vibration absorbers: Revisited and next result. J. Sound Vib. 2005;284:1181–1189. doi: 10.1016/j.jsv.2004.08.002. DOI

Hadas Z., Ondrusek C. Non-linear spring-less electromagnetic vibration energy havresting system. Eur. Phys. J. 2005;224:2881–2896.

Stephen N. On energy harvesting from ambient vibration. J. Sound Vib. 2006;293:409–425. doi: 10.1016/j.jsv.2005.10.003. DOI

Liao W.H., Loai C.Y. Harmonic analysis of a magnetorheological damper for vibration control. Smart Mater. Struct. 2002;11:288–296. doi: 10.1088/0964-1726/11/2/312. DOI

Lv Q., Yao Z. Analysis of the effects of nonlinear viscous damping on vibration isolator. Nonlinear Dyn. 2015;79:2325–2332. doi: 10.1007/s11071-014-1814-2. DOI

Ho C., Lang Z., Billings S.A. The benefits of nonlinear cubic viscous damping of the force transmissibility of a Duffing-type vibration isolator; Proceedings of the UKACC International Conference on Control; Cardiff, UK. 3–5 September 2012; pp. 479–484.

Meštrović R., Dragovic B. Modelling of the Loading Process at Seaside Link in Port: Case Study of Seaport Automobile Terminal; Proceedings of the XXIII International Conference on “Material Handling, Constructions and Logistics”; Bar, Montenegro. 1–2 July 2019.

ISO 844:2014 Standard . Rigid Cellular Plastics—Determination of Compression Properties. International Organization for Standardization (ISO); Geneva, Switzerland: 2014.

Ozcelik B., Ozbay A., Demirbas E. Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding. Int. Commun. Heat Mass Transf. 2010;37:1359–1365. doi: 10.1016/j.icheatmasstransfer.2010.07.001. DOI

Kadkhodapour J., Montazerian H., Darabi A.C., Anaraki A.P., Ahmadi S.M., Zadpoor A.A., Schmauder S. Failure mechanisms of additively manufactured porous biomaterials. J. Mech. Behav. Biomed. Mater. 2015;50:180–191. doi: 10.1016/j.jmbbm.2015.06.012. PubMed DOI

Sudarmadji N., Tan J.Y., Leong K.F., Chua C.K., Loh Y.T. Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater. 2011;7:530–537. doi: 10.1016/j.actbio.2010.09.024. PubMed DOI

Byrne D.P., Lacroix D., Planell J.A., Kelly D.J., Prendergast P.J. Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: Application of mechanobiological models in tissue engineering. Biomaterials. 2007;28:5544–5554. doi: 10.1016/j.biomaterials.2007.09.003. PubMed DOI

Parthasarathy J., Starly B., Raman S., Christensen A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (BEM) J. Mech. Behav. Biomed. Mater. 2010;3:249–259. doi: 10.1016/j.jmbbm.2009.10.006. PubMed DOI

Maciejewski I., Meyer L., Krzyzynski T. The vibration damping effectiveness of an active seat suspension system and its robustness to varying mass loading. J. Sound Vib. 2010;329:3898–3914. doi: 10.1016/j.jsv.2010.04.009. DOI

Rezali K.A.M., Griffin M.J. Transmission of vibration through gloves: Effects of material thickness. Ergonomics. 2016;59:1026–1037. doi: 10.1080/00140139.2015.1102334. PubMed DOI

Zhang X. Measurement and Modeling of Seating Dynamics to Predict Seat Transmissibility. 1st ed. University of Southampton; Southampton, UK: 2014. pp. 25–34.

Sadowski T., Samborski S. Development of damage state in porous ceramics under compression. Comput. Mater. Sci. 2008;43:75–81. doi: 10.1016/j.commatsci.2007.07.041. DOI

Tkac J., Samborski S., Monkova K., Debski H. Analysis of mechanical properties of a lattice structure produced with the additive technology. Compos. Struct. 2020;242:112138. doi: 10.1016/j.compstruct.2020.112138. DOI

Li Q.M., Magkiriadis I., Harrigan J.J. Compressive Strain at the Onset of Densification of Cellular Solids. J. Cell. Plast. 2006;42:371–392. doi: 10.1177/0021955X06063519. DOI

Arau’jo H., Leite M., Ribeiro A.M.R., Deus A.M., Reis L., Vaz M.F. Investigating the contribution of geometry on the failure of cellular core structures obtained by additive manufacturing. Frat. Integrita Strutt. 2019;49:478–486.

Mooney B., Kourousis K. A Review of Factors Affecting the Mechanical Properties of Maraging Steel 300 Fabricated via Laser Powder Bed Fusion. Metals. 2020;10:1273. doi: 10.3390/met10091273. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...