Rapamycin: Drug Repurposing in SARS-CoV-2 Infection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VT2019-2021
UHK
CEP - Centrální evidence projektů
FN HK 00179906
Ministry of Health of the Czech Republic
PROGRES Q40
Charles University in Prague, Czech Republic
PubMed
33807743
PubMed Central
PMC8001969
DOI
10.3390/ph14030217
PII: ph14030217
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, SARS-CoV-19, mTOR inhibitor, rapamycin, sirolimus,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Since December 2019, SARS-CoV-2 (COVID-19) has been a worldwide pandemic with enormous consequences for human health and the world economy. Remdesivir is the only drug in the world that has been approved for the treating of COVID-19. This drug, as well as vaccination, still has uncertain effectiveness. Drug repurposing could be a promising strategy how to find an appropriate molecule: rapamycin could be one of them. The authors performed a systematic literature review of available studies on the research describing rapamycin in association with COVID-19 infection. Only peer-reviewed English-written articles from the world's acknowledged databases Web of Science, PubMed, Springer and Scopus were involved. Five articles were eventually included in the final analysis. The findings indicate that rapamycin seems to be a suitable candidate for drug repurposing. In addition, it may represent a better candidate for COVID-19 therapy than commonly tested antivirals. It is also likely that its efficiency will not be reduced by the high rate of viral RNA mutation.
Zobrazit více v PubMed
Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC
Johns Hopkins University: COVID-19 Dashboard by the Center for Systems Science and Engineering. [(accessed on 24 January 2020)];2020 Available online: https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6.
FDA Approves First Treatment for COVID-19. [(accessed on 22 October 2020)];2020 Available online: Https://Www.Fda.Gov/News-Events/Press-Announcements/Fda-Approves-First-Treatment-Covid-19.
World Health Organization . Therapeutics and COVID-19: Living Guideline, 20 November 2020. World Health Organization; Geneva, Switzerland: 2020. p. 59.
WHO Coronavirus Disease (COVID-19), Vaccines. [(accessed on 28 October 2020)]; Available online: Https://Www.Who.Int/News-Room/q-a-Detail/Coronavirus-Disease-(Covid-19)-Vaccines?Adgroupsurvey={adgroupsurvey}&gclid=CjwKCAiAl4WABhAJEiwATUnEF3d1RIIoGAljtdilweNGy_UOsKZwGtpe0eZUD7ZtvKMNzRc-ODO4-XoCFj0QAvD_BwE.
Draft Landscape and Tracker of COVID-19 Candidate Vaccines. [(accessed on 2 January 2021)]; Available online: Https://Www.Who.Int/Publications/m/Item/Draft-Landscape-of-Covid-19-Candidate-Vaccines.
Roviello V., Roviello G.N. Lower COVID-19 Mortality in Italian Forested Areas Suggests Immunoprotection by Mediterranean Plants. Environ. Chem. Lett. 2021;19:699–710. doi: 10.1007/s10311-020-01063-0. PubMed DOI PMC
Tandon N., Luxami V., Tandon R., Paul K. Recent Approaches of Repositioning and Traditional Drugs for the Treatment of COVID-19 Pandemic Outbreak. Mini Rev. Med. Chem. 2020 doi: 10.2174/1389557520666201124141103. PubMed DOI
Husain A., Byrareddy S.N. Rapamycin as a Potential Repurpose Drug Candidate for the Treatment of COVID-19. Chem. Biol. Interact. 2020;331:109282. doi: 10.1016/j.cbi.2020.109282. PubMed DOI PMC
Singh R.K., Yadav B.S., Mohapatra T.M. Molecular Targets and System Biology Approaches for Drug Repurposing against SARS-CoV-2. Bull Natl. Res. Cent. 2020;44:193. doi: 10.1186/s42269-020-00444-3. PubMed DOI PMC
Georgakis G.V., Younes A. From Rapa Nui to Rapamycin: Targeting PI3K/Akt/MTOR for Cancer Therapy. Expert Rev. Anticancer Ther. 2006;6:131–140. doi: 10.1586/14737140.6.1.131. PubMed DOI
Horvath S., Lu A.T., Cohen H., Raj K. Rapamycin Retards Epigenetic Ageing of Keratinocytes Independently of Its Effects on Replicative Senescence, Proliferation and Differentiation. Aging. 2019;11:3238–3249. doi: 10.18632/aging.101976. PubMed DOI PMC
Schinaman J.M., Rana A., Ja W.W., Clark R.I., Walker D.W. Rapamycin Modulates Tissue Aging and Lifespan Independently of the Gut Microbiota in Drosophila. Sci. Rep. 2019;9:7824. doi: 10.1038/s41598-019-44106-5. PubMed DOI PMC
Karsulovic C., Lopez M., Tempio F., Guerrero J., Goecke A. MTORC Inhibitor Sirolimus Deprograms Monocytes in “Cytokine Storm” in SARS-CoV2 Secondary Hemophagocytic Lymphohistiocytosis- like Syndrome. Clin. Immunol. 2020;218:108539. doi: 10.1016/j.clim.2020.108539. PubMed DOI PMC
Lin C.-Y., Hsu S.-C., Lee H.-S., Lin S.-H., Tsai C.-S., Huang S.-M., Shih C.-C., Hsu Y.-J. Enhanced Expression of Glucose Transporter-1 in Vascular Smooth Muscle Cells via the Akt/Tuberous Sclerosis Complex Subunit 2 (TSC2)/Mammalian Target of Rapamycin (MTOR)/Ribosomal S6 Protein Kinase (S6K) Pathway in Experimental Renal Failure. J. Vasc. Surg. 2013;57:475–485. doi: 10.1016/j.jvs.2012.07.037. PubMed DOI
Xie J., Wang X., Proud C.G. MTOR Inhibitors in Cancer Therapy. F1000Research. 2016;5:2078. doi: 10.12688/f1000research.9207.1. PubMed DOI PMC
Falzone L., Salomone S., Libra M. Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front. Pharmacol. 2018;9:1300. doi: 10.3389/fphar.2018.01300. PubMed DOI PMC
Blagosklonny M.V. From Causes of Aging to Death from COVID-19. Aging. 2020;12:10004–10021. doi: 10.18632/aging.103493. PubMed DOI PMC
Rapamune (Sirolimus), Prescribing Information. [(accessed on 2 January 2021)]; Available online: Https://Www.Accessdata.Fda.Gov/Drugsatfda_docs/Label/2010/021110s058lbl.Pdf.
Liu Y., Yang F., Zou S., Qu L. Rapamycin: A Bacteria-Derived Immunosuppressant That Has Anti-Atherosclerotic Effects and Its Clinical Application. Front. Pharmacol. 2018;9:1520. doi: 10.3389/fphar.2018.01520. PubMed DOI PMC
Zhou Y., Hou Y., Shen J., Huang Y., Martin W., Cheng F. Network-Based Drug Repurposing for Novel Coronavirus 2019-NCoV/SARS-CoV-2. Cell Discov. 2020;6:14. doi: 10.1038/s41421-020-0153-3. PubMed DOI PMC
Ahamad S., Gupta D., Kumar V. Targeting SARS-CoV-2 Nucleocapsid Oligomerization: Insights from Molecular Docking and Molecular Dynamics Simulations. J. Biomol. Struct. Dyn. 2020:1–14. doi: 10.1080/07391102.2020.1839563. PubMed DOI PMC
Tatar G., Ozyurt E., Turhan K. Computational Drug Repurposing Study of the RNA Binding Domain of SARS-CoV -2 Nucleocapsid Protein with Antiviral Agents. Biotechnol. Progress. 2020 doi: 10.1002/btpr.3110. PubMed DOI PMC
Fagone P., Ciurleo R., Lombardo S.D., Iacobello C., Palermo C.I., Shoenfeld Y., Bendtzen K., Bramanti P., Nicoletti F. Transcriptional Landscape of SARS-CoV-2 Infection Dismantles Pathogenic Pathways Activated by the Virus, Proposes Unique Sex-Specific Differences and Predicts Tailored Therapeutic Strategies. Autoimmun. Rev. 2020;19:102571. doi: 10.1016/j.autrev.2020.102571. PubMed DOI PMC
Gates L.E., Hamed A.A. The Anatomy of the SARS-CoV-2 Biomedical Literature: Introducing the CovidX Network Algorithm for Drug Repurposing Recommendation. J. Med. Internet Res. 2020;22:e21169. doi: 10.2196/21169. PubMed DOI PMC
Picarazzi F., Vicenti I., Saladini F., Zazzi M., Mori M. Targeting the RdRp of Emerging RNA Viruses: The Structure-Based Drug Design Challenge. Molecules. 2020;25:5695. doi: 10.3390/molecules25235695. PubMed DOI PMC
Pokhrel R., Chapagain P., Siltberg-Liberles J. Potential RNA-Dependent RNA Polymerase Inhibitors as Prospective Therapeutics against SARS-CoV-2. J. Med. Microbiol. 2020;69:864–873. doi: 10.1099/jmm.0.001203. PubMed DOI PMC
Zheng Y., Li R., Liu S. Immunoregulation with MTOR Inhibitors to Prevent COVID-19 Severity: A Novel Intervention Strategy beyond Vaccines and Specific Antiviral Medicines. J. Med. Virol. 2020;92:1495–1500. doi: 10.1002/jmv.26009. PubMed DOI PMC
Yarmohammadi A., Yarmohammadi M., Fakhri S., Khan H. Targeting Pivotal Inflammatory Pathways in COVID-19: A Mechanistic Review. Eur. J. Pharmacol. 2020:173620. doi: 10.1016/j.ejphar.2020.173620. PubMed DOI PMC
Ramaiah M.J. MTOR Inhibition and P53 Activation, MicroRNAs: The Possible Therapy against Pandemic COVID-19. Gene Rep. 2020;20:100765. doi: 10.1016/j.genrep.2020.100765. PubMed DOI PMC
Kindrachuk J., Ork B., Hart B.J., Mazur S., Holbrook M.R., Frieman M.B., Traynor D., Johnson R.F., Dyall J., Kuhn J.H., et al. Antiviral Potential of ERK/MAPK and PI3K/AKT/MTOR Signaling Modulation for Middle East Respiratory Syndrome Coronavirus Infection as Identified by Temporal Kinome Analysis. Antimicrob. Agents Chemother. 2015;59:1088–1099. doi: 10.1128/AAC.03659-14. PubMed DOI PMC
Maiese K. The Mechanistic Target of Rapamycin (MTOR): Novel Considerations as an Antiviral Treatment. Curr. Neurovasc. Res. 2020;17:332–337. doi: 10.2174/1567202617666200425205122. PubMed DOI PMC
Jia X., Liu B., Bao L., Lv Q., Li F., Li H., An Y., Zhang X., Cao B., Wang C. Delayed Oseltamivir plus Sirolimus Treatment Attenuates H1N1 Virus-Induced Severe Lung Injury Correlated with Repressed NLRP3 Inflammasome Activation and Inflammatory Cell Infiltration. PLoS Pathog. 2018;14:e1007428. doi: 10.1371/journal.ppat.1007428. PubMed DOI PMC
Huang C.-T., Hung C.-Y., Chen T.-C., Lin C.-Y., Lin Y.-C., Chang C.-S., He Y.-C., Huang Y.-L., Dutta A. Rapamycin Adjuvant and Exacerbation of Severe Influenza in an Experimental Mouse Model. Sci. Rep. 2017;7:4136. doi: 10.1038/s41598-017-04365-6. PubMed DOI PMC
Ghasemnejad-Berenji M. MTOR Inhibition: A Double-Edged Sword in Patients with COVID-19? Human Cell. 2021 doi: 10.1007/s13577-021-00495-2. PubMed DOI PMC