Role of Oxidative Stress in the Pathogenesis of Amyotrophic Lateral Sclerosis: Antioxidant Metalloenzymes and Therapeutic Strategies
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33809730
PubMed Central
PMC8002298
DOI
10.3390/biom11030437
PII: biom11030437
Knihovny.cz E-zdroje
- Klíčová slova
- amyotrophic lateral sclerosis, catalase, glutathione peroxidase, superoxide dismutase,
- MeSH
- amyotrofická laterální skleróza enzymologie genetika patologie terapie MeSH
- antioxidancia metabolismus MeSH
- genetická predispozice k nemoci MeSH
- lidé MeSH
- metaloproteiny metabolismus MeSH
- oxidační stres * MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- metaloproteiny MeSH
Amyotrophic lateral sclerosis (ALS) affects motor neurons in the cerebral cortex, brainstem and spinal cord and leads to death due to respiratory failure within three to five years. Although the clinical symptoms of this disease were first described in 1869 and it is the most common motor neuron disease and the most common neurodegenerative disease in middle-aged individuals, the exact etiopathogenesis of ALS remains unclear and it remains incurable. However, free oxygen radicals (i.e., molecules containing one or more free electrons) are known to contribute to the pathogenesis of this disease as they very readily bind intracellular structures, leading to functional impairment. Antioxidant enzymes, which are often metalloenzymes, inactivate free oxygen radicals by converting them into a less harmful substance. One of the most important antioxidant enzymes is Cu2+Zn2+ superoxide dismutase (SOD1), which is mutated in 20% of cases of the familial form of ALS (fALS) and up to 7% of sporadic ALS (sALS) cases. In addition, the proper functioning of catalase and glutathione peroxidase (GPx) is essential for antioxidant protection. In this review article, we focus on the mechanisms through which these enzymes are involved in the antioxidant response to oxidative stress and thus the pathogenesis of ALS and their potential as therapeutic targets.
Zobrazit více v PubMed
Wijesekera L.C., Leigh P.N. Amyotrophic lateral sclerosis. Orphanet J. Rare Dis. 2009;4:3. doi: 10.1186/1750-1172-4-3. PubMed DOI PMC
Niedermeyer S., Murn M., Choi P.J. Respiratory Failure in Amyotrophic Lateral Sclerosis. Chest. 2019;155:401–408. doi: 10.1016/j.chest.2018.06.035. PubMed DOI
Chiò A., Logroscino G., Traynor B.J., Collins J., Simeone J.C., Goldstein L.A., White L.A. Global epidemiology of amyotrophic lateral sclerosis: A systematic review of the published literature. Neuroepidemiology. 2013;41:118–130. doi: 10.1159/000351153. PubMed DOI PMC
Lomen-Hoerth C., Murphy J., Langmore S., Kramer J.H., Olney R.K., Miller B. Are amyotrophic lateral sclerosis patients cognitively normal? Neurology. 2003;60:1094–1097. doi: 10.1212/01.WNL.0000055861.95202.8D. PubMed DOI
Strong M.J. The syndromes of frontotemporal dysfunction in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 2008;9:323–338. doi: 10.1080/17482960802372371. PubMed DOI
Knirsch U.I., Bachus R., Gosztonyi G., Zschenderlein R., Ludolph A.C. Clinicopathological study of atypical motor neuron disease with vertical gaze palsy and ballism. Acta Neuropathol. 2000;100:342–346. doi: 10.1007/s004010000185. PubMed DOI
Pradat P.F., Salachas F., Lacomblez L., Patte N., Leforestier N., Gaura V., Meininger V. Association of chorea and motor neuron disease. Mov. Disord. 2002;17:419–420. doi: 10.1002/mds.10039. PubMed DOI
Dupuis L., Pradat P.F., Ludolph A.C., Loeffler J.P. Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol. 2011;10:75–82. doi: 10.1016/S1474-4422(10)70224-6. PubMed DOI
Milani P., Ambrosi G., Gammoh O., Blandini F., Cereda C. SOD1 and DJ-1 converge at Nrf2 pathway: A clue for antioxidant therapeutic potential in neurodegeneration. Oxid. Med. Cell Longev. 2013;2013:836760. doi: 10.1155/2013/836760. PubMed DOI PMC
Fantone J.C., Ward P.A. Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am. J. Pathol. 1982;107:395–418. PubMed PMC
Vile G.F., Tyrrell R.M. UVA radiation-induced oxidative damage to lipids and proteins in vitro and in Human skin fibroblasts is dependent on iron and singlet oxygen. Free Radic. Biol. Med. 1995;18:721–730. doi: 10.1016/0891-5849(94)00192-M. PubMed DOI
Zhang J., Wang X., Vikash V., Ye Q., Wu D., Liu Y., Dong W. ROS and ROS-Mediated Cellular Signaling. Oxid. Med. Cell Longev. 2016;2016:4350965. doi: 10.1155/2016/4350965. PubMed DOI PMC
Tormos K.V., Anso E., Hamanaka R.B., Eisenbart J., Joseph J., Kalyanaraman B., Chandel N.S. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 2011;14:537–544. doi: 10.1016/j.cmet.2011.08.007. PubMed DOI PMC
Hamanaka R.B., Glasauer A., Hoover P., Yang S., Blatt H., Mullen A.R., Getsios S., Gottardi C.J., DeBerardinis R.J., Lavker R.M., et al. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci. Signal. 2013;6:ra8. doi: 10.1126/scisignal.2003638. PubMed DOI PMC
Morimoto H., Iwata K., Ogonuki N., Inoue K., Atsuo O., Kanatsu-Shinohara M., Morimoto T., Yabe-Nishimura C., Shinohara T. ROS are required for mouse spermatogonial stem cell self- renewal. Cell Stem Cell. 2013;12:774–786. doi: 10.1016/j.stem.2013.04.001. PubMed DOI
Vargas-Mendoza N., Morales-González Á., Madrigal-Santillán E.O., Madrigal-Bujaidar E., Álvarez-González I., García-Melo L.F., Anguiano-Robledo L., Fregoso-Aguilar T., Morales-Gonzalez J.A. Antioxidant and Adaptative Response Mediated by Nrf2 during Physical Exercise. Antioxidants. 2019;8:196. doi: 10.3390/antiox8060196. PubMed DOI PMC
Brieger K., Schiavone S., Miller F.J., Jr., Krause K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012;142:w13659. doi: 10.4414/smw.2012.13659. PubMed DOI
Schäppi M.G., Jaquet V., Belli D.C., Krause K.H. Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. Semin. Immunopathol. 2008;30:255–271. doi: 10.1007/s00281-008-0119-2. PubMed DOI
Sorce S., Krause K.H. NOX enzymes in the central nervous system: From signaling to disease. Antioxid. Redox Signal. 2009;11:2481–2504. doi: 10.1089/ars.2009.2578. PubMed DOI
Pao M., Wiggs E.A., Anastacio M.M., Hyun J., DeCarlo E.S., Miller J.T., Anderson V.L., Malech H.L., Gallin J.I., Holland S.M. Cognitive function in patients with chronic granulomatous disease: A preliminary report. Psychosomatics. 2004;45:230–234. doi: 10.1176/appi.psy.45.3.230. PubMed DOI
Thompson R.J., Jr., Gustafson K.E., Meghdadpour S., Harrell E.S., Johndrow D.A., Spock A. The role of biomedical and psychosocial processes in the intellectual and academic functioning of children and adolescents with cystic fibrosis. J. Clin. Psychol. 1992;48:3–10. doi: 10.1002/1097-4679(199201)48:1<3::AID-JCLP2270480102>3.0.CO;2-H. PubMed DOI
Kishida K.T., Hoeffer C.A., Hu D., Pao M., Holland S.M., Klann E. Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol. Cell. Biol. 2006;26:5908–5920. doi: 10.1128/MCB.00269-06. PubMed DOI PMC
Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018;54:287–293. doi: 10.1016/j.ajme.2017.09.001. DOI
Beal M.F. Oxidatively modified proteins in aging and disease. Free Radic. Biol. Med. 2002;32:797–803. doi: 10.1016/S0891-5849(02)00780-3. PubMed DOI
Lenaz G., Bovina C., D’Aurelio M., Fato R., Formiggini G., Genova M.L., Giuliano G., Pich M.M., Paolucci U.G.O., Castelli G.P., et al. Role of mitochondria in oxidative stress and ageing. Ann. N. Y. Acad. Sci. 2002;959:199–213. doi: 10.1111/j.1749-6632.2002.tb02094.x. PubMed DOI
Genova M.L., Pich M.M., Bernacchia A., Bianchi C., Biondi A., Bovina C., Falasca A.I., Formiggini G., Castelli G.P., Lenaz G. The mitochondrial production of reactive oxygen species in relation to aging and pathology. Ann. N. Y. Acad. Sci. 2004;1011:86–100. doi: 10.1196/annals.1293.010. PubMed DOI
Dykens J.A. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: Implications for neurodegeneration. J. Neurochem. 1994;63:584–591. doi: 10.1046/j.1471-4159.1994.63020584.x. PubMed DOI
Carriedo S.G., Sensi S.L., Yin H.Z., Weiss J.H. AMPA exposures induce mitochondrial Ca2+ overload and ROS generation in spinal motor neurons in vitro. J. Neurosci. 2000;20:240–250. doi: 10.1523/JNEUROSCI.20-01-00240.2000. PubMed DOI PMC
Halliwell B. Oxidative stress and neurodegeneration: Where are we now? J. Neurochem. 2006;97:1634–1658. doi: 10.1111/j.1471-4159.2006.03907.x. PubMed DOI
Halliwell B. Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs Aging. 2001;18:685–716. doi: 10.2165/00002512-200118090-00004. PubMed DOI
Ferrante R.J., Browne S.E., Shinobu L.A., Bowling A.C., Baik M.J., MacGarvey U., Kowall N.W., Brown R.H., Jr., Beal M.F. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 1997;69:2064–2074. doi: 10.1046/j.1471-4159.1997.69052064.x. PubMed DOI
Abe K., Pan L.-H., Watanabe M., Kato T., Itoyama Y. Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci. Lett. 1995;199:152–154. doi: 10.1016/0304-3940(95)12039-7. PubMed DOI
Beal M.F., Ferrante R.J., Browne S.E., Matthews R.T., Kowall N.W., Brown R.H., Jr. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol. 1997;42:644–654. doi: 10.1002/ana.410420416. PubMed DOI
Shaw P.J., Ince P.G., Falkous G., Mantle D. Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann. Neurol. 1995;38:691–695. doi: 10.1002/ana.410380424. PubMed DOI
Cutler R.G., Pedersen W.A., Camandola S., Rothstein J.D., Mattson M.P. Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann. Neurol. 2002;52:448–457. doi: 10.1002/ana.10312. PubMed DOI
Pedersen W.A., Fu W., Keller J.N., Pedersen W.A., Fu W., Keller J.N., Markesbery W.R., Appel S., Smith R.G., Kasarskis E., et al. Protein modification by the lipid peroxidation product 4- hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann. Neurol. 1998;44:819–824. doi: 10.1002/ana.410440518. PubMed DOI
Simpson E.P., Henry Y.K., Henkel J.S., Smith R.G., Appel S.H. Increased lipid peroxidation in sera of ALS patients: A potential biomarker of disease burden. Neurology. 2004;62:1758–1765. doi: 10.1212/WNL.62.10.1758. PubMed DOI
Volterra A., Trotti D., Tromba C., Floridi S., Racagni G. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J. Neurosci. 1994;14:2924–2932. doi: 10.1523/JNEUROSCI.14-05-02924.1994. PubMed DOI PMC
Trotti D., Rossi D., Gjesdal O., Levy L.M., Racagni G., Danbolt N.C., Volterra A. Peroxynitrite inhibits glutamate transporter subtypes. J. Biol. Chem. 1996;271:5976–5979. doi: 10.1074/jbc.271.11.5976. PubMed DOI
Trotti D., Danbolt N.C., Volterra A. Glutamate transporters are oxidant-vulnerable: A molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol. Sci. 1998;19:328–334. doi: 10.1016/S0165-6147(98)01230-9. PubMed DOI
Rao S.D., Yin H.Z., Weiss J.H. Disruption of glial glutamate transport by reactive oxygen species produced in motor neurons. J. Neurosci. 2003;23:2627–2633. doi: 10.1523/JNEUROSCI.23-07-02627.2003. PubMed DOI PMC
Heath P.R., Shaw P.J. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve. 2002;26:438–458. doi: 10.1002/mus.10186. PubMed DOI
Spreux-Varoquaux O., Bensimon G., Lacomblez L., Salachas F., Pradat P.F., Le Forestier N., Marouan A., Dib M., Meininger V. Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: A reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J. Neurol. Sci. 2002;193:73–78. doi: 10.1016/S0022-510X(01)00661-X. PubMed DOI
Rao S.D., Weiss J.H. Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis. Trends Neurosci. 2004;27:17–23. doi: 10.1016/j.tins.2003.11.001. PubMed DOI
Brooks B.R., Shodis K.A., Lewis D.H., Rawling J.D., Sanjak M., Belden D.S., Hakim H., DeTan Y., Gaffney J.M. Natural history of amyotrophic lateral sclerosis: Quantification of symptoms, signs, strength, and Function. Adv. Neurol. 1995;68:163–184. PubMed
Hirano A., Nakano I., Kurland L.T., Mulder D.W., Holley P.W., Saccomanno G. Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 1984;43:471–480. doi: 10.1097/00005072-198409000-00002. PubMed DOI
Hirano A.C., Donnenfeld H., Sasaki S., Nakano I. Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 1984;43:461–470. doi: 10.1097/00005072-198409000-00001. PubMed DOI
Zhang B., Tu P., Abtahian F., Trojanowski J.Q., Lee V.M. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J. Cell Biol. 1997;139:1307–1315. doi: 10.1083/jcb.139.5.1307. PubMed DOI PMC
Morrison B.M., Gordon J.W., Ripps M.E., Morrison J.H. Quantitative immunocytochemical analysis of the spinal cord in G86R superoxide dismutase transgenic mice: Neurochemical correlates of selective vulnerability. J. Comp. Neurol. 1996;373:619–663. doi: 10.1002/(SICI)1096-9861(19960930)373:4<619::AID-CNE9>3.0.CO;2-4. PubMed DOI
Kim N.H., Jeong M.S., Choi S.Y., Kang J.H. Oxidative modification of neurofilament-L by the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Biochimie. 2004;86:553–559. doi: 10.1016/j.biochi.2004.07.006. PubMed DOI
Crow J.P., Ye Y.Z., Strong M., Kang J.H. Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J. Neurochem. 1997;69:1945–1953. doi: 10.1046/j.1471-4159.1997.69051945.x. PubMed DOI
Ingre C., Roos P.M., Piehl F., Kamel F., Fang F. Risk factors for amyotrophic lateral sclerosis. Clin. Epidemiol. 2015;7:181. doi: 10.2147/CLEP.S37505J. PubMed DOI PMC
Logroscino G., Traynor B.J., Hardiman O., Chiò A., Mitchell D., Swingler R.J., Millul A., Benn E., Beghi E. Incidence of amyotrophic lateral sclerosis in Europe. J. Neurol. Neurosurg. Psychiatry. 2010;81:385–390. doi: 10.1136/jnnp.2009.183525. PubMed DOI PMC
Huisman M.H., de Jong S.W., van Doormaal P.T., Weinreich S.S., Schelhaas H.J., van der Kooi A.J., de Visser M., Veldink J.H., van den Berg L.H. Population based epidemiology of amyotrophic lateral sclerosis using capture-recapture methodology. J. Neurol. Neurosurg. Psychiatry. 2011;82:1165–1170. doi: 10.1136/jnnp.2011.244939. PubMed DOI
Piemonte and Valle d’Aosta Register for Amyotrophic Lateral Sclerosis (PARALS) Incidence of ALS in Italy: Evidence for a uniform frequency in Western countries. Neurology. 2001;56:239–244. doi: 10.1212/WNL.56.2.239. PubMed DOI
Renton A.E., Majounie E., Waite A., Simón-Sánchez J., Rollinson S., Gibbs J.R., Schymick J.C., Laaksovirta H., Van Swieten J.C., Myllykangas L., et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–268. doi: 10.1016/j.neuron.2011.09.010. PubMed DOI PMC
DeJesus-Hernandez M., Mackenzie I.R., Boeve B.F., Boxer A.L., Baker M., Rutherford N.J., Nicholson A.M., Finch N.A., Flynn H., Adamson J., et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–256. doi: 10.1016/j.neuron.2011.09.011. PubMed DOI PMC
Gijselinck I., Van Langenhove T., van der Zee J., Sleegers K., Philtjens S., Kleinberger G., Janssens J., Bettens K., Van Cauwenberghe C., Pereson S., et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: A gene identification study [published correction appears in Lancet Neurol. 2012 Feb;11:125] Lancet Neurol. 2012;11:54–65. doi: 10.1016/S1474-4422(11)70261-7. PubMed DOI
Belzil V.V., Bauer P.O., Prudencio M., Gendron T.F., Stetler C.T., Yan I.K., Pregent L., Daughrity L., Baker M.C., Rademakers R., et al. Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol. 2013;126:895–905. doi: 10.1007/s00401-013-1199-1. PubMed DOI PMC
Haeusler A.R., Donnelly C.J., Rothstein J.D. The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat. Rev. Neurosci. 2016;17:383. doi: 10.1038/nrn.2016.38. PubMed DOI PMC
Lopez-Gonzalez R., Lu Y., Gendron T.F., Karydas A., Karydas A., Tran H., Yang D., Petrucelli L., Miller B.L., Almeida S., et al. Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons. Neuron. 2016;92:383–391. doi: 10.1016/j.neuron.2016.09.015. PubMed DOI PMC
Mackenzie I.R., Rademakers R., Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 2010;9:995–1007. doi: 10.1016/S1474-4422(10)70195-2. PubMed DOI
Kabashi E., Valdmanis P.N., Dion P., Spiegelman D., McConkey B.J., Velde C.V., Bouchard J.P., Lacomblez L., Pochigaeva K., Salachas F., et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 2008;40:572–574. doi: 10.1038/ng.132. PubMed DOI
Van Deerlin V.M., Leverenz J.B., Bekris L.M., Bird T.D., Yuan W., Elman L.B., Clay D., Wood E.M., Chen-Plotkin A.S., Martinez-Lage M., et al. TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: A genetic and histopathological analysis. Lancet Neurol. 2008;7:409–416. doi: 10.1016/S1474-4422(08)70071-1. PubMed DOI PMC
Rutherford N.J., Zhang Y.-J., Baker M., Gass J.M., Finch N.A., Xu Y.-F., Stewart H., Kelley B.J., Kuntz K., Crook R.J.P., et al. Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis. PLoS Genet. 2008;4:e1000193. doi: 10.1371/journal.pgen.1000193. PubMed DOI PMC
Neumann M., Sampathu D.M., Kwong L.K., Truax A.C., Micsenyi M.C., Chou T.T., Bruce J., Schuck T., Grossman M., Clark C.M., et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science. 2006;314:130–133. doi: 10.1126/science.1134108. PubMed DOI
McAleese K.E., Walker L., Erskine D., Thomas A.J., McKeith I.G., Attems J. TDP-43 pathology in Alzheimer’s disease, dementia with Lewy bodies and ageing. Brain Pathol. 2017:472–479. doi: 10.1111/bpa.12424. PubMed DOI PMC
Giordana M.T., Piccinini M., Grifoni S., De Marco G., Vercellino M., Magistrello M., Pellerino A., Buccinnà B., Lupino E., Rinaudo M.T. TDP-43 Redistribution is an Early Event in Sporadic Amyotrophic Lateral Sclerosis. Brain Pathol. 2010;20:351–360. doi: 10.1111/j.1750-3639.2009.00284.x. PubMed DOI PMC
Mejzini R., Flynn L.L., Pitout I.L., Fletcher S., Wilton S.D., Akkari P.A. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front. Neurosci. 2019;13:1310. doi: 10.3389/fnins.2019.01310. PubMed DOI PMC
Iguchi Y., Katsuno M., Takagi S., Ishigaki S., Niwa J.-I., Hasegawa M., Tanaka F., Sobue G. Oxidative stress induced by glutathione depletion reproduces pathological modifications of TDP-43 linked to TDP-43 proteinopathies. Neurobiol. Dis. 2012;45:862–870. doi: 10.1016/j.nbd.2011.12.002. PubMed DOI
Wang P., Deng J., Dong J., Liu J., Bigio E.H., Mesulam M., Wang T., Sun L., Wang L., Lee A.Y.-L., et al. TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genet. 2019;15:e1007947. doi: 10.1371/journal.pgen.1007947. PubMed DOI PMC
Zou Z.-Y., Cui L.-Y., Sun Q., Li X.-G., Liu M.-S., Xu Y., Zhou Y., Yang X.-Z. De novo FUS gene mutations are associated with juvenile-onset sporadic amyotrophic lateral sclerosis in China. Neurobiol. Aging. 2013;34:1312.e1–1312.e8. doi: 10.1016/j.neurobiolaging.2012.09.005. PubMed DOI
Ratti A., Buratti E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J. Neurochem. 2016;138(Suppl. 1):95–111. doi: 10.1111/jnc.13625. PubMed DOI
Wang H., Guo W., Mitra J., Hegde P.M., Vandoorne T., Eckelmann B.J., Mitra S., Tomkinson A.E., Bosch L.V.D., Hegde M.L. Mutant FUS causes DNA ligation defects to inhibit oxidative damage repair in Amyotrophic Lateral Sclerosis. Nat. Commun. 2018;9:3683. doi: 10.1038/s41467-018-06111-6. PubMed DOI PMC
Dantzer F., Amé J.C., Schreiber V., Nakamura J., Ménissier-de Murcia J., de Murcia G. Poly(ADP-ribose) polymerase-1 activation during DNA damage and repair. Methods Enzymol. 2006;409:493–510. doi: 10.1016/S0076-6879(05)09029. PubMed DOI
Mani R.S., Karimi-Busheri F., Fanta M., Caldecott K.W., Cass C.E., Weinfeld M. Biophysical characterization of human XRCC1 and its binding to damaged and undamaged DNA. Biochemistry. 2004;43:16505–16514. doi: 10.1021/bi048615m. PubMed DOI
Lan L., Nakajima S., Oohata Y., Takao M., Okano S., Masutani M., Wilson S.H., Yasui A. In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proc. Natl. Acad. Sci. USA. 2004;101:13738–13743. doi: 10.1073/pnas.0406048101. PubMed DOI PMC
Mani R.S., Fanta M., Karimi-Busheri F., Silver E., Virgen C.A., Caldecott K.W., Cass C.E., Weinfeld M. XRCC1 stimulates polynucleotide kinase by enhancing its damage discrimination and displacement from DNA repair intermediates. J. Biol. Chem. 2007;282:28004–28013. doi: 10.1074/jbc.M704867200. PubMed DOI
Fortini P., Pascucci B., Parlanti E., D’errico M., Simonelli V., Dogliotti E. The base excision repair: Mechanisms and its relevance for cancer susceptibility. Biochemie. 2003;85:1053–1071. doi: 10.1016/j.biochi.2003.11.003. PubMed DOI
Bozzo F., Mirra A., Carrì M.T. Oxidative stress and mitochondrial damage in the pathogenesis of ALS: New perspectives. Neurosci. Lett. 2017;636:3–8. doi: 10.1016/j.neulet.2016.04.065. PubMed DOI
Cohen T.J., Hwang A.W., Restrepo C.R., Yuan C.X., Trojanowski J.Q., Lee V.M. An acetylation switch controls TDP-43 function and aggregation propensity. Nat. Commun. 2015;6:5845. doi: 10.1038/ncomms6845. PubMed DOI PMC
Vance C., Scotter E.L., Nishimura A.L., Troakes C., Mitchell J.C., Kathe C., Urwin H., Manser C., Miller C.C., Hortobágyi T., et al. ALS mutant FUS disrupts nuclear localization and sequesters wild- type FUS within cytoplasmic stress granules. Hum. Mol. Genet. 2013;22:2676–2688. doi: 10.1093/hmg/ddt117. PubMed DOI PMC
Li Y.R., King O.D., Shorter J., Gitler A.D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 2013;201:361–372. doi: 10.1083/jcb.201302044. PubMed DOI PMC
Parker S.J., Meyerowitz J., James J.L., Liddell J.R., Crouch P.J., Kanninen K.M., White A.R. Endogenous TDP-43 localized to stress granules can subsequently form protein aggregates. Neurochem. Int. 2012;60:415–424. doi: 10.1016/j.neuint.2012.01.019. PubMed DOI
Ferber E.C., Peck B., Delpuech O., Bell G., East P., Schulze A. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ. 2012;19:968–979. doi: 10.1038/cdd.2011.179. PubMed DOI PMC
Zhang T., Baldie G., Periz G.J. WangRNA-processing protein TDP-43 regulates FOXO-dependent protein quality control in stress response. PLoS Genet. 2014;10:e1004693. doi: 10.1371/journal.pgen.1004693. PubMed DOI PMC
Sánchez-Ramos C., Tierrez A., Fabregat-Andrés O., Wild B., Sánchez-Cabo F., Arduini A., Dopazo A., Monsalve M. PGC-1α regulates translocated in liposarcoma activity: Role in oxidative stress gene expression. Antioxid. Redox Signal. 2011;15:325–337. doi: 10.1089/ars.2010.3643. PubMed DOI
Weisskopf M.G., McCullough M.L., Calle E.E., Thun M.J., Cudkowicz M., Ascherio A. Prospective study of cigarette smoking and amyotrophic lateral sclerosis. Am. J. Epidemiol. 2004;160:26–33. doi: 10.1093/aje/kwh179. PubMed DOI
Gallo V., Bueno-De-Mesquita H.B., Vermeulen R., Andersen P.M., Kyrozis A., Linseisen J., Kaaks R., Allen N.E., Roddam A.W., Boshuizen H.C., et al. Smoking and risk for amyotrophic lateral sclerosis: Analysis of the EPIC cohort. Ann. Neurol. 2009;65:378–385. doi: 10.1002/ana.21653. PubMed DOI
Fang F., Bellocco R., Hernán M.A., Ye W. Smoking, snuff dipping and the risk of amyotrophic lateral sclerosis—A prospective cohort study. Neuroepidemiology. 2006;27:217–221. doi: 10.1159/000096956. PubMed DOI
Yanbaeva D.G., Dentener M.A., Creutzberg E.C., Wesseling G., Wouters E.F.M. Systemic Effects of Smoking. Chest. 2007;131:1557–1566. doi: 10.1378/chest.06-2179. PubMed DOI
Kiziler A.R., Aydemir B., Onaran I., Alici B., Ozkara H., Gulyasar T., Akyolcu M.C. High Levels of Cadmium and Lead in Seminal Fluid and Blood of Smoking Men are Associated with High Oxidative Stress and Damage in Infertile Subjects. Biol. Trace Element Res. 2007;120:82–91. doi: 10.1007/s12011-007-8020-8. PubMed DOI
D’Amico E., Factor-Litvak P., Santella R.M., Mitsumoto H. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic. Biol. Med. 2013;65:509–527. doi: 10.1016/j.freeradbiomed.2013.06.029. PubMed DOI PMC
Gallo V., Wark P.A., Jenab M., Pearce N., Brayne C., Vermeulen R., Andersen P.M., Hallmans G., Kyrozis A., Vanacore N., et al. Prediagnostic body fat and risk of death from amyotrophic lateral sclerosis: The EPIC cohort. Neurology. 2013;80:829–838. doi: 10.1212/WNL.0b013e3182840689. PubMed DOI PMC
O’Reilly É.J., Wang H., Weisskopf M.G., Fitzgerald K.C., Falcone G., McCullough M.L., Thun M., Park Y., Kolonel L.N., Ascherio A. Premorbid body mass index and risk of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2012;14:205–211. doi: 10.3109/21678421.2012.735240. PubMed DOI PMC
Chiò A., Benzi G., Dossena M., Mutani R., Mora G. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain. 2005;128:472–476. doi: 10.1093/brain/awh373. PubMed DOI
Abel E.L. Football increases the risk for Lou Gehrig’s disease, amyotrophic lateral sclerosis. Percept. Mot. Skills. 2007;104:1251–1254. doi: 10.2466/pms.104.4.1251-1254. PubMed DOI
Chio A., Calvo A., Dossena M., Ghiglione P., Mutani R., Mora G. ALS in Italian professional soccer players: The risk is still present and could be soccer-specific. Amyotroph. Lateral Scler. 2009;10:205–209. doi: 10.1080/17482960902721634. PubMed DOI
Wang J.S., Huang Y.H. Effects of exercise intensity on lymphocyte apoptosis induced by oxidative stress in men. Eur. J. Appl. Physiol. 2005;95:290. doi: 10.1007/s00421-005-0005-8. PubMed DOI
Reid M.B. Free radicals and muscle fatigue: Of ROS, canaries, and the IOC. Free Radic. Biol. Med. 2008;44:169–179. doi: 10.1016/j.freeradbiomed.2007.03.002. PubMed DOI
Cole K., Perez-Polo J.R. Neuronal trauma model: In search of Thanatos. Int. J. Dev. Neurosci. 2004;22:485–496. doi: 10.1016/j.ijdevneu.2004.07.015. PubMed DOI
Al-Chalabi A., Leigh P.N. Trouble on the pitch: Are professional football players at increased risk of developing amyotrophic lateral sclerosis? Brain. 2005;128:451–453. doi: 10.1093/brain/awh426. PubMed DOI
Kamel F., Umbach D.M., Lehman T.A., Park L.P., Munsat T.L., Shefner J.M., Sandler D.P., Hu H., Taylor J.A. Amyotrophic lateral sclerosis, lead, and genetic susceptibility: Polymorphisms in the delta-aminolevulinic acid dehydratase and vitamin D receptor genes. Environ. Health Perspect. 2003;111:1335–1339. doi: 10.1289/ehp.6109. PubMed DOI PMC
Kamel F., Umbach D.M., Munsat T.L., Shefner J.M., Hu H., Sandler D.P. Lead Exposure and Amyotrophic Lateral Sclerosis. Epidemiology. 2002;13:311–319. doi: 10.1097/00001648-200205000-00012. PubMed DOI
Hu H., Payton M., Kornc S., Aro A., Sparrow D., Weiss S.T., Rotnitzky A. Determinants of Bone and Blood Lead Levels among Community-exposed Middle-aged to Elderly Men: The Normative Aging Study. Am. J. Epidemiol. 1996;144:749–759. doi: 10.1093/oxfordjournals.aje.a008999. PubMed DOI
Chetty C.S., Vemuri M.C., Campbell K., Suresh C. Lead-induced cell death of human neuroblastoma cells involves GSH dep-rivation. Cell. Mol. Biol. Lett. 2005;10:413–423. PubMed
Barbeito A.G., Martinez-Palma L., Vargas M.R., Pehar M., Mañay N., Beckman J.S., Barbeito L., Cassina P. Lead exposure stimulates VEGF expression in the spinal cord and extends survival in a mouse model of ALS. Neurobiol. Dis. 2010;37:574–580. doi: 10.1016/j.nbd.2009.11.007. PubMed DOI PMC
Farina M., Avila D.S., da Rocha J.B., Aschner M. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochem. Int. 2013;62:575–594. doi: 10.1016/j.neuint.2012.12.006. PubMed DOI PMC
Dobson A.W., Erikson K.M., Aschner M. Manganese neurotoxicity. Ann. N. Y. Acad. Sci. 2004;1012:115–128. doi: 10.1196/annals.1306.009. PubMed DOI
Sjogren B., Iregren A., Frech W., Hagman M., Johansson L., Tesarz M., Wennberg A. Effects on the nervous system among welders exposed to aluminium and manganese. Occup. Environ. Med. 1996;53:32–40. doi: 10.1136/oem.53.1.32. PubMed DOI PMC
Ellingsen D.G., Konstantinov R., Bast-Pettersen R., Merkurjeva L., Chashchin M., Thomassen Y., Chashchin V. A neurobehavioral study of current and former welders exposed to manganese. NeuroToxicology. 2008;29:48–59. doi: 10.1016/j.neuro.2007.08.014. PubMed DOI
Dusek P., Roos P.M., Litwin T., Schneider S.A., Flaten T.P., Aaseth J. The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases. J. Trace Elements Med. Biol. 2015;31:193–203. doi: 10.1016/j.jtemb.2014.05.007. PubMed DOI
Kasarskis E.J., Tandon L., Lovell M.A., Ehmann W.D. Aluminum, calcium, and iron in the spinal cord of patients with sporadic amyotrophic lateral sclerosis using laser microprobe mass spectroscopy: A preliminary study. J. Neurol. Sci. 1995;130:203–208. doi: 10.1016/0022-510X(95)00037-3. PubMed DOI
Kwan J.Y., Jeong S.Y., Van Gelderen P., Deng H.X., Quezado M.M., Danielian L.E., Butman J.A., Chen L., Bayat E., Russell J., et al. Iron accumulation in deep cortical layers accounts for MRI signal abnormali-ties in ALS: Correlating 7 tesla MRI and pathology. PLoS ONE. 2012;7:e35241. doi: 10.1371/journal.pone.0035241. PubMed DOI PMC
Kamel F., Umbach D.M., Bedlack R.S., Richards M., Watson M., Alavanja M.C., Blair A., Hoppin J.A., Schmidt S., Sandler D.P. Pesticide exposure and amyotrophic lateral sclerosis. NeuroToxicology. 2012;33:457–462. doi: 10.1016/j.neuro.2012.04.001. PubMed DOI PMC
Malek A.M., Barchowsky A., Bowser R., Youk A., Talbott E.O. Pesticide exposure as a risk factor for amyotrophic lateral sclerosis: A meta-analysis of epidemiological studies. Environ. Res. 2012;117:112–119. doi: 10.1016/j.envres.2012.06.007. PubMed DOI
Soltaninejad K., Abdollahi M. Current opinion on the science of organophosphate pesticides and toxic stress: A systematic review. Med. Sci. Monit. 2009;15:RA75–RA90. PubMed
Schmuck G., Rohrdanz E., Tran-Thi Q.H., Kahl R., Schluter G. Oxidative stress in rat cortical neurons and astrocytes induced by paraquat in vitro. Neurotox. Res. 2002;4:1–13. doi: 10.1080/10298420290007574. PubMed DOI
Costa L.G. Current issues in organophosphate toxicology. Clin. Chim. Acta. 2006;366:1–13. doi: 10.1016/j.cca.2005.10.008. PubMed DOI
Muñiz J.F., McCauley L., Scherer J., Lasarev M.R., Koshy M., Kow Y., Nazar-Stewart V., Kisby G. Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study. Toxicol. Appl. Pharmacol. 2008;227:97–107. doi: 10.1016/j.taap.2007.10.027. PubMed DOI
Suntres Z.E. Role of antioxidants in paraquat toxicity. Toxicology. 2002;180:65–77. doi: 10.1016/S0300-483X(02)00382-7. PubMed DOI
Dutheil F., Beaune P., Loriot M.A. Xenobiotic metabolizing enzymes in the central nervous system: Contribution of cyto-chrome P450 enzymes in normal and pathological human brain. Biochimie. 2008;90:426–436. doi: 10.1016/j.biochi.2007.10.007. PubMed DOI
Day B.J., Patel M., Calavetta L., Chang L.-Y., Stamler J.S. A mechanism of paraquat toxicity involving nitric oxide synthase. Proc. Natl. Acad. Sci. USA. 1999;96:12760–12765. doi: 10.1073/pnas.96.22.12760. PubMed DOI PMC
Purisai M.G., McCormack A.L., Cumine S., Li J., Isla M.Z., Di Monte D.A. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol. Dis. 2007;25:392–400. doi: 10.1016/j.nbd.2006.10.008. PubMed DOI PMC
Wu X.-F., Block M.L., Zhang W., Qin L., Wilson B., Zhang W.-Q., Veronesi B., Hong J.-S. The Role of Microglia in Paraquat-Induced Dopaminergic Neurotoxicity. Antioxid. Redox Signal. 2005;7:654–661. doi: 10.1089/ars.2005.7.654. PubMed DOI
Kim S., Hwang J., Lee W.H., Hwang D.Y., Suk K. Role of protein kinase Cdelta in paraquat-induced glial cell death. J. Neurosci. Res. 2008;86:2062–2070. doi: 10.1002/jnr.21643. PubMed DOI
Cocheme H.M., Murphy M.P. Complex I is the major site of mitochondrial superoxide production by paraquat. J. Biol. Chem. 2008;283:1786–1798. doi: 10.1074/jbc.M708597200. PubMed DOI
Choi W.S., Kruse S.E., Palmiter R.D., Xia Z. Mitochondrial complex I inhibition is not required for dopaminergicneuron death induced by rotenone, MPP(+), or paraquat. Proc. Natl. Acad. Sci. USA. 2008;105:15136–15141. doi: 10.1073/pnas.0807581105. PubMed DOI PMC
Roos P.M., Vesterberg O., Nordberg M. Metals in Motor Neuron Diseases. Exp. Biol. Med. 2006;231:1481–1487. doi: 10.1177/153537020623100906. PubMed DOI
Sutedja N.A., Fischer K., Veldink J.H., Van Der Heijden G.J., Kromhout H., Heederik D., Huisman M.H., Wokke J.J., Berg L.H.V.D. What we truly know about occupation as a risk factor for ALS: A critical and systematic review. Amyotroph. Lateral Scler. 2009;10:295–301. doi: 10.3109/17482960802430799. PubMed DOI
Fang F., Quinlan P., Ye W., Barber M.K., Umbach D.M., Sandler D.P., Kamel F. Workplace Exposures and the Risk of Amyotrophic Lateral Sclerosis. Environ. Health Perspect. 2009;117:1387–1392. doi: 10.1289/ehp.0900580. PubMed DOI PMC
Xi Z., Yunusova Y., Van Blitterswijk M., Dib S., Ghani M., Moreno D., Sato C., Liang Y., Singleton A., Robertson J., et al. Identical twins with the C9orf72 repeat expansion are discordant for ALS. Neurology. 2014;83:1476–1478. doi: 10.1212/WNL.0000000000000886. PubMed DOI PMC
Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI
Karuppanapandian T., Moon J.C., Kim C., Manoharan K., Kim W. Reactive oxygen species in plants: Their generation, signal transduction, and scavenging mechanisms. Aust. J. Crop Sci. 2011;5:709.
Fetherolf M.M., Boyd S.D., Winkler D.D., Winge D.R. Oxygen-dependent activation of Cu,Zn-superoxide dismutase-1. Metallomics. 2017;9:1047–1059. doi: 10.1039/C6MT00298F. PubMed DOI
Luchinat E., Barbieri L., Rubino J.T., Kozyreva T., Cantini F., Banci L. In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants. Nat. Commun. 2014;5:5502. doi: 10.1038/ncomms6502. PubMed DOI
Leitch J.M., Yick P.J., Culotta V.C. The Right to Choose: Multiple Pathways for Activating Copper, Zinc Superoxide Dismutase. J. Biol. Chem. 2009;284:24679–24683. doi: 10.1074/jbc.R109.040410. PubMed DOI PMC
Lamb A.L., Wernimont A.K., Pfahl R.A., O’Halloran T.V., Rosenzweig A.C. Crystal Structure of the Second Domain of the Human Copper Chaperone for Superoxide Dismutase. Biochemistry. 2000;39:1589–1595. doi: 10.1021/bi992822i. PubMed DOI
Rosenzweig A. Structure and chemistry of the copper chaperone proteins. Curr. Opin. Chem. Biol. 2000;4:140–147. doi: 10.1016/S1367-5931(99)00066-6. PubMed DOI
Furukawa Y., O’Halloran T.V. Posttranslational Modifications in Cu,Zn-Superoxide Dismutase and Mutations Associated with Amyotrophic Lateral Sclerosis. Antioxid. Redox Signal. 2006;8:847–867. doi: 10.1089/ars.2006.8.847. PubMed DOI PMC
Racek J. Superoxiddismutáza. [(accessed on 18 February 2017)]; Available online: www.krevnicentrum.cz/laboratorni-prirucka/BOJRAAI.htm.
Valentine J.S., Doucette P.A., Zittin Potter S. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu. Rev. Biochem. 2005;74:563–593. doi: 10.1146/annurev.biochem.72.121801.161647. PubMed DOI
Leinartaite L., Saraboji K., Nordlund A., Logan D.T., Oliveberg M. Folding Catalysis by Transient Coordination of Zn2+ to the Cu Ligands of the ALS-Associated Enzyme Cu/Zn Superoxide Dismutase 1. J. Am. Chem. Soc. 2010;132:13495–13504. doi: 10.1021/ja1057136. PubMed DOI
Banci L., Bertini I., Cantini F., Kozyreva T., Massagni C., Palumaa P., Rubino J.T., Zovo K. Human superoxide dismutase 1 (hSOD1) maturation through interactiowith human copper chaperone for SOD1 (hCCS) Proc. Natl. Acad. Sci. USA. 2012;109:13555–13560. doi: 10.1073/pnas.1207493109. PubMed DOI PMC
Wong P.C., Waggoner D., Subramaniam J.R., Tessarollo L., Bartnikas T.B., Culotta V.C., Price D.L., Rothstein J., Gitlin J.D. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA. 2000;97:2886–2891. doi: 10.1073/pnas.040461197. PubMed DOI PMC
Furukawa Y., Torres A.S., O’Halloran T.V. Oxygen-induced maturation of SOD1: A key role for disulfide formation by the copper chaperone CCS. EMBO J. 2004;23:2872–2881. doi: 10.1038/sj.emboj.7600276. PubMed DOI PMC
Fetherolf M.M., Boyd S.D., Taylor A.B., Kim H.J., Wohlschlegel J.A., Blackburn N.J., Hart P.J., Winge D.R., Winkler D.D. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site. J. Biol. Chem. 2017;292:12025–12040. doi: 10.1074/jbc.M117.775981. PubMed DOI PMC
Boyd S.D., Calvo J.S., Liu L., Ullrich M.S., Skopp A., Meloni G., Winkler D.D. The yeast copper chaperone for copper-zinc superoxide dismutase (CCS1) is a multifunctional chaperone promoting all levels of SOD1 maturation. J. Biol. Chem. 2019;294:1956–1966. doi: 10.1074/jbc.RA118.005283. PubMed DOI PMC
Boyd S.D., Ullrich M.S., Calvo J.S., Behnia F., Meloni G., Winkler D.D. Mutations in Superoxide Dismutase 1 (Sod1) Linked to Familial Amyotrophic Lateral Sclerosis Can Disrupt High-Affinity Zinc-Binding Promoted by the Copper Chaperone for Sod1 (Ccs) Molecules. 2020;25:1086. doi: 10.3390/molecules25051086. PubMed DOI PMC
Tokuda E., Okawa E., Watanabe S., Ono S.-I., Marklund S.L. Dysregulation of intracellular copper homeostasis is common to transgenic mice expressing human mutant superoxide dismutase-1s regardless of their copper-binding abilities. Neurobiol. Dis. 2013;54:308–319. doi: 10.1016/j.nbd.2013.01.001. PubMed DOI
Tokuda E., Okawa E., Ono S.-I. Dysregulation of intracellular copper trafficking pathway in a mouse model of mutant copper/zinc superoxide dismutase-linked familial amyotrophic lateral sclerosis. J. Neurochem. 2009;111:181–191. doi: 10.1111/j.1471-4159.2009.06310.x. PubMed DOI
Gurney M.E., Pu H., Chiu A.Y., Canto M.C.D., Polchow C.Y., Alexander D.D., Caliendo J., Hentati A., Kwon Y.W., Deng H.X., et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994;264:1772–1775. doi: 10.1126/science.8209258. PubMed DOI
Vieira F.G., Hatzipetros T., Thompson K., Moreno A.J., Kidd J.D., Tassinari V.R., Levine B., Perrin S., Gill A. CuATSM efficacy is independently replicated in a SOD1 mouse model of ALS while unmetallated ATSM therapy fails to reveal benefits. IBRO Rep. 2017;2:47–53. doi: 10.1016/j.ibror.2017.03.001. PubMed DOI PMC
Vāvere A.L., Lewis J.S. Cu-ATSM: A radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans. 2007;43:4893–4902. doi: 10.1039/b705989b. PubMed DOI
Farrawell N.E., Yerbury M.R., Plotkin S.S. CuATSM Protects Against the In Vitro Cytotoxicity of Wild-Type- Like Copper-Zinc Superoxide Dismutase Mutants but not Mutants That Disrupt Metal Binding. ACS Chem. Neurosci. 2019;10:1555–1564. doi: 10.1021/acschemneuro.8b00527. PubMed DOI
Roberts B.R., Lim N.K.H., McAllum E.J., Donnelly P.S., Hare D.J., Doble P.A., Turner B.J., Price K.A., Lim S.C., Paterson B.M., et al. Oral Treatment with CuII(atsm) Increases Mutant SOD1 In Vivo but Protects Motor Neurons and Improves the Phenotype of a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. J. Neurosci. 2014;34:8021–8031. doi: 10.1523/JNEUROSCI.4196-13.2014. PubMed DOI PMC
McAllum E.J., Lim N.K.-H., Hickey J.L., Paterson B.M., Donnelly P.S., Li Q.-X., Liddell J.R., Barnham K.J., White A.R., Crouch P.J. Therapeutic effects of CuII(atsm) in the SOD1-G37R mouse model of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2013;14:586–590. doi: 10.3109/21678421.2013.824000. PubMed DOI
McAllum E.J., Roberts B.R., Hickey J.L., Dang T.N., Grubman A., Donnelly P.S., Liddell J.R., White A.R., Crouch P.J. ZnII(atsm) is protective in amyotrophic lateral sclerosis model mice via a copper delivery mechanism. Neurobiol. Dis. 2015;81:20–24. doi: 10.1016/j.nbd.2015.02.023. PubMed DOI
Ermilova I.P., Ermilov V.B., Levy M., Ho E., Pereira C., Beckman J.S. Protection by dietary zinc in ALS mutant G93A SOD transgenic mice. Neurosci. Lett. 2005;379:42–46. doi: 10.1016/j.neulet.2004.12.045. PubMed DOI
Soon C.P., Donnelly P.S., Turner B.J., Hung L.W., Crouch P.J., Sherratt N.A., Tan J.-L., Lim N.K.-H., Lam L., Bica L., et al. Diacetylbis(N(4)-methylthiosemicarbazonato) Copper(II) (CuII(atsm)) Protects against Peroxynitrite-induced Nitrosative Damage and Prolongs Survival in Amyotrophic Lateral Sclerosis Mouse Model*. J. Biol. Chem. 2011;286:44035–44044. doi: 10.1074/jbc.M111.274407. PubMed DOI PMC
Kensler T.W., Wakabayashi N., Biswal S. Cell survival responses to environmental stresses via the Keap1- Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 2007;47:89–116. doi: 10.1146/annurev.pharmtox.46.120604.141046. PubMed DOI
Lau A., Villeneuve N.F., Sun Z., Wong P.K., Zhang D.D. Dual roles of Nrf2 in cancer. Pharmacol. Res. 2008;58:262–270. doi: 10.1016/j.phrs.2008.09.003. PubMed DOI PMC
Zhang D.D., Lo S.-C., Cross J.V., Templeton D.J., Hannink M. Keap1 Is a Redox-Regulated Substrate Adaptor Protein for a Cul3-Dependent Ubiquitin Ligase Complex. Mol. Cell. Biol. 2004;24:10941–10953. doi: 10.1128/MCB.24.24.10941-10953.2004. PubMed DOI PMC
McMahon M., Thomas N., Itoh K., Yamamoto M., Hayes J.D. Redox-regulated Turnover of Nrf2 Is Determined by at Least Two Separate Protein Domains, the Redox-sensitive Neh2 Degron and the Redox-insensitive Neh6 Degron. J. Biol. Chem. 2004;279:31556–31567. doi: 10.1074/jbc.M403061200. PubMed DOI
Tong K.I., Kobayashi A., Katsuoka F., Yamamoto M. Two-site substrate recognition model for the Keap1-Nrf2 system: A hinge and latch mechanism. Biol. Chem. 2006;387:1311–1320. doi: 10.1515/BC.2006.164. PubMed DOI
Kansanen E., Jyrkkänen H.-K., Levonen A.-L. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic. Biol. Med. 2012;52:973–982. doi: 10.1016/j.freeradbiomed.2011.11.038. PubMed DOI
Kirby J., Halligan E., Baptista M.J., Allen S., Heath P.R., Holden H., Barber S.C., Loynes C.A., Wood-Allum C.A., Lunec J., et al. Mutant SOD1 alters the motor neuronal transcriptome: Implications for familial ALS. Brain. 2005;128:1686–1706. doi: 10.1093/brain/awh503. PubMed DOI
Sarlette A., Krampfl K., Grothe C., Von Neuhoff N., Dengler R., Petri S. Nuclear Erythroid 2-Related Factor 2-Antioxidative Response Element Signaling Pathway in Motor Cortex and Spinal Cord in Amyotrophic Lateral Sclerosis. J. Neuropathol. Exp. Neurol. 2008;67:1055–1062. doi: 10.1097/NEN.0b013e31818b4906. PubMed DOI
Pehar M., Vargas M.R., Robinson K.M., Cassina P., Díaz-Amarilla P.J., Hagen T.M., Radi R., Barbeito L., Beckman J.S. Mitochondrial Superoxide Production and Nuclear Factor Erythroid 2-Related Factor 2 Activation in p75 Neurotrophin Receptor-Induced Motor Neuron Apoptosis. J. Neurosci. 2007;27:7777–7785. doi: 10.1523/JNEUROSCI.0823-07.2007. PubMed DOI PMC
Kraft A.D., Resch J.M., Johnson D.A., Johnson J.A. Activation of the Nrf2–ARE pathway in muscle and spinal cord during ALS-like pathology in mice expressing mutant SOD1. Exp. Neurol. 2007;207:107–117. doi: 10.1016/j.expneurol.2007.05.026. PubMed DOI PMC
Vargas M.R., Johnson D.A., Sirkis D.W., Messing A., Johnson J.A. Nrf2 Activation in Astrocytes Protects against Neurodegeneration in Mouse Models of Familial Amyotrophic Lateral Sclerosis. J. Neurosci. 2008;28:13574–13581. doi: 10.1523/JNEUROSCI.4099-08.2008. PubMed DOI PMC
Guo Y., Zhang Y., Wen D., Duan W., An T., Shi P., Wang J., Li Z., Chen X., Li C. The modest impact of transcription factor Nrf2 on the course of disease in an ALS animal model. Lab. Investig. 2013;93:825–833. doi: 10.1038/labinvest.2013.73. PubMed DOI
Dinkova-Kostova A.T., Holtzclaw W.D., Cole R.N., Itoh K., Wakabayashi N., Katoh Y., Yamamoto M., Talalay P. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA. 2002;99:11908–11913. doi: 10.1073/pnas.172398899. PubMed DOI PMC
Hong F., Freeman M.L., Liebler D.C. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem. Res. Toxicol. 2005;18:1917–1926. doi: 10.1021/tx0502138. PubMed DOI
Schachtele S.J., Hu S., Lokensgard J.R. Modulation of experimental herpes encephalitis-associated neurotoxicity through sulforaphane treatment. PLoS ONE. 2012;7:e36216. doi: 10.1371/journal.pone.0036216. PubMed DOI PMC
Steele M.L., Fuller S., Patel M., Kersaitis C., Ooi L., Münch G. Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells. Redox Biol. 2013;1:441–445. doi: 10.1016/j.redox.2013.08.006. PubMed DOI PMC
Hou T.-T., Yang H.-Y., Wang W., Wu Q.-Q., Tian Y.-R., Jia J.-P. Sulforaphane Inhibits the Generation of Amyloid-β Oligomer and Promotes Spatial Learning and Memory in Alzheimer’s Disease (PS1V97L) Transgenic Mice. J. Alzheimer’s Dis. 2018;62:1803–1813. doi: 10.3233/JAD-171110. PubMed DOI
Pauletti A., Terrone G., Shekh-Ahmad T., Salamone A., Ravizza T., Rizzi M., Pastore A., Pascente R., Liang L.-P., Villa B.R., et al. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain. 2019;142:e39. doi: 10.1093/brain/awz130. PubMed DOI PMC
Dwivedi S., Rajasekar N., Hanif K., Nath C., Shukla R. Sulforaphane Ameliorates Okadaic Acid-Induced Memory Impairment in Rats by Activating the Nrf2/HO-1 Antioxidant Pathway. Mol. Neurobiol. 2016;53:5310–5323. doi: 10.1007/s12035-015-9451-4. PubMed DOI
Angeloni C., Malaguti M., Rizzo B., Barbalace M.C., Fabbri D., Hrelia S. Neuroprotective Effect of Sulforaphane against Methylglyoxal Cytotoxicity. Chem. Res. Toxicol. 2015;28:1234–1245. doi: 10.1021/acs.chemrestox.5b00067. PubMed DOI
Sedlak T.W., Nucifora L.G., Koga M., Shaffer L.S., Higgs C., Tanaka T., Wang A.M., Coughlin J.M., Barker P.B., Fahey J.W., et al. Sulforaphane Augments Glutathione and Influences Brain Metabolites in Human Subjects: A Clinical Pilot Study. Mol. Neuropsychiatry. 2018;3:214–222. doi: 10.1159/000487639. PubMed DOI PMC
Mizuno K., Kume T., Muto C., Takada-Takatori Y., Izumi Y., Sugimoto H., Akaike A. Glutathione Biosynthesis via Activation of the Nuclear Factor E2–Related Factor 2 (Nrf2)—Antioxidant-Response Element (ARE) Pathway Is Essential for Neuroprotective Effects of Sulforaphane and 6-(Methylsulfinyl) Hexyl Isothiocyanate. J. Pharmacol. Sci. 2011;115:320–328. doi: 10.1254/jphs.10257FP. PubMed DOI
Jazwa A., Rojo A.I., Innamorato N.G., Hesse M., Fernández-Ruiz J., Cuadrado A. Pharmacological Targeting of the Transcription Factor Nrf2 at the Basal Ganglia Provides Disease Modifying Therapy for Experimental Parkinsonism. Antioxid. Redox Signal. 2011;14:2347–2360. doi: 10.1089/ars.2010.3731. PubMed DOI
Hong Y., Yan W., Chen S., Sun C.-R., Zhang J.-M. The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol. Sin. 2010;31:1421–1430. doi: 10.1038/aps.2010.101. PubMed DOI PMC
Yang Y., Luo L., Cai X., Fang Y., Wang J., Chen G., Yang J., Zhou Q., Sun X., Cheng X., et al. Nrf2 inhibits oxaliplatin-induced peripheral neuropathy via protection of mitochondrial function. Free Radic. Biol. Med. 2018;120:13–24. doi: 10.1016/j.freeradbiomed.2018.03.007. PubMed DOI
Bi M., Li Q., Guo D., Ding X., Bi W., Zhang Y., Zou Y. Sulphoraphane improves neuronal mitochondrial function in brain tissue in acute carbon monoxide poisoning rats. Basic Clin. Pharmacol. Toxicol. 2017;120:541–549. doi: 10.1111/bcpt.12728. PubMed DOI
Luis-García E.R., Limón-Pacheco J.H., Serrano-García N., Hernández-Pérez A.D., Pedraza-Chaverri J., Orozco-Ibarra M. Sulforaphane prevents quinolinic acid-induced mitochondrial dysfunction in rat striatum. J. Biochem. Mol. Toxicol. 2017;31:e21837. doi: 10.1002/jbt.21837. PubMed DOI
Innamorato N.G., Rojo A.I., García-Yagüe Á.J., Yamamoto M., De Ceballos M.L., Cuadrado A. The transcription factor Nrf2 is a therapeutic target against brain inflammation. J. Immunol. 2008;181:680–689. doi: 10.4049/jimmunol.181.1.680. PubMed DOI
Qin S., Yang C., Huang W., Du S., Mai H., Xiao J., Lü T. Sulforaphane attenuates microglia-mediated neuronal necroptosis through down-regulation of MAPK/NF-κB signaling pathways in LPS-activated BV-2 microglia. Pharmacol. Res. 2018;133:218–235. doi: 10.1016/j.phrs.2018.01.014. PubMed DOI
Jang M., Cho I.H. Sulforaphane ameliorates 3-nitropropionic acid-induced striatal toxicity by activating the keap1-Nrf2-ARE pathway and inhibiting the MAPKs and NF-κB pathways. Mol. Neurobiol. 2016;53:261935. doi: 10.1007/s12035-015-9230-2. PubMed DOI
Kumar A., Sharma S.S. Nrf2 and NF-κB Modulation by Sulforaphane Counteracts Multiple Manifestations of Diabetic Neuropathy in Rats and High Glucose-Induced Changes. Curr. Neurovasc. Res. 2011;8:294–304. doi: 10.2174/156720211798120972. PubMed DOI
Hernandez-Rabaza V., Cabrera-Pastor A., Taoro-Gonzalez L., Gonzalez-Usano A., Agusti A., Balzano T., Llansola M., Felipo V. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J. Neuroinflamm. 2016;13:83. doi: 10.1186/s12974-016-0549-z. PubMed DOI PMC
Maciel-Barón L.Á., Morales-Rosales S.L., Silva-Palacios A., Rodríguez-Barrera R.H., García-Álvarez J.A., Luna-López A., Pérez V.I., Torres C., Königsberg M. The secretory phenotype of senescent astrocytes isolated from Wistar newborn rats changes with anti-inflammatory drugs, but does not have a short-term effect on neuronal mitochondrial potential. Biogerontology. 2018;19:415–433. doi: 10.1007/s10522-018-9767-3. PubMed DOI
Kim J., Lee S., Choi B.-R., Yang H., Hwang Y., Park J.H.Y., LaFerla F.M., Han J.-S., Lee K.W., Kim J. Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways. Mol. Nutr. Food Res. 2017;61:1600194. doi: 10.1002/mnfr.201600194. PubMed DOI
Koh S.-H., Lee S.M., Kim H.Y., Lee K.-Y., Lee Y.J., Kim H.-T., Kim J., Kim M.-H., Hwang M.S., Song C., et al. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci. Lett. 2006;395:103–107. doi: 10.1016/j.neulet.2005.10.056. PubMed DOI
Wang R., Tu J., Zhang Q., Zhang X., Zhu Y., Ma W., Cheng C., Brann D.W., Yang F. Genistein attenuates ischemic oxidative damage and behavioral deficits via eNOS/Nrf2/HO-1 signaling. Hippocampus. 2013;23:634–647. doi: 10.1002/hipo.22126. PubMed DOI
Satoh T., Kosaka K., Itoh K., Kobayashi A., Yamamoto M., Shimojo Y., Kitajima C., Cui J., Kamins J., Okamoto S.-I., et al. Carnosic acid, acatechol-typeelectrophilic compound, protects neurons bothin vitroandin vivothrough activation of the Keap1/Nrf2 pathway viaS-alkylation of targeted cysteines on Keap1. J. Neurochem. 2008;104:1116–1131. doi: 10.1111/j.1471-4159.2007.05039.x. PubMed DOI PMC
Chen J.-H., Ou H.-P., Lin C.-Y., Lin F.-J., Wu C.-R., Chang S.-W., Tsai C.-W. Carnosic Acid Prevents 6-Hydroxydopamine-Induced Cell Death in SH-SY5Y Cells via Mediation of Glutathione Synthesis. Chem. Res. Toxicol. 2012;25:1893–1901. doi: 10.1021/tx300171u. PubMed DOI
Yang L., Calingasan N.Y., Thomas B., Chaturvedi R.K., Kiaei M., Wille E.J., Liby K.T., Williams C., Royce D., Risingsong R., et al. Neuroprotective Effects of the Triterpenoid, CDDO Methyl Amide, a Potent Inducer of Nrf2-Mediated Transcription. PLoS ONE. 2009;4:e5757. doi: 10.1371/journal.pone.0005757. PubMed DOI PMC
Neymotin A., Calingasan N.Y., Wille E., Naseri N., Petri S., Damiano M., Liby K.T., Risingsong R., Sporn M., Beal M.F., et al. Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis. Free Radic. Biol. Med. 2011;51:88–96. doi: 10.1016/j.freeradbiomed.2011.03.027. PubMed DOI PMC
Marklund S.L. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem. J. 1984;222:649–655. doi: 10.1042/bj2220649. PubMed DOI PMC
Chelikani P., Fita I., Loewen P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 2004;61:192–208. doi: 10.1007/s00018-003-3206-5. PubMed DOI PMC
Radi R., Turrens J., Chang L., Bush K., Crapo J., Freeman B. Detection of catalase in rat heart mitochondria. J. Biol. Chem. 1991;266:22028–22034. doi: 10.1016/S0021-9258(18)54740-2. PubMed DOI
Nandi A., Yan L.-J., Jana C.K., Das N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Med. Cell. Longev. 2019;2019:1–19. doi: 10.1155/2019/9613090. PubMed DOI PMC
Singhal A.B., Morris V.B., Labhasetwar V., Ghorpade A. Nanoparticle-mediated catalase delivery protects human neurons from oxidative stress. Cell Death Dis. 2013;4:e903. doi: 10.1038/cddis.2013.362. PubMed DOI PMC
Dixon S.J., Patel D.N., Welsch M., Skouta R., Lee E.D., Hayano M., Thomas A.G., Gleason C.E., Tatonetti N.P., Slusher B.S., et al. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife. 2014;3:e02523. doi: 10.7554/eLife.02523. PubMed DOI PMC
Reinholz M.M., Merkle C.M., Poduslo J.F. Therapeutic benefits of putrescine-modified catalase in a transgenic mouse model of familial amyotrophic lateral sclerosis. Exp. Neurol. 1999;159:204–216. doi: 10.1006/exnr.1999.7142. PubMed DOI
Matouskova M., Ruttkay-Nedecký B., Kizek R. Antioxidační enzymy-biochemické markery oxidačního stresu. J. Met. Nanotechnol. 2014;1:53–56.
Kryukov G.V., Castellano S., Novoselov S.V., Lobanov A.V., Zehtab O., Guigó R., Gladyshev V.N. Characterization of mammalian selenoproteomes. Science. 2003;300:1439–1443. doi: 10.1126/science.1083516. PubMed DOI
Liang H., Ran Q., Jang Y.C., Holstein D., Lechleiter J., McDonald-Marsh T., Musatov A., Song W., Van Remmen H., Richardson A. Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria. Free Radic. Biol. Med. 2009;47:312–320. doi: 10.1016/j.freeradbiomed.2009.05.012. PubMed DOI PMC
Winterbourn C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicol. Lett. 1995;82–83:969–974. doi: 10.1016/0378-4274(95)03532-X. PubMed DOI
Aisen P., Enns C., Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol. 2001;33:940–959. doi: 10.1016/S1357-2725(01)00063-2. PubMed DOI
Yang W.S., SriRamaratnam R., Welsch M.E., Shimada K., Skouta R., Viswanathan V.S., Cheah J.H., Clemons P.A., Shamji A.F., Clish C.B., et al. Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell. 2014;156:317–331. doi: 10.1016/j.cell.2013.12.010. PubMed DOI PMC
Johnson W.M., Wilson-Delfosse A.L., Mieyal J.J. Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases. Nutrients. 2012;4:1399–1440. doi: 10.3390/nu4101399. PubMed DOI PMC
Chen L., Hambright W.S., Na R., Ran Q. Ablation of the Ferroptosis Inhibitor Glutathione Peroxidase 4 in Neurons Results in Rapid Motor Neuron Degeneration and Paralysis. J. Biol. Chem. 2015;290:28097–28106. doi: 10.1074/jbc.M115.680090. PubMed DOI PMC
Carlson B.A., Tobe R., Yefremova E., Tsuji P.A., Hoffmann V.J., Schweizer U., Gladyshev V.N., Hatfield D.L., Conrad M. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 2016;9:22–31. doi: 10.1016/j.redox.2016.05.003. PubMed DOI PMC
Ulatowski L.M., Manor D. Vitamin E and neurodegeneration. Neurobiol. Dis. 2015;84:78–83. doi: 10.1016/j.nbd.2015.04.002. PubMed DOI
Kose T., Vera-Aviles M., Sharp P.A., Latunde-Dada G.O. Curcumin and (−)- Epigallocatechin-3-Gallate Protect Murine MIN6 Pancreatic Beta-Cells Against Iron Toxicity and Erastin-Induced Ferroptosis. Pharmaceuticals. 2019;12:26. doi: 10.3390/ph12010026. PubMed DOI PMC
Štětkářová I., Matěj R., Ehler E. Nové poznatky v diagnostice a léčbě amyotrofické laterální sklerózy. Česká Slov. Neurol. Neurochir. 2018;81:546–554. doi: 10.14735/amcsnn2018546. DOI
Miller T., Cudkowicz M., Shaw P.J., Andersen P.M., Atassi N., Bucelli R.C., Genge A., Glass J., Ladha S., Ludolph A.L., et al. Phase 1–2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N. Engl. J. Med. 2020;383:109–119. doi: 10.1056/NEJMoa2003715. PubMed DOI
Paganoni S., Macklin E.A., Hendrix S., Berry J.D., Elliott M.A., Maiser S., Karam C., Caress J.B., Owegi M.A., Quick A., et al. Trial of sodium phenylbutyrate-taurursodiol for amyotrophic lateral sclerosis. N. Engl. J. Med. 2020;383:919–930. doi: 10.1056/NEJMoa1916945. PubMed DOI PMC