Role of Oxidative Stress in the Pathogenesis of Amyotrophic Lateral Sclerosis: Antioxidant Metalloenzymes and Therapeutic Strategies

. 2021 Mar 16 ; 11 (3) : . [epub] 20210316

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33809730

Amyotrophic lateral sclerosis (ALS) affects motor neurons in the cerebral cortex, brainstem and spinal cord and leads to death due to respiratory failure within three to five years. Although the clinical symptoms of this disease were first described in 1869 and it is the most common motor neuron disease and the most common neurodegenerative disease in middle-aged individuals, the exact etiopathogenesis of ALS remains unclear and it remains incurable. However, free oxygen radicals (i.e., molecules containing one or more free electrons) are known to contribute to the pathogenesis of this disease as they very readily bind intracellular structures, leading to functional impairment. Antioxidant enzymes, which are often metalloenzymes, inactivate free oxygen radicals by converting them into a less harmful substance. One of the most important antioxidant enzymes is Cu2+Zn2+ superoxide dismutase (SOD1), which is mutated in 20% of cases of the familial form of ALS (fALS) and up to 7% of sporadic ALS (sALS) cases. In addition, the proper functioning of catalase and glutathione peroxidase (GPx) is essential for antioxidant protection. In this review article, we focus on the mechanisms through which these enzymes are involved in the antioxidant response to oxidative stress and thus the pathogenesis of ALS and their potential as therapeutic targets.

Zobrazit více v PubMed

Wijesekera L.C., Leigh P.N. Amyotrophic lateral sclerosis. Orphanet J. Rare Dis. 2009;4:3. doi: 10.1186/1750-1172-4-3. PubMed DOI PMC

Niedermeyer S., Murn M., Choi P.J. Respiratory Failure in Amyotrophic Lateral Sclerosis. Chest. 2019;155:401–408. doi: 10.1016/j.chest.2018.06.035. PubMed DOI

Chiò A., Logroscino G., Traynor B.J., Collins J., Simeone J.C., Goldstein L.A., White L.A. Global epidemiology of amyotrophic lateral sclerosis: A systematic review of the published literature. Neuroepidemiology. 2013;41:118–130. doi: 10.1159/000351153. PubMed DOI PMC

Lomen-Hoerth C., Murphy J., Langmore S., Kramer J.H., Olney R.K., Miller B. Are amyotrophic lateral sclerosis patients cognitively normal? Neurology. 2003;60:1094–1097. doi: 10.1212/01.WNL.0000055861.95202.8D. PubMed DOI

Strong M.J. The syndromes of frontotemporal dysfunction in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 2008;9:323–338. doi: 10.1080/17482960802372371. PubMed DOI

Knirsch U.I., Bachus R., Gosztonyi G., Zschenderlein R., Ludolph A.C. Clinicopathological study of atypical motor neuron disease with vertical gaze palsy and ballism. Acta Neuropathol. 2000;100:342–346. doi: 10.1007/s004010000185. PubMed DOI

Pradat P.F., Salachas F., Lacomblez L., Patte N., Leforestier N., Gaura V., Meininger V. Association of chorea and motor neuron disease. Mov. Disord. 2002;17:419–420. doi: 10.1002/mds.10039. PubMed DOI

Dupuis L., Pradat P.F., Ludolph A.C., Loeffler J.P. Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol. 2011;10:75–82. doi: 10.1016/S1474-4422(10)70224-6. PubMed DOI

Milani P., Ambrosi G., Gammoh O., Blandini F., Cereda C. SOD1 and DJ-1 converge at Nrf2 pathway: A clue for antioxidant therapeutic potential in neurodegeneration. Oxid. Med. Cell Longev. 2013;2013:836760. doi: 10.1155/2013/836760. PubMed DOI PMC

Fantone J.C., Ward P.A. Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am. J. Pathol. 1982;107:395–418. PubMed PMC

Vile G.F., Tyrrell R.M. UVA radiation-induced oxidative damage to lipids and proteins in vitro and in Human skin fibroblasts is dependent on iron and singlet oxygen. Free Radic. Biol. Med. 1995;18:721–730. doi: 10.1016/0891-5849(94)00192-M. PubMed DOI

Zhang J., Wang X., Vikash V., Ye Q., Wu D., Liu Y., Dong W. ROS and ROS-Mediated Cellular Signaling. Oxid. Med. Cell Longev. 2016;2016:4350965. doi: 10.1155/2016/4350965. PubMed DOI PMC

Tormos K.V., Anso E., Hamanaka R.B., Eisenbart J., Joseph J., Kalyanaraman B., Chandel N.S. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 2011;14:537–544. doi: 10.1016/j.cmet.2011.08.007. PubMed DOI PMC

Hamanaka R.B., Glasauer A., Hoover P., Yang S., Blatt H., Mullen A.R., Getsios S., Gottardi C.J., DeBerardinis R.J., Lavker R.M., et al. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci. Signal. 2013;6:ra8. doi: 10.1126/scisignal.2003638. PubMed DOI PMC

Morimoto H., Iwata K., Ogonuki N., Inoue K., Atsuo O., Kanatsu-Shinohara M., Morimoto T., Yabe-Nishimura C., Shinohara T. ROS are required for mouse spermatogonial stem cell self- renewal. Cell Stem Cell. 2013;12:774–786. doi: 10.1016/j.stem.2013.04.001. PubMed DOI

Vargas-Mendoza N., Morales-González Á., Madrigal-Santillán E.O., Madrigal-Bujaidar E., Álvarez-González I., García-Melo L.F., Anguiano-Robledo L., Fregoso-Aguilar T., Morales-Gonzalez J.A. Antioxidant and Adaptative Response Mediated by Nrf2 during Physical Exercise. Antioxidants. 2019;8:196. doi: 10.3390/antiox8060196. PubMed DOI PMC

Brieger K., Schiavone S., Miller F.J., Jr., Krause K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012;142:w13659. doi: 10.4414/smw.2012.13659. PubMed DOI

Schäppi M.G., Jaquet V., Belli D.C., Krause K.H. Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. Semin. Immunopathol. 2008;30:255–271. doi: 10.1007/s00281-008-0119-2. PubMed DOI

Sorce S., Krause K.H. NOX enzymes in the central nervous system: From signaling to disease. Antioxid. Redox Signal. 2009;11:2481–2504. doi: 10.1089/ars.2009.2578. PubMed DOI

Pao M., Wiggs E.A., Anastacio M.M., Hyun J., DeCarlo E.S., Miller J.T., Anderson V.L., Malech H.L., Gallin J.I., Holland S.M. Cognitive function in patients with chronic granulomatous disease: A preliminary report. Psychosomatics. 2004;45:230–234. doi: 10.1176/appi.psy.45.3.230. PubMed DOI

Thompson R.J., Jr., Gustafson K.E., Meghdadpour S., Harrell E.S., Johndrow D.A., Spock A. The role of biomedical and psychosocial processes in the intellectual and academic functioning of children and adolescents with cystic fibrosis. J. Clin. Psychol. 1992;48:3–10. doi: 10.1002/1097-4679(199201)48:1<3::AID-JCLP2270480102>3.0.CO;2-H. PubMed DOI

Kishida K.T., Hoeffer C.A., Hu D., Pao M., Holland S.M., Klann E. Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol. Cell. Biol. 2006;26:5908–5920. doi: 10.1128/MCB.00269-06. PubMed DOI PMC

Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018;54:287–293. doi: 10.1016/j.ajme.2017.09.001. DOI

Beal M.F. Oxidatively modified proteins in aging and disease. Free Radic. Biol. Med. 2002;32:797–803. doi: 10.1016/S0891-5849(02)00780-3. PubMed DOI

Lenaz G., Bovina C., D’Aurelio M., Fato R., Formiggini G., Genova M.L., Giuliano G., Pich M.M., Paolucci U.G.O., Castelli G.P., et al. Role of mitochondria in oxidative stress and ageing. Ann. N. Y. Acad. Sci. 2002;959:199–213. doi: 10.1111/j.1749-6632.2002.tb02094.x. PubMed DOI

Genova M.L., Pich M.M., Bernacchia A., Bianchi C., Biondi A., Bovina C., Falasca A.I., Formiggini G., Castelli G.P., Lenaz G. The mitochondrial production of reactive oxygen species in relation to aging and pathology. Ann. N. Y. Acad. Sci. 2004;1011:86–100. doi: 10.1196/annals.1293.010. PubMed DOI

Dykens J.A. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: Implications for neurodegeneration. J. Neurochem. 1994;63:584–591. doi: 10.1046/j.1471-4159.1994.63020584.x. PubMed DOI

Carriedo S.G., Sensi S.L., Yin H.Z., Weiss J.H. AMPA exposures induce mitochondrial Ca2+ overload and ROS generation in spinal motor neurons in vitro. J. Neurosci. 2000;20:240–250. doi: 10.1523/JNEUROSCI.20-01-00240.2000. PubMed DOI PMC

Halliwell B. Oxidative stress and neurodegeneration: Where are we now? J. Neurochem. 2006;97:1634–1658. doi: 10.1111/j.1471-4159.2006.03907.x. PubMed DOI

Halliwell B. Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs Aging. 2001;18:685–716. doi: 10.2165/00002512-200118090-00004. PubMed DOI

Ferrante R.J., Browne S.E., Shinobu L.A., Bowling A.C., Baik M.J., MacGarvey U., Kowall N.W., Brown R.H., Jr., Beal M.F. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 1997;69:2064–2074. doi: 10.1046/j.1471-4159.1997.69052064.x. PubMed DOI

Abe K., Pan L.-H., Watanabe M., Kato T., Itoyama Y. Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci. Lett. 1995;199:152–154. doi: 10.1016/0304-3940(95)12039-7. PubMed DOI

Beal M.F., Ferrante R.J., Browne S.E., Matthews R.T., Kowall N.W., Brown R.H., Jr. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol. 1997;42:644–654. doi: 10.1002/ana.410420416. PubMed DOI

Shaw P.J., Ince P.G., Falkous G., Mantle D. Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann. Neurol. 1995;38:691–695. doi: 10.1002/ana.410380424. PubMed DOI

Cutler R.G., Pedersen W.A., Camandola S., Rothstein J.D., Mattson M.P. Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann. Neurol. 2002;52:448–457. doi: 10.1002/ana.10312. PubMed DOI

Pedersen W.A., Fu W., Keller J.N., Pedersen W.A., Fu W., Keller J.N., Markesbery W.R., Appel S., Smith R.G., Kasarskis E., et al. Protein modification by the lipid peroxidation product 4- hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann. Neurol. 1998;44:819–824. doi: 10.1002/ana.410440518. PubMed DOI

Simpson E.P., Henry Y.K., Henkel J.S., Smith R.G., Appel S.H. Increased lipid peroxidation in sera of ALS patients: A potential biomarker of disease burden. Neurology. 2004;62:1758–1765. doi: 10.1212/WNL.62.10.1758. PubMed DOI

Volterra A., Trotti D., Tromba C., Floridi S., Racagni G. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J. Neurosci. 1994;14:2924–2932. doi: 10.1523/JNEUROSCI.14-05-02924.1994. PubMed DOI PMC

Trotti D., Rossi D., Gjesdal O., Levy L.M., Racagni G., Danbolt N.C., Volterra A. Peroxynitrite inhibits glutamate transporter subtypes. J. Biol. Chem. 1996;271:5976–5979. doi: 10.1074/jbc.271.11.5976. PubMed DOI

Trotti D., Danbolt N.C., Volterra A. Glutamate transporters are oxidant-vulnerable: A molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol. Sci. 1998;19:328–334. doi: 10.1016/S0165-6147(98)01230-9. PubMed DOI

Rao S.D., Yin H.Z., Weiss J.H. Disruption of glial glutamate transport by reactive oxygen species produced in motor neurons. J. Neurosci. 2003;23:2627–2633. doi: 10.1523/JNEUROSCI.23-07-02627.2003. PubMed DOI PMC

Heath P.R., Shaw P.J. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve. 2002;26:438–458. doi: 10.1002/mus.10186. PubMed DOI

Spreux-Varoquaux O., Bensimon G., Lacomblez L., Salachas F., Pradat P.F., Le Forestier N., Marouan A., Dib M., Meininger V. Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: A reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J. Neurol. Sci. 2002;193:73–78. doi: 10.1016/S0022-510X(01)00661-X. PubMed DOI

Rao S.D., Weiss J.H. Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis. Trends Neurosci. 2004;27:17–23. doi: 10.1016/j.tins.2003.11.001. PubMed DOI

Brooks B.R., Shodis K.A., Lewis D.H., Rawling J.D., Sanjak M., Belden D.S., Hakim H., DeTan Y., Gaffney J.M. Natural history of amyotrophic lateral sclerosis: Quantification of symptoms, signs, strength, and Function. Adv. Neurol. 1995;68:163–184. PubMed

Hirano A., Nakano I., Kurland L.T., Mulder D.W., Holley P.W., Saccomanno G. Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 1984;43:471–480. doi: 10.1097/00005072-198409000-00002. PubMed DOI

Hirano A.C., Donnenfeld H., Sasaki S., Nakano I. Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 1984;43:461–470. doi: 10.1097/00005072-198409000-00001. PubMed DOI

Zhang B., Tu P., Abtahian F., Trojanowski J.Q., Lee V.M. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J. Cell Biol. 1997;139:1307–1315. doi: 10.1083/jcb.139.5.1307. PubMed DOI PMC

Morrison B.M., Gordon J.W., Ripps M.E., Morrison J.H. Quantitative immunocytochemical analysis of the spinal cord in G86R superoxide dismutase transgenic mice: Neurochemical correlates of selective vulnerability. J. Comp. Neurol. 1996;373:619–663. doi: 10.1002/(SICI)1096-9861(19960930)373:4<619::AID-CNE9>3.0.CO;2-4. PubMed DOI

Kim N.H., Jeong M.S., Choi S.Y., Kang J.H. Oxidative modification of neurofilament-L by the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Biochimie. 2004;86:553–559. doi: 10.1016/j.biochi.2004.07.006. PubMed DOI

Crow J.P., Ye Y.Z., Strong M., Kang J.H. Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J. Neurochem. 1997;69:1945–1953. doi: 10.1046/j.1471-4159.1997.69051945.x. PubMed DOI

Ingre C., Roos P.M., Piehl F., Kamel F., Fang F. Risk factors for amyotrophic lateral sclerosis. Clin. Epidemiol. 2015;7:181. doi: 10.2147/CLEP.S37505J. PubMed DOI PMC

Logroscino G., Traynor B.J., Hardiman O., Chiò A., Mitchell D., Swingler R.J., Millul A., Benn E., Beghi E. Incidence of amyotrophic lateral sclerosis in Europe. J. Neurol. Neurosurg. Psychiatry. 2010;81:385–390. doi: 10.1136/jnnp.2009.183525. PubMed DOI PMC

Huisman M.H., de Jong S.W., van Doormaal P.T., Weinreich S.S., Schelhaas H.J., van der Kooi A.J., de Visser M., Veldink J.H., van den Berg L.H. Population based epidemiology of amyotrophic lateral sclerosis using capture-recapture methodology. J. Neurol. Neurosurg. Psychiatry. 2011;82:1165–1170. doi: 10.1136/jnnp.2011.244939. PubMed DOI

Piemonte and Valle d’Aosta Register for Amyotrophic Lateral Sclerosis (PARALS) Incidence of ALS in Italy: Evidence for a uniform frequency in Western countries. Neurology. 2001;56:239–244. doi: 10.1212/WNL.56.2.239. PubMed DOI

Renton A.E., Majounie E., Waite A., Simón-Sánchez J., Rollinson S., Gibbs J.R., Schymick J.C., Laaksovirta H., Van Swieten J.C., Myllykangas L., et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–268. doi: 10.1016/j.neuron.2011.09.010. PubMed DOI PMC

DeJesus-Hernandez M., Mackenzie I.R., Boeve B.F., Boxer A.L., Baker M., Rutherford N.J., Nicholson A.M., Finch N.A., Flynn H., Adamson J., et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–256. doi: 10.1016/j.neuron.2011.09.011. PubMed DOI PMC

Gijselinck I., Van Langenhove T., van der Zee J., Sleegers K., Philtjens S., Kleinberger G., Janssens J., Bettens K., Van Cauwenberghe C., Pereson S., et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: A gene identification study [published correction appears in Lancet Neurol. 2012 Feb;11:125] Lancet Neurol. 2012;11:54–65. doi: 10.1016/S1474-4422(11)70261-7. PubMed DOI

Belzil V.V., Bauer P.O., Prudencio M., Gendron T.F., Stetler C.T., Yan I.K., Pregent L., Daughrity L., Baker M.C., Rademakers R., et al. Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol. 2013;126:895–905. doi: 10.1007/s00401-013-1199-1. PubMed DOI PMC

Haeusler A.R., Donnelly C.J., Rothstein J.D. The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat. Rev. Neurosci. 2016;17:383. doi: 10.1038/nrn.2016.38. PubMed DOI PMC

Lopez-Gonzalez R., Lu Y., Gendron T.F., Karydas A., Karydas A., Tran H., Yang D., Petrucelli L., Miller B.L., Almeida S., et al. Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons. Neuron. 2016;92:383–391. doi: 10.1016/j.neuron.2016.09.015. PubMed DOI PMC

Mackenzie I.R., Rademakers R., Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 2010;9:995–1007. doi: 10.1016/S1474-4422(10)70195-2. PubMed DOI

Kabashi E., Valdmanis P.N., Dion P., Spiegelman D., McConkey B.J., Velde C.V., Bouchard J.P., Lacomblez L., Pochigaeva K., Salachas F., et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 2008;40:572–574. doi: 10.1038/ng.132. PubMed DOI

Van Deerlin V.M., Leverenz J.B., Bekris L.M., Bird T.D., Yuan W., Elman L.B., Clay D., Wood E.M., Chen-Plotkin A.S., Martinez-Lage M., et al. TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: A genetic and histopathological analysis. Lancet Neurol. 2008;7:409–416. doi: 10.1016/S1474-4422(08)70071-1. PubMed DOI PMC

Rutherford N.J., Zhang Y.-J., Baker M., Gass J.M., Finch N.A., Xu Y.-F., Stewart H., Kelley B.J., Kuntz K., Crook R.J.P., et al. Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis. PLoS Genet. 2008;4:e1000193. doi: 10.1371/journal.pgen.1000193. PubMed DOI PMC

Neumann M., Sampathu D.M., Kwong L.K., Truax A.C., Micsenyi M.C., Chou T.T., Bruce J., Schuck T., Grossman M., Clark C.M., et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science. 2006;314:130–133. doi: 10.1126/science.1134108. PubMed DOI

McAleese K.E., Walker L., Erskine D., Thomas A.J., McKeith I.G., Attems J. TDP-43 pathology in Alzheimer’s disease, dementia with Lewy bodies and ageing. Brain Pathol. 2017:472–479. doi: 10.1111/bpa.12424. PubMed DOI PMC

Giordana M.T., Piccinini M., Grifoni S., De Marco G., Vercellino M., Magistrello M., Pellerino A., Buccinnà B., Lupino E., Rinaudo M.T. TDP-43 Redistribution is an Early Event in Sporadic Amyotrophic Lateral Sclerosis. Brain Pathol. 2010;20:351–360. doi: 10.1111/j.1750-3639.2009.00284.x. PubMed DOI PMC

Mejzini R., Flynn L.L., Pitout I.L., Fletcher S., Wilton S.D., Akkari P.A. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front. Neurosci. 2019;13:1310. doi: 10.3389/fnins.2019.01310. PubMed DOI PMC

Iguchi Y., Katsuno M., Takagi S., Ishigaki S., Niwa J.-I., Hasegawa M., Tanaka F., Sobue G. Oxidative stress induced by glutathione depletion reproduces pathological modifications of TDP-43 linked to TDP-43 proteinopathies. Neurobiol. Dis. 2012;45:862–870. doi: 10.1016/j.nbd.2011.12.002. PubMed DOI

Wang P., Deng J., Dong J., Liu J., Bigio E.H., Mesulam M., Wang T., Sun L., Wang L., Lee A.Y.-L., et al. TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genet. 2019;15:e1007947. doi: 10.1371/journal.pgen.1007947. PubMed DOI PMC

Zou Z.-Y., Cui L.-Y., Sun Q., Li X.-G., Liu M.-S., Xu Y., Zhou Y., Yang X.-Z. De novo FUS gene mutations are associated with juvenile-onset sporadic amyotrophic lateral sclerosis in China. Neurobiol. Aging. 2013;34:1312.e1–1312.e8. doi: 10.1016/j.neurobiolaging.2012.09.005. PubMed DOI

Ratti A., Buratti E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J. Neurochem. 2016;138(Suppl. 1):95–111. doi: 10.1111/jnc.13625. PubMed DOI

Wang H., Guo W., Mitra J., Hegde P.M., Vandoorne T., Eckelmann B.J., Mitra S., Tomkinson A.E., Bosch L.V.D., Hegde M.L. Mutant FUS causes DNA ligation defects to inhibit oxidative damage repair in Amyotrophic Lateral Sclerosis. Nat. Commun. 2018;9:3683. doi: 10.1038/s41467-018-06111-6. PubMed DOI PMC

Dantzer F., Amé J.C., Schreiber V., Nakamura J., Ménissier-de Murcia J., de Murcia G. Poly(ADP-ribose) polymerase-1 activation during DNA damage and repair. Methods Enzymol. 2006;409:493–510. doi: 10.1016/S0076-6879(05)09029. PubMed DOI

Mani R.S., Karimi-Busheri F., Fanta M., Caldecott K.W., Cass C.E., Weinfeld M. Biophysical characterization of human XRCC1 and its binding to damaged and undamaged DNA. Biochemistry. 2004;43:16505–16514. doi: 10.1021/bi048615m. PubMed DOI

Lan L., Nakajima S., Oohata Y., Takao M., Okano S., Masutani M., Wilson S.H., Yasui A. In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proc. Natl. Acad. Sci. USA. 2004;101:13738–13743. doi: 10.1073/pnas.0406048101. PubMed DOI PMC

Mani R.S., Fanta M., Karimi-Busheri F., Silver E., Virgen C.A., Caldecott K.W., Cass C.E., Weinfeld M. XRCC1 stimulates polynucleotide kinase by enhancing its damage discrimination and displacement from DNA repair intermediates. J. Biol. Chem. 2007;282:28004–28013. doi: 10.1074/jbc.M704867200. PubMed DOI

Fortini P., Pascucci B., Parlanti E., D’errico M., Simonelli V., Dogliotti E. The base excision repair: Mechanisms and its relevance for cancer susceptibility. Biochemie. 2003;85:1053–1071. doi: 10.1016/j.biochi.2003.11.003. PubMed DOI

Bozzo F., Mirra A., Carrì M.T. Oxidative stress and mitochondrial damage in the pathogenesis of ALS: New perspectives. Neurosci. Lett. 2017;636:3–8. doi: 10.1016/j.neulet.2016.04.065. PubMed DOI

Cohen T.J., Hwang A.W., Restrepo C.R., Yuan C.X., Trojanowski J.Q., Lee V.M. An acetylation switch controls TDP-43 function and aggregation propensity. Nat. Commun. 2015;6:5845. doi: 10.1038/ncomms6845. PubMed DOI PMC

Vance C., Scotter E.L., Nishimura A.L., Troakes C., Mitchell J.C., Kathe C., Urwin H., Manser C., Miller C.C., Hortobágyi T., et al. ALS mutant FUS disrupts nuclear localization and sequesters wild- type FUS within cytoplasmic stress granules. Hum. Mol. Genet. 2013;22:2676–2688. doi: 10.1093/hmg/ddt117. PubMed DOI PMC

Li Y.R., King O.D., Shorter J., Gitler A.D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 2013;201:361–372. doi: 10.1083/jcb.201302044. PubMed DOI PMC

Parker S.J., Meyerowitz J., James J.L., Liddell J.R., Crouch P.J., Kanninen K.M., White A.R. Endogenous TDP-43 localized to stress granules can subsequently form protein aggregates. Neurochem. Int. 2012;60:415–424. doi: 10.1016/j.neuint.2012.01.019. PubMed DOI

Ferber E.C., Peck B., Delpuech O., Bell G., East P., Schulze A. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ. 2012;19:968–979. doi: 10.1038/cdd.2011.179. PubMed DOI PMC

Zhang T., Baldie G., Periz G.J. WangRNA-processing protein TDP-43 regulates FOXO-dependent protein quality control in stress response. PLoS Genet. 2014;10:e1004693. doi: 10.1371/journal.pgen.1004693. PubMed DOI PMC

Sánchez-Ramos C., Tierrez A., Fabregat-Andrés O., Wild B., Sánchez-Cabo F., Arduini A., Dopazo A., Monsalve M. PGC-1α regulates translocated in liposarcoma activity: Role in oxidative stress gene expression. Antioxid. Redox Signal. 2011;15:325–337. doi: 10.1089/ars.2010.3643. PubMed DOI

Weisskopf M.G., McCullough M.L., Calle E.E., Thun M.J., Cudkowicz M., Ascherio A. Prospective study of cigarette smoking and amyotrophic lateral sclerosis. Am. J. Epidemiol. 2004;160:26–33. doi: 10.1093/aje/kwh179. PubMed DOI

Gallo V., Bueno-De-Mesquita H.B., Vermeulen R., Andersen P.M., Kyrozis A., Linseisen J., Kaaks R., Allen N.E., Roddam A.W., Boshuizen H.C., et al. Smoking and risk for amyotrophic lateral sclerosis: Analysis of the EPIC cohort. Ann. Neurol. 2009;65:378–385. doi: 10.1002/ana.21653. PubMed DOI

Fang F., Bellocco R., Hernán M.A., Ye W. Smoking, snuff dipping and the risk of amyotrophic lateral sclerosis—A prospective cohort study. Neuroepidemiology. 2006;27:217–221. doi: 10.1159/000096956. PubMed DOI

Yanbaeva D.G., Dentener M.A., Creutzberg E.C., Wesseling G., Wouters E.F.M. Systemic Effects of Smoking. Chest. 2007;131:1557–1566. doi: 10.1378/chest.06-2179. PubMed DOI

Kiziler A.R., Aydemir B., Onaran I., Alici B., Ozkara H., Gulyasar T., Akyolcu M.C. High Levels of Cadmium and Lead in Seminal Fluid and Blood of Smoking Men are Associated with High Oxidative Stress and Damage in Infertile Subjects. Biol. Trace Element Res. 2007;120:82–91. doi: 10.1007/s12011-007-8020-8. PubMed DOI

D’Amico E., Factor-Litvak P., Santella R.M., Mitsumoto H. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic. Biol. Med. 2013;65:509–527. doi: 10.1016/j.freeradbiomed.2013.06.029. PubMed DOI PMC

Gallo V., Wark P.A., Jenab M., Pearce N., Brayne C., Vermeulen R., Andersen P.M., Hallmans G., Kyrozis A., Vanacore N., et al. Prediagnostic body fat and risk of death from amyotrophic lateral sclerosis: The EPIC cohort. Neurology. 2013;80:829–838. doi: 10.1212/WNL.0b013e3182840689. PubMed DOI PMC

O’Reilly É.J., Wang H., Weisskopf M.G., Fitzgerald K.C., Falcone G., McCullough M.L., Thun M., Park Y., Kolonel L.N., Ascherio A. Premorbid body mass index and risk of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2012;14:205–211. doi: 10.3109/21678421.2012.735240. PubMed DOI PMC

Chiò A., Benzi G., Dossena M., Mutani R., Mora G. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain. 2005;128:472–476. doi: 10.1093/brain/awh373. PubMed DOI

Abel E.L. Football increases the risk for Lou Gehrig’s disease, amyotrophic lateral sclerosis. Percept. Mot. Skills. 2007;104:1251–1254. doi: 10.2466/pms.104.4.1251-1254. PubMed DOI

Chio A., Calvo A., Dossena M., Ghiglione P., Mutani R., Mora G. ALS in Italian professional soccer players: The risk is still present and could be soccer-specific. Amyotroph. Lateral Scler. 2009;10:205–209. doi: 10.1080/17482960902721634. PubMed DOI

Wang J.S., Huang Y.H. Effects of exercise intensity on lymphocyte apoptosis induced by oxidative stress in men. Eur. J. Appl. Physiol. 2005;95:290. doi: 10.1007/s00421-005-0005-8. PubMed DOI

Reid M.B. Free radicals and muscle fatigue: Of ROS, canaries, and the IOC. Free Radic. Biol. Med. 2008;44:169–179. doi: 10.1016/j.freeradbiomed.2007.03.002. PubMed DOI

Cole K., Perez-Polo J.R. Neuronal trauma model: In search of Thanatos. Int. J. Dev. Neurosci. 2004;22:485–496. doi: 10.1016/j.ijdevneu.2004.07.015. PubMed DOI

Al-Chalabi A., Leigh P.N. Trouble on the pitch: Are professional football players at increased risk of developing amyotrophic lateral sclerosis? Brain. 2005;128:451–453. doi: 10.1093/brain/awh426. PubMed DOI

Kamel F., Umbach D.M., Lehman T.A., Park L.P., Munsat T.L., Shefner J.M., Sandler D.P., Hu H., Taylor J.A. Amyotrophic lateral sclerosis, lead, and genetic susceptibility: Polymorphisms in the delta-aminolevulinic acid dehydratase and vitamin D receptor genes. Environ. Health Perspect. 2003;111:1335–1339. doi: 10.1289/ehp.6109. PubMed DOI PMC

Kamel F., Umbach D.M., Munsat T.L., Shefner J.M., Hu H., Sandler D.P. Lead Exposure and Amyotrophic Lateral Sclerosis. Epidemiology. 2002;13:311–319. doi: 10.1097/00001648-200205000-00012. PubMed DOI

Hu H., Payton M., Kornc S., Aro A., Sparrow D., Weiss S.T., Rotnitzky A. Determinants of Bone and Blood Lead Levels among Community-exposed Middle-aged to Elderly Men: The Normative Aging Study. Am. J. Epidemiol. 1996;144:749–759. doi: 10.1093/oxfordjournals.aje.a008999. PubMed DOI

Chetty C.S., Vemuri M.C., Campbell K., Suresh C. Lead-induced cell death of human neuroblastoma cells involves GSH dep-rivation. Cell. Mol. Biol. Lett. 2005;10:413–423. PubMed

Barbeito A.G., Martinez-Palma L., Vargas M.R., Pehar M., Mañay N., Beckman J.S., Barbeito L., Cassina P. Lead exposure stimulates VEGF expression in the spinal cord and extends survival in a mouse model of ALS. Neurobiol. Dis. 2010;37:574–580. doi: 10.1016/j.nbd.2009.11.007. PubMed DOI PMC

Farina M., Avila D.S., da Rocha J.B., Aschner M. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochem. Int. 2013;62:575–594. doi: 10.1016/j.neuint.2012.12.006. PubMed DOI PMC

Dobson A.W., Erikson K.M., Aschner M. Manganese neurotoxicity. Ann. N. Y. Acad. Sci. 2004;1012:115–128. doi: 10.1196/annals.1306.009. PubMed DOI

Sjogren B., Iregren A., Frech W., Hagman M., Johansson L., Tesarz M., Wennberg A. Effects on the nervous system among welders exposed to aluminium and manganese. Occup. Environ. Med. 1996;53:32–40. doi: 10.1136/oem.53.1.32. PubMed DOI PMC

Ellingsen D.G., Konstantinov R., Bast-Pettersen R., Merkurjeva L., Chashchin M., Thomassen Y., Chashchin V. A neurobehavioral study of current and former welders exposed to manganese. NeuroToxicology. 2008;29:48–59. doi: 10.1016/j.neuro.2007.08.014. PubMed DOI

Dusek P., Roos P.M., Litwin T., Schneider S.A., Flaten T.P., Aaseth J. The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases. J. Trace Elements Med. Biol. 2015;31:193–203. doi: 10.1016/j.jtemb.2014.05.007. PubMed DOI

Kasarskis E.J., Tandon L., Lovell M.A., Ehmann W.D. Aluminum, calcium, and iron in the spinal cord of patients with sporadic amyotrophic lateral sclerosis using laser microprobe mass spectroscopy: A preliminary study. J. Neurol. Sci. 1995;130:203–208. doi: 10.1016/0022-510X(95)00037-3. PubMed DOI

Kwan J.Y., Jeong S.Y., Van Gelderen P., Deng H.X., Quezado M.M., Danielian L.E., Butman J.A., Chen L., Bayat E., Russell J., et al. Iron accumulation in deep cortical layers accounts for MRI signal abnormali-ties in ALS: Correlating 7 tesla MRI and pathology. PLoS ONE. 2012;7:e35241. doi: 10.1371/journal.pone.0035241. PubMed DOI PMC

Kamel F., Umbach D.M., Bedlack R.S., Richards M., Watson M., Alavanja M.C., Blair A., Hoppin J.A., Schmidt S., Sandler D.P. Pesticide exposure and amyotrophic lateral sclerosis. NeuroToxicology. 2012;33:457–462. doi: 10.1016/j.neuro.2012.04.001. PubMed DOI PMC

Malek A.M., Barchowsky A., Bowser R., Youk A., Talbott E.O. Pesticide exposure as a risk factor for amyotrophic lateral sclerosis: A meta-analysis of epidemiological studies. Environ. Res. 2012;117:112–119. doi: 10.1016/j.envres.2012.06.007. PubMed DOI

Soltaninejad K., Abdollahi M. Current opinion on the science of organophosphate pesticides and toxic stress: A systematic review. Med. Sci. Monit. 2009;15:RA75–RA90. PubMed

Schmuck G., Rohrdanz E., Tran-Thi Q.H., Kahl R., Schluter G. Oxidative stress in rat cortical neurons and astrocytes induced by paraquat in vitro. Neurotox. Res. 2002;4:1–13. doi: 10.1080/10298420290007574. PubMed DOI

Costa L.G. Current issues in organophosphate toxicology. Clin. Chim. Acta. 2006;366:1–13. doi: 10.1016/j.cca.2005.10.008. PubMed DOI

Muñiz J.F., McCauley L., Scherer J., Lasarev M.R., Koshy M., Kow Y., Nazar-Stewart V., Kisby G. Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study. Toxicol. Appl. Pharmacol. 2008;227:97–107. doi: 10.1016/j.taap.2007.10.027. PubMed DOI

Suntres Z.E. Role of antioxidants in paraquat toxicity. Toxicology. 2002;180:65–77. doi: 10.1016/S0300-483X(02)00382-7. PubMed DOI

Dutheil F., Beaune P., Loriot M.A. Xenobiotic metabolizing enzymes in the central nervous system: Contribution of cyto-chrome P450 enzymes in normal and pathological human brain. Biochimie. 2008;90:426–436. doi: 10.1016/j.biochi.2007.10.007. PubMed DOI

Day B.J., Patel M., Calavetta L., Chang L.-Y., Stamler J.S. A mechanism of paraquat toxicity involving nitric oxide synthase. Proc. Natl. Acad. Sci. USA. 1999;96:12760–12765. doi: 10.1073/pnas.96.22.12760. PubMed DOI PMC

Purisai M.G., McCormack A.L., Cumine S., Li J., Isla M.Z., Di Monte D.A. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol. Dis. 2007;25:392–400. doi: 10.1016/j.nbd.2006.10.008. PubMed DOI PMC

Wu X.-F., Block M.L., Zhang W., Qin L., Wilson B., Zhang W.-Q., Veronesi B., Hong J.-S. The Role of Microglia in Paraquat-Induced Dopaminergic Neurotoxicity. Antioxid. Redox Signal. 2005;7:654–661. doi: 10.1089/ars.2005.7.654. PubMed DOI

Kim S., Hwang J., Lee W.H., Hwang D.Y., Suk K. Role of protein kinase Cdelta in paraquat-induced glial cell death. J. Neurosci. Res. 2008;86:2062–2070. doi: 10.1002/jnr.21643. PubMed DOI

Cocheme H.M., Murphy M.P. Complex I is the major site of mitochondrial superoxide production by paraquat. J. Biol. Chem. 2008;283:1786–1798. doi: 10.1074/jbc.M708597200. PubMed DOI

Choi W.S., Kruse S.E., Palmiter R.D., Xia Z. Mitochondrial complex I inhibition is not required for dopaminergicneuron death induced by rotenone, MPP(+), or paraquat. Proc. Natl. Acad. Sci. USA. 2008;105:15136–15141. doi: 10.1073/pnas.0807581105. PubMed DOI PMC

Roos P.M., Vesterberg O., Nordberg M. Metals in Motor Neuron Diseases. Exp. Biol. Med. 2006;231:1481–1487. doi: 10.1177/153537020623100906. PubMed DOI

Sutedja N.A., Fischer K., Veldink J.H., Van Der Heijden G.J., Kromhout H., Heederik D., Huisman M.H., Wokke J.J., Berg L.H.V.D. What we truly know about occupation as a risk factor for ALS: A critical and systematic review. Amyotroph. Lateral Scler. 2009;10:295–301. doi: 10.3109/17482960802430799. PubMed DOI

Fang F., Quinlan P., Ye W., Barber M.K., Umbach D.M., Sandler D.P., Kamel F. Workplace Exposures and the Risk of Amyotrophic Lateral Sclerosis. Environ. Health Perspect. 2009;117:1387–1392. doi: 10.1289/ehp.0900580. PubMed DOI PMC

Xi Z., Yunusova Y., Van Blitterswijk M., Dib S., Ghani M., Moreno D., Sato C., Liang Y., Singleton A., Robertson J., et al. Identical twins with the C9orf72 repeat expansion are discordant for ALS. Neurology. 2014;83:1476–1478. doi: 10.1212/WNL.0000000000000886. PubMed DOI PMC

Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI

Karuppanapandian T., Moon J.C., Kim C., Manoharan K., Kim W. Reactive oxygen species in plants: Their generation, signal transduction, and scavenging mechanisms. Aust. J. Crop Sci. 2011;5:709.

Fetherolf M.M., Boyd S.D., Winkler D.D., Winge D.R. Oxygen-dependent activation of Cu,Zn-superoxide dismutase-1. Metallomics. 2017;9:1047–1059. doi: 10.1039/C6MT00298F. PubMed DOI

Luchinat E., Barbieri L., Rubino J.T., Kozyreva T., Cantini F., Banci L. In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants. Nat. Commun. 2014;5:5502. doi: 10.1038/ncomms6502. PubMed DOI

Leitch J.M., Yick P.J., Culotta V.C. The Right to Choose: Multiple Pathways for Activating Copper, Zinc Superoxide Dismutase. J. Biol. Chem. 2009;284:24679–24683. doi: 10.1074/jbc.R109.040410. PubMed DOI PMC

Lamb A.L., Wernimont A.K., Pfahl R.A., O’Halloran T.V., Rosenzweig A.C. Crystal Structure of the Second Domain of the Human Copper Chaperone for Superoxide Dismutase. Biochemistry. 2000;39:1589–1595. doi: 10.1021/bi992822i. PubMed DOI

Rosenzweig A. Structure and chemistry of the copper chaperone proteins. Curr. Opin. Chem. Biol. 2000;4:140–147. doi: 10.1016/S1367-5931(99)00066-6. PubMed DOI

Furukawa Y., O’Halloran T.V. Posttranslational Modifications in Cu,Zn-Superoxide Dismutase and Mutations Associated with Amyotrophic Lateral Sclerosis. Antioxid. Redox Signal. 2006;8:847–867. doi: 10.1089/ars.2006.8.847. PubMed DOI PMC

Racek J. Superoxiddismutáza. [(accessed on 18 February 2017)]; Available online: www.krevnicentrum.cz/laboratorni-prirucka/BOJRAAI.htm.

Valentine J.S., Doucette P.A., Zittin Potter S. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu. Rev. Biochem. 2005;74:563–593. doi: 10.1146/annurev.biochem.72.121801.161647. PubMed DOI

Leinartaite L., Saraboji K., Nordlund A., Logan D.T., Oliveberg M. Folding Catalysis by Transient Coordination of Zn2+ to the Cu Ligands of the ALS-Associated Enzyme Cu/Zn Superoxide Dismutase 1. J. Am. Chem. Soc. 2010;132:13495–13504. doi: 10.1021/ja1057136. PubMed DOI

Banci L., Bertini I., Cantini F., Kozyreva T., Massagni C., Palumaa P., Rubino J.T., Zovo K. Human superoxide dismutase 1 (hSOD1) maturation through interactiowith human copper chaperone for SOD1 (hCCS) Proc. Natl. Acad. Sci. USA. 2012;109:13555–13560. doi: 10.1073/pnas.1207493109. PubMed DOI PMC

Wong P.C., Waggoner D., Subramaniam J.R., Tessarollo L., Bartnikas T.B., Culotta V.C., Price D.L., Rothstein J., Gitlin J.D. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA. 2000;97:2886–2891. doi: 10.1073/pnas.040461197. PubMed DOI PMC

Furukawa Y., Torres A.S., O’Halloran T.V. Oxygen-induced maturation of SOD1: A key role for disulfide formation by the copper chaperone CCS. EMBO J. 2004;23:2872–2881. doi: 10.1038/sj.emboj.7600276. PubMed DOI PMC

Fetherolf M.M., Boyd S.D., Taylor A.B., Kim H.J., Wohlschlegel J.A., Blackburn N.J., Hart P.J., Winge D.R., Winkler D.D. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site. J. Biol. Chem. 2017;292:12025–12040. doi: 10.1074/jbc.M117.775981. PubMed DOI PMC

Boyd S.D., Calvo J.S., Liu L., Ullrich M.S., Skopp A., Meloni G., Winkler D.D. The yeast copper chaperone for copper-zinc superoxide dismutase (CCS1) is a multifunctional chaperone promoting all levels of SOD1 maturation. J. Biol. Chem. 2019;294:1956–1966. doi: 10.1074/jbc.RA118.005283. PubMed DOI PMC

Boyd S.D., Ullrich M.S., Calvo J.S., Behnia F., Meloni G., Winkler D.D. Mutations in Superoxide Dismutase 1 (Sod1) Linked to Familial Amyotrophic Lateral Sclerosis Can Disrupt High-Affinity Zinc-Binding Promoted by the Copper Chaperone for Sod1 (Ccs) Molecules. 2020;25:1086. doi: 10.3390/molecules25051086. PubMed DOI PMC

Tokuda E., Okawa E., Watanabe S., Ono S.-I., Marklund S.L. Dysregulation of intracellular copper homeostasis is common to transgenic mice expressing human mutant superoxide dismutase-1s regardless of their copper-binding abilities. Neurobiol. Dis. 2013;54:308–319. doi: 10.1016/j.nbd.2013.01.001. PubMed DOI

Tokuda E., Okawa E., Ono S.-I. Dysregulation of intracellular copper trafficking pathway in a mouse model of mutant copper/zinc superoxide dismutase-linked familial amyotrophic lateral sclerosis. J. Neurochem. 2009;111:181–191. doi: 10.1111/j.1471-4159.2009.06310.x. PubMed DOI

Gurney M.E., Pu H., Chiu A.Y., Canto M.C.D., Polchow C.Y., Alexander D.D., Caliendo J., Hentati A., Kwon Y.W., Deng H.X., et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994;264:1772–1775. doi: 10.1126/science.8209258. PubMed DOI

Vieira F.G., Hatzipetros T., Thompson K., Moreno A.J., Kidd J.D., Tassinari V.R., Levine B., Perrin S., Gill A. CuATSM efficacy is independently replicated in a SOD1 mouse model of ALS while unmetallated ATSM therapy fails to reveal benefits. IBRO Rep. 2017;2:47–53. doi: 10.1016/j.ibror.2017.03.001. PubMed DOI PMC

Vāvere A.L., Lewis J.S. Cu-ATSM: A radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans. 2007;43:4893–4902. doi: 10.1039/b705989b. PubMed DOI

Farrawell N.E., Yerbury M.R., Plotkin S.S. CuATSM Protects Against the In Vitro Cytotoxicity of Wild-Type- Like Copper-Zinc Superoxide Dismutase Mutants but not Mutants That Disrupt Metal Binding. ACS Chem. Neurosci. 2019;10:1555–1564. doi: 10.1021/acschemneuro.8b00527. PubMed DOI

Roberts B.R., Lim N.K.H., McAllum E.J., Donnelly P.S., Hare D.J., Doble P.A., Turner B.J., Price K.A., Lim S.C., Paterson B.M., et al. Oral Treatment with CuII(atsm) Increases Mutant SOD1 In Vivo but Protects Motor Neurons and Improves the Phenotype of a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. J. Neurosci. 2014;34:8021–8031. doi: 10.1523/JNEUROSCI.4196-13.2014. PubMed DOI PMC

McAllum E.J., Lim N.K.-H., Hickey J.L., Paterson B.M., Donnelly P.S., Li Q.-X., Liddell J.R., Barnham K.J., White A.R., Crouch P.J. Therapeutic effects of CuII(atsm) in the SOD1-G37R mouse model of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2013;14:586–590. doi: 10.3109/21678421.2013.824000. PubMed DOI

McAllum E.J., Roberts B.R., Hickey J.L., Dang T.N., Grubman A., Donnelly P.S., Liddell J.R., White A.R., Crouch P.J. ZnII(atsm) is protective in amyotrophic lateral sclerosis model mice via a copper delivery mechanism. Neurobiol. Dis. 2015;81:20–24. doi: 10.1016/j.nbd.2015.02.023. PubMed DOI

Ermilova I.P., Ermilov V.B., Levy M., Ho E., Pereira C., Beckman J.S. Protection by dietary zinc in ALS mutant G93A SOD transgenic mice. Neurosci. Lett. 2005;379:42–46. doi: 10.1016/j.neulet.2004.12.045. PubMed DOI

Soon C.P., Donnelly P.S., Turner B.J., Hung L.W., Crouch P.J., Sherratt N.A., Tan J.-L., Lim N.K.-H., Lam L., Bica L., et al. Diacetylbis(N(4)-methylthiosemicarbazonato) Copper(II) (CuII(atsm)) Protects against Peroxynitrite-induced Nitrosative Damage and Prolongs Survival in Amyotrophic Lateral Sclerosis Mouse Model*. J. Biol. Chem. 2011;286:44035–44044. doi: 10.1074/jbc.M111.274407. PubMed DOI PMC

Kensler T.W., Wakabayashi N., Biswal S. Cell survival responses to environmental stresses via the Keap1- Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 2007;47:89–116. doi: 10.1146/annurev.pharmtox.46.120604.141046. PubMed DOI

Lau A., Villeneuve N.F., Sun Z., Wong P.K., Zhang D.D. Dual roles of Nrf2 in cancer. Pharmacol. Res. 2008;58:262–270. doi: 10.1016/j.phrs.2008.09.003. PubMed DOI PMC

Zhang D.D., Lo S.-C., Cross J.V., Templeton D.J., Hannink M. Keap1 Is a Redox-Regulated Substrate Adaptor Protein for a Cul3-Dependent Ubiquitin Ligase Complex. Mol. Cell. Biol. 2004;24:10941–10953. doi: 10.1128/MCB.24.24.10941-10953.2004. PubMed DOI PMC

McMahon M., Thomas N., Itoh K., Yamamoto M., Hayes J.D. Redox-regulated Turnover of Nrf2 Is Determined by at Least Two Separate Protein Domains, the Redox-sensitive Neh2 Degron and the Redox-insensitive Neh6 Degron. J. Biol. Chem. 2004;279:31556–31567. doi: 10.1074/jbc.M403061200. PubMed DOI

Tong K.I., Kobayashi A., Katsuoka F., Yamamoto M. Two-site substrate recognition model for the Keap1-Nrf2 system: A hinge and latch mechanism. Biol. Chem. 2006;387:1311–1320. doi: 10.1515/BC.2006.164. PubMed DOI

Kansanen E., Jyrkkänen H.-K., Levonen A.-L. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic. Biol. Med. 2012;52:973–982. doi: 10.1016/j.freeradbiomed.2011.11.038. PubMed DOI

Kirby J., Halligan E., Baptista M.J., Allen S., Heath P.R., Holden H., Barber S.C., Loynes C.A., Wood-Allum C.A., Lunec J., et al. Mutant SOD1 alters the motor neuronal transcriptome: Implications for familial ALS. Brain. 2005;128:1686–1706. doi: 10.1093/brain/awh503. PubMed DOI

Sarlette A., Krampfl K., Grothe C., Von Neuhoff N., Dengler R., Petri S. Nuclear Erythroid 2-Related Factor 2-Antioxidative Response Element Signaling Pathway in Motor Cortex and Spinal Cord in Amyotrophic Lateral Sclerosis. J. Neuropathol. Exp. Neurol. 2008;67:1055–1062. doi: 10.1097/NEN.0b013e31818b4906. PubMed DOI

Pehar M., Vargas M.R., Robinson K.M., Cassina P., Díaz-Amarilla P.J., Hagen T.M., Radi R., Barbeito L., Beckman J.S. Mitochondrial Superoxide Production and Nuclear Factor Erythroid 2-Related Factor 2 Activation in p75 Neurotrophin Receptor-Induced Motor Neuron Apoptosis. J. Neurosci. 2007;27:7777–7785. doi: 10.1523/JNEUROSCI.0823-07.2007. PubMed DOI PMC

Kraft A.D., Resch J.M., Johnson D.A., Johnson J.A. Activation of the Nrf2–ARE pathway in muscle and spinal cord during ALS-like pathology in mice expressing mutant SOD1. Exp. Neurol. 2007;207:107–117. doi: 10.1016/j.expneurol.2007.05.026. PubMed DOI PMC

Vargas M.R., Johnson D.A., Sirkis D.W., Messing A., Johnson J.A. Nrf2 Activation in Astrocytes Protects against Neurodegeneration in Mouse Models of Familial Amyotrophic Lateral Sclerosis. J. Neurosci. 2008;28:13574–13581. doi: 10.1523/JNEUROSCI.4099-08.2008. PubMed DOI PMC

Guo Y., Zhang Y., Wen D., Duan W., An T., Shi P., Wang J., Li Z., Chen X., Li C. The modest impact of transcription factor Nrf2 on the course of disease in an ALS animal model. Lab. Investig. 2013;93:825–833. doi: 10.1038/labinvest.2013.73. PubMed DOI

Dinkova-Kostova A.T., Holtzclaw W.D., Cole R.N., Itoh K., Wakabayashi N., Katoh Y., Yamamoto M., Talalay P. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA. 2002;99:11908–11913. doi: 10.1073/pnas.172398899. PubMed DOI PMC

Hong F., Freeman M.L., Liebler D.C. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem. Res. Toxicol. 2005;18:1917–1926. doi: 10.1021/tx0502138. PubMed DOI

Schachtele S.J., Hu S., Lokensgard J.R. Modulation of experimental herpes encephalitis-associated neurotoxicity through sulforaphane treatment. PLoS ONE. 2012;7:e36216. doi: 10.1371/journal.pone.0036216. PubMed DOI PMC

Steele M.L., Fuller S., Patel M., Kersaitis C., Ooi L., Münch G. Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells. Redox Biol. 2013;1:441–445. doi: 10.1016/j.redox.2013.08.006. PubMed DOI PMC

Hou T.-T., Yang H.-Y., Wang W., Wu Q.-Q., Tian Y.-R., Jia J.-P. Sulforaphane Inhibits the Generation of Amyloid-β Oligomer and Promotes Spatial Learning and Memory in Alzheimer’s Disease (PS1V97L) Transgenic Mice. J. Alzheimer’s Dis. 2018;62:1803–1813. doi: 10.3233/JAD-171110. PubMed DOI

Pauletti A., Terrone G., Shekh-Ahmad T., Salamone A., Ravizza T., Rizzi M., Pastore A., Pascente R., Liang L.-P., Villa B.R., et al. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain. 2019;142:e39. doi: 10.1093/brain/awz130. PubMed DOI PMC

Dwivedi S., Rajasekar N., Hanif K., Nath C., Shukla R. Sulforaphane Ameliorates Okadaic Acid-Induced Memory Impairment in Rats by Activating the Nrf2/HO-1 Antioxidant Pathway. Mol. Neurobiol. 2016;53:5310–5323. doi: 10.1007/s12035-015-9451-4. PubMed DOI

Angeloni C., Malaguti M., Rizzo B., Barbalace M.C., Fabbri D., Hrelia S. Neuroprotective Effect of Sulforaphane against Methylglyoxal Cytotoxicity. Chem. Res. Toxicol. 2015;28:1234–1245. doi: 10.1021/acs.chemrestox.5b00067. PubMed DOI

Sedlak T.W., Nucifora L.G., Koga M., Shaffer L.S., Higgs C., Tanaka T., Wang A.M., Coughlin J.M., Barker P.B., Fahey J.W., et al. Sulforaphane Augments Glutathione and Influences Brain Metabolites in Human Subjects: A Clinical Pilot Study. Mol. Neuropsychiatry. 2018;3:214–222. doi: 10.1159/000487639. PubMed DOI PMC

Mizuno K., Kume T., Muto C., Takada-Takatori Y., Izumi Y., Sugimoto H., Akaike A. Glutathione Biosynthesis via Activation of the Nuclear Factor E2–Related Factor 2 (Nrf2)—Antioxidant-Response Element (ARE) Pathway Is Essential for Neuroprotective Effects of Sulforaphane and 6-(Methylsulfinyl) Hexyl Isothiocyanate. J. Pharmacol. Sci. 2011;115:320–328. doi: 10.1254/jphs.10257FP. PubMed DOI

Jazwa A., Rojo A.I., Innamorato N.G., Hesse M., Fernández-Ruiz J., Cuadrado A. Pharmacological Targeting of the Transcription Factor Nrf2 at the Basal Ganglia Provides Disease Modifying Therapy for Experimental Parkinsonism. Antioxid. Redox Signal. 2011;14:2347–2360. doi: 10.1089/ars.2010.3731. PubMed DOI

Hong Y., Yan W., Chen S., Sun C.-R., Zhang J.-M. The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol. Sin. 2010;31:1421–1430. doi: 10.1038/aps.2010.101. PubMed DOI PMC

Yang Y., Luo L., Cai X., Fang Y., Wang J., Chen G., Yang J., Zhou Q., Sun X., Cheng X., et al. Nrf2 inhibits oxaliplatin-induced peripheral neuropathy via protection of mitochondrial function. Free Radic. Biol. Med. 2018;120:13–24. doi: 10.1016/j.freeradbiomed.2018.03.007. PubMed DOI

Bi M., Li Q., Guo D., Ding X., Bi W., Zhang Y., Zou Y. Sulphoraphane improves neuronal mitochondrial function in brain tissue in acute carbon monoxide poisoning rats. Basic Clin. Pharmacol. Toxicol. 2017;120:541–549. doi: 10.1111/bcpt.12728. PubMed DOI

Luis-García E.R., Limón-Pacheco J.H., Serrano-García N., Hernández-Pérez A.D., Pedraza-Chaverri J., Orozco-Ibarra M. Sulforaphane prevents quinolinic acid-induced mitochondrial dysfunction in rat striatum. J. Biochem. Mol. Toxicol. 2017;31:e21837. doi: 10.1002/jbt.21837. PubMed DOI

Innamorato N.G., Rojo A.I., García-Yagüe Á.J., Yamamoto M., De Ceballos M.L., Cuadrado A. The transcription factor Nrf2 is a therapeutic target against brain inflammation. J. Immunol. 2008;181:680–689. doi: 10.4049/jimmunol.181.1.680. PubMed DOI

Qin S., Yang C., Huang W., Du S., Mai H., Xiao J., Lü T. Sulforaphane attenuates microglia-mediated neuronal necroptosis through down-regulation of MAPK/NF-κB signaling pathways in LPS-activated BV-2 microglia. Pharmacol. Res. 2018;133:218–235. doi: 10.1016/j.phrs.2018.01.014. PubMed DOI

Jang M., Cho I.H. Sulforaphane ameliorates 3-nitropropionic acid-induced striatal toxicity by activating the keap1-Nrf2-ARE pathway and inhibiting the MAPKs and NF-κB pathways. Mol. Neurobiol. 2016;53:261935. doi: 10.1007/s12035-015-9230-2. PubMed DOI

Kumar A., Sharma S.S. Nrf2 and NF-κB Modulation by Sulforaphane Counteracts Multiple Manifestations of Diabetic Neuropathy in Rats and High Glucose-Induced Changes. Curr. Neurovasc. Res. 2011;8:294–304. doi: 10.2174/156720211798120972. PubMed DOI

Hernandez-Rabaza V., Cabrera-Pastor A., Taoro-Gonzalez L., Gonzalez-Usano A., Agusti A., Balzano T., Llansola M., Felipo V. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J. Neuroinflamm. 2016;13:83. doi: 10.1186/s12974-016-0549-z. PubMed DOI PMC

Maciel-Barón L.Á., Morales-Rosales S.L., Silva-Palacios A., Rodríguez-Barrera R.H., García-Álvarez J.A., Luna-López A., Pérez V.I., Torres C., Königsberg M. The secretory phenotype of senescent astrocytes isolated from Wistar newborn rats changes with anti-inflammatory drugs, but does not have a short-term effect on neuronal mitochondrial potential. Biogerontology. 2018;19:415–433. doi: 10.1007/s10522-018-9767-3. PubMed DOI

Kim J., Lee S., Choi B.-R., Yang H., Hwang Y., Park J.H.Y., LaFerla F.M., Han J.-S., Lee K.W., Kim J. Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways. Mol. Nutr. Food Res. 2017;61:1600194. doi: 10.1002/mnfr.201600194. PubMed DOI

Koh S.-H., Lee S.M., Kim H.Y., Lee K.-Y., Lee Y.J., Kim H.-T., Kim J., Kim M.-H., Hwang M.S., Song C., et al. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci. Lett. 2006;395:103–107. doi: 10.1016/j.neulet.2005.10.056. PubMed DOI

Wang R., Tu J., Zhang Q., Zhang X., Zhu Y., Ma W., Cheng C., Brann D.W., Yang F. Genistein attenuates ischemic oxidative damage and behavioral deficits via eNOS/Nrf2/HO-1 signaling. Hippocampus. 2013;23:634–647. doi: 10.1002/hipo.22126. PubMed DOI

Satoh T., Kosaka K., Itoh K., Kobayashi A., Yamamoto M., Shimojo Y., Kitajima C., Cui J., Kamins J., Okamoto S.-I., et al. Carnosic acid, acatechol-typeelectrophilic compound, protects neurons bothin vitroandin vivothrough activation of the Keap1/Nrf2 pathway viaS-alkylation of targeted cysteines on Keap1. J. Neurochem. 2008;104:1116–1131. doi: 10.1111/j.1471-4159.2007.05039.x. PubMed DOI PMC

Chen J.-H., Ou H.-P., Lin C.-Y., Lin F.-J., Wu C.-R., Chang S.-W., Tsai C.-W. Carnosic Acid Prevents 6-Hydroxydopamine-Induced Cell Death in SH-SY5Y Cells via Mediation of Glutathione Synthesis. Chem. Res. Toxicol. 2012;25:1893–1901. doi: 10.1021/tx300171u. PubMed DOI

Yang L., Calingasan N.Y., Thomas B., Chaturvedi R.K., Kiaei M., Wille E.J., Liby K.T., Williams C., Royce D., Risingsong R., et al. Neuroprotective Effects of the Triterpenoid, CDDO Methyl Amide, a Potent Inducer of Nrf2-Mediated Transcription. PLoS ONE. 2009;4:e5757. doi: 10.1371/journal.pone.0005757. PubMed DOI PMC

Neymotin A., Calingasan N.Y., Wille E., Naseri N., Petri S., Damiano M., Liby K.T., Risingsong R., Sporn M., Beal M.F., et al. Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis. Free Radic. Biol. Med. 2011;51:88–96. doi: 10.1016/j.freeradbiomed.2011.03.027. PubMed DOI PMC

Marklund S.L. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem. J. 1984;222:649–655. doi: 10.1042/bj2220649. PubMed DOI PMC

Chelikani P., Fita I., Loewen P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 2004;61:192–208. doi: 10.1007/s00018-003-3206-5. PubMed DOI PMC

Radi R., Turrens J., Chang L., Bush K., Crapo J., Freeman B. Detection of catalase in rat heart mitochondria. J. Biol. Chem. 1991;266:22028–22034. doi: 10.1016/S0021-9258(18)54740-2. PubMed DOI

Nandi A., Yan L.-J., Jana C.K., Das N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Med. Cell. Longev. 2019;2019:1–19. doi: 10.1155/2019/9613090. PubMed DOI PMC

Singhal A.B., Morris V.B., Labhasetwar V., Ghorpade A. Nanoparticle-mediated catalase delivery protects human neurons from oxidative stress. Cell Death Dis. 2013;4:e903. doi: 10.1038/cddis.2013.362. PubMed DOI PMC

Dixon S.J., Patel D.N., Welsch M., Skouta R., Lee E.D., Hayano M., Thomas A.G., Gleason C.E., Tatonetti N.P., Slusher B.S., et al. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife. 2014;3:e02523. doi: 10.7554/eLife.02523. PubMed DOI PMC

Reinholz M.M., Merkle C.M., Poduslo J.F. Therapeutic benefits of putrescine-modified catalase in a transgenic mouse model of familial amyotrophic lateral sclerosis. Exp. Neurol. 1999;159:204–216. doi: 10.1006/exnr.1999.7142. PubMed DOI

Matouskova M., Ruttkay-Nedecký B., Kizek R. Antioxidační enzymy-biochemické markery oxidačního stresu. J. Met. Nanotechnol. 2014;1:53–56.

Kryukov G.V., Castellano S., Novoselov S.V., Lobanov A.V., Zehtab O., Guigó R., Gladyshev V.N. Characterization of mammalian selenoproteomes. Science. 2003;300:1439–1443. doi: 10.1126/science.1083516. PubMed DOI

Liang H., Ran Q., Jang Y.C., Holstein D., Lechleiter J., McDonald-Marsh T., Musatov A., Song W., Van Remmen H., Richardson A. Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria. Free Radic. Biol. Med. 2009;47:312–320. doi: 10.1016/j.freeradbiomed.2009.05.012. PubMed DOI PMC

Winterbourn C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicol. Lett. 1995;82–83:969–974. doi: 10.1016/0378-4274(95)03532-X. PubMed DOI

Aisen P., Enns C., Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol. 2001;33:940–959. doi: 10.1016/S1357-2725(01)00063-2. PubMed DOI

Yang W.S., SriRamaratnam R., Welsch M.E., Shimada K., Skouta R., Viswanathan V.S., Cheah J.H., Clemons P.A., Shamji A.F., Clish C.B., et al. Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell. 2014;156:317–331. doi: 10.1016/j.cell.2013.12.010. PubMed DOI PMC

Johnson W.M., Wilson-Delfosse A.L., Mieyal J.J. Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases. Nutrients. 2012;4:1399–1440. doi: 10.3390/nu4101399. PubMed DOI PMC

Chen L., Hambright W.S., Na R., Ran Q. Ablation of the Ferroptosis Inhibitor Glutathione Peroxidase 4 in Neurons Results in Rapid Motor Neuron Degeneration and Paralysis. J. Biol. Chem. 2015;290:28097–28106. doi: 10.1074/jbc.M115.680090. PubMed DOI PMC

Carlson B.A., Tobe R., Yefremova E., Tsuji P.A., Hoffmann V.J., Schweizer U., Gladyshev V.N., Hatfield D.L., Conrad M. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 2016;9:22–31. doi: 10.1016/j.redox.2016.05.003. PubMed DOI PMC

Ulatowski L.M., Manor D. Vitamin E and neurodegeneration. Neurobiol. Dis. 2015;84:78–83. doi: 10.1016/j.nbd.2015.04.002. PubMed DOI

Kose T., Vera-Aviles M., Sharp P.A., Latunde-Dada G.O. Curcumin and (−)- Epigallocatechin-3-Gallate Protect Murine MIN6 Pancreatic Beta-Cells Against Iron Toxicity and Erastin-Induced Ferroptosis. Pharmaceuticals. 2019;12:26. doi: 10.3390/ph12010026. PubMed DOI PMC

Štětkářová I., Matěj R., Ehler E. Nové poznatky v dia­gnostice a léčbě amyotrofické laterální sklerózy. Česká Slov. Neurol. Neurochir. 2018;81:546–554. doi: 10.14735/amcsnn2018546. DOI

Miller T., Cudkowicz M., Shaw P.J., Andersen P.M., Atassi N., Bucelli R.C., Genge A., Glass J., Ladha S., Ludolph A.L., et al. Phase 1–2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N. Engl. J. Med. 2020;383:109–119. doi: 10.1056/NEJMoa2003715. PubMed DOI

Paganoni S., Macklin E.A., Hendrix S., Berry J.D., Elliott M.A., Maiser S., Karam C., Caress J.B., Owegi M.A., Quick A., et al. Trial of sodium phenylbutyrate-taurursodiol for amyotrophic lateral sclerosis. N. Engl. J. Med. 2020;383:919–930. doi: 10.1056/NEJMoa1916945. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...