• This record comes from PubMed

Plant Prebiotics and Their Role in the Amelioration of Diseases

. 2021 Mar 16 ; 11 (3) : . [epub] 20210316

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Prebiotics are either natural or synthetic non-digestible (non-)carbohydrate substances that boost the proliferation of gut microbes. Undigested fructooligosaccharides in the large intestine are utilised by the beneficial microorganisms for the synthesis of short-chain fatty acids for their own growth. Although various food products are now recognized as having prebiotic properties, several others, such as almonds, artichoke, barley, chia seeds, chicory, dandelion greens, flaxseeds, garlic, and oats, are being explored and used as functional foods. Considering the benefits of these prebiotics in mineral absorption, metabolite production, gut microbiota modulation, and in various diseases such as diabetes, allergy, metabolic disorders, and necrotising enterocolitis, increasing attention has been focused on their applications in both food and pharmaceutical industries, although some of these food products are actually used as food supplements. This review aims to highlight the potential and need of these prebiotics in the diet and also discusses data related to the distinct types, sources, modes of action, and health benefits.

See more in PubMed

Lockyer S., Stanner S. Prebiotics—An added benefit of some fiber types. Nutr. Bull. 2019;44:74–91. doi: 10.1111/nbu.12366. DOI

Mohr A.E., Jäger R., Carpenter K.C., Kerksick C.M., Purpura M., Townsend J.R., West N.P., Black K., Gleeson M., Pyne D.B., et al. The athletic gut microbiota. J. Int. Soc. Sports Nutr. 2020;17:1–33. doi: 10.1186/s12970-020-00353-w. PubMed DOI PMC

Yadav S., Jha R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol. 2019;10:1–11. doi: 10.1186/s40104-018-0310-9. PubMed DOI PMC

Davani-Davari D., Negahdaripour M., Karimzadeh I., Seifan M., Mohkam M., Masoumi S.J., Berenjian A., Ghasemi Y. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8:92. doi: 10.3390/foods8030092. PubMed DOI PMC

Khangwal I., Shukla P. Prospecting prebiotics, innovative evaluation methods, and their health applications: A review. 3 Biotech. 2019;9:1–7. doi: 10.1007/s13205-019-1716-6. PubMed DOI PMC

Rolim P.M. Development of prebiotic food products and health benefits. Food Sci. Technol. 2015;35:3–10. doi: 10.1590/1678-457X.6546. DOI

Al-Sheraji S.H., Ismail A., Manap M.Y., Mustafa S., Yusof R.M., Hassan F.A. Prebiotics as functional foods: A review. J. Funct. Foods. 2013;5:1542–1553. doi: 10.1016/j.jff.2013.08.009. DOI

Gibson G.R., Roberfroid M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995;125:1401–1412. doi: 10.1093/jn/125.6.1401. PubMed DOI

Gibson G.R., Probert H.M., Van Loo J., Rastall R.A., Roberfroid M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004;17:259–275. doi: 10.1079/NRR200479. PubMed DOI

Gibson G.R., Scott K.P., Rastall R.A., Tuohy K.M., Hotchkiss A., Dubert-Ferrandon A., Gareau M., Murphy E.F., Saulnier D., Loh G., et al. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull. Funct. Foods. 2010;7:1–19. doi: 10.1616/1476-2137.15880. DOI

Bindels L.B., Delzenne N.M., Cani P., Walter J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2015;12:303–310. doi: 10.1038/nrgastro.2015.47. PubMed DOI

Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., Scott K., Stanton C., Swanson K.S., Cani P.D., et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017;14:491–502. doi: 10.1038/nrgastro.2017.75. PubMed DOI

Yang F., Wei J.-D., Lu Y.-F., Sun Y.-L., Wang Q., Zhang R.-L. Galacto-oligosaccharides modulate gut microbiota dysbiosis and intestinal permeability in rats with alcohol withdrawal syndrome. J. Funct. Foods. 2019;60:103423. doi: 10.1016/j.jff.2019.103423. DOI

Zeng J., Song M., Jia T., Gao H., Zhang R., Jiang J. Immunomodulatory influences of Sialylated lactuloses in mice. Biochem. Biophys. Res. Commun. 2019;514:351–357. doi: 10.1016/j.bbrc.2019.04.157. PubMed DOI

Xavier-Santos D., Bedani R., Perego P., Converti A., Saad S.L. acidophilus La-5, fructo-oligosaccharides and inulin may improve sensory acceptance and texture profile of a synbiotic diet mousse. LWT. 2019;105:329–335. doi: 10.1016/j.lwt.2019.02.011. DOI

Dos Santos D.X., Casazza A.A., Aliakbarian B., Bedani R., Saad S.M.I., Perego P. Improved probiotic survival to in vitro gastrointestinal stress in a mousse containing Lactobacillus acidophilus La-5 microencapsulated with inulin by spray drying. LWT. 2019;99:404–410. doi: 10.1016/j.lwt.2018.10.010. DOI

Xavier-Santos D., Bedani R., Lima E.D., Saad S.M.I. Impact of probiotics and prebiotics targeting metabolic syndrome. J. Funct. Foods. 2020;64:103666. doi: 10.1016/j.jff.2019.103666. DOI

Martinez R.C.R., Bedani R., Saad S.M.I. Scientific evidence for health effects attributed to the consumption of probiotics and prebiotics: An update for current perspectives and future challenges. Br. J. Nutr. 2015;114:1993–2015. doi: 10.1017/S0007114515003864. PubMed DOI

Shortt C., Hasselwander O., Meynier A., Nauta A., Fernández E.N., Putz P., Rowland I., Swann J., Türk J., Vermeiren J., et al. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur. J. Nutr. 2017;57:25–49. doi: 10.1007/s00394-017-1546-4. PubMed DOI PMC

Slavin J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients. 2013;5:1417–1435. doi: 10.3390/nu5041417. PubMed DOI PMC

Ashley J.M., Jarvis W.T. Position of the American Dietetic Association: Health implications of dietary fiber. J. Am. Diet. Assoc. 2008;108:1716–1731. doi: 10.1016/j.jada.2008.08.007. PubMed DOI

Food and Drug Administration (FDA) Food Labelling: Revision of the Nutrition and Supplement Facts Label 21 CFR 101. Food and Drug Administration; Silver Spring, MD, USA: 2016.

Guarino M.P.L., Altomare A., Emerenziani S., Di Rosa C., Ribolsi M., Balestrieri P., Iovino P., Rocchi G., Cicala M. Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults. Nutrients. 2020;12:1037. doi: 10.3390/nu12041037. PubMed DOI PMC

Howlett J.F., Betteridge V.A., Champ M., Craig S.A., Méheust A., Jones J.M. The definition of dietary fiber—Discussions at the Ninth Vahouny Fiber Symposium: Building scientific agreement. Food Nutr. Res. 2010;54 doi: 10.3402/fnr.v54i0.5750. PubMed DOI PMC

Alimentarius C. Guidelines on Nutrition Labelling CAC/GL 2-1985 as Last Amended 2010. FAO; Rome, Italy: 2010.

Dayib M., Larson J., Slavin J. Dietary fibers reduce obesity-related disorders. Curr. Opin. Clin. Nutr. Metab. Care. 2020;23:445–450. doi: 10.1097/MCO.0000000000000696. PubMed DOI

Swanson K.S., de Vos W.M., Martens E.C., Gilbert J.A., Menon R.S., Soto-Vaca A., Hautvast J., Meyer P.D., Borewicz K., Vaughan E.E., et al. Effect of fructans, prebiotics and fibers on the human gut microbiome assessed by 16S rRNA-based ap-proaches: A review. Benef. Microbes. 2020;11:101–129. doi: 10.3920/BM2019.0082. PubMed DOI

Dashtdar M., Kardi K. Benefits of gum arabic, for a solitary kidney under adverse conditions: A case study. Chin. Med. Cult. 2018;1:88. doi: 10.4103/CMAC.CMAC_22_18. DOI

Presti A.L., Zorzi F., Del Chierico F., Altomare A., Cocca S., Avola A., De Biasio F., Russo A., Cella E., Reddel S., et al. Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease. Front. Microbiol. 2019;10:1655. doi: 10.3389/fmicb.2019.01655. PubMed DOI PMC

Roberfroid M., Gibson G.R., Hoyles L., McCartney A.L., Rastall R., Rowland I., Wolvers D., Watzl B., Szajewska H., Stahl B., et al. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 2010;104:S1–S63. doi: 10.1017/S0007114510003363. PubMed DOI

Besten G.D., van Eunen K., Groen A.K., Venema K., Reijngoud D.-J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013;54:2325–2340. doi: 10.1194/jlr.R036012. PubMed DOI PMC

Hiel S., Bindels L.B., Pachikian B.D., Kalala G., Broers V., Zamariola G., Chang B.P., Kambashi B., Rodriguez J., Cani P.D., et al. Effects of a diet based on inulin-rich vegetables on gut health and nutritional behavior in healthy humans. Am. J. Clin. Nutr. 2019;109:1683–1695. doi: 10.1093/ajcn/nqz001. PubMed DOI PMC

Cantu-Jungles T.M., Hamaker B.R. New view on dietary fiber selection for predictable shifts in gut microbiota. mBio. 2020;11 doi: 10.1128/mBio.02179-19. PubMed DOI PMC

Ibrahim S., Hayek S., Song D. Recent application of probiotics in food and agricultural science. In: Rigobelo E.C., editor. Probiotics. IntechOpen; London, UK: 2012.

Bali V., Panesar P.S., Bera M.B., Panesar R. Fructo-oligosaccharides: Production, purification and potential applications. Crit. Rev. Food Sci. Nutr. 2015;55:1475–1490. doi: 10.1080/10408398.2012.694084. PubMed DOI

Khanvilkar S.S., Arya S.S. Fructooligosaccharides: Applications and health benefits. Agro FOOD Ind. Hi Tech. 2015;26:6.

Aqil F., Munagala R., Agrawal A.K., Gupta R. Anticancer Phytocompounds: Experimental and Clinical Updates. Elsevier Inc.; Amsterdam, The Netherlands: 2018.

Alander M., Mättö J., Kneifel W., Johansson M., Kögler B., Crittenden R., Mattila-Sandholm T., Saarela M. Effect of galacto-oligosaccharide supplementation on human faecal microflora and on survival and persistence of Bifidobacterium lactis Bb-12 in the gastrointestinal tract. Int. Dairy J. 2001;11:817–825. doi: 10.1016/S0958-6946(01)00100-5. DOI

Mohanty D., Misra S., Mohapatra S., Sahu P.S. Prebiotics and synbiotics: Recent concepts in nutrition. Food Biosci. 2018;26:152–160. doi: 10.1016/j.fbio.2018.10.008. DOI

Lecerf J.-M., Dépeint F., Clerc E., Dugenet Y., Niamba C.N., Rhazi L., Cayzeele A., Abdelnour G., Jaruga A., Younes H., et al. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br. J. Nutr. 2012;108:1847–1858. doi: 10.1017/S0007114511007252. PubMed DOI

Patel S., Goyal A. Functional oligosaccharides: Production, properties and applications. World J. Microbiol. Biotechnol. 2011;27:1119–1128. doi: 10.1007/s11274-010-0558-5. DOI

Sorndech W., Na Nakorn K., Tongta S., Blennow A. Isomalto-oligosaccharides: Recent insights in production technology and their use for food and medical applications. LWT. 2018;95:135–142. doi: 10.1016/j.lwt.2018.04.098. DOI

Franco-Robles E., López M.G. Implication of Fructans in health: Immunomodulatory and antioxidant mechanisms. Sci. World J. 2015;2015:1–15. doi: 10.1155/2015/289267. PubMed DOI PMC

Mudgil D., Barak S., Patel A., Shah N. Partially hydrolyzed guar gum as a potential prebiotic source. Int. J. Biol. Macromol. 2018;112:207–210. doi: 10.1016/j.ijbiomac.2018.01.164. PubMed DOI

Chung W.S.F., Meijerink M., Zeuner B., Holck J., Louis P., Meyer A.S., Wells J.M., Flint H.J., Duncan S.H. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol. Ecol. 2017;93:127. doi: 10.1093/femsec/fix127. PubMed DOI

Louis P., Flint H.J., Michel C. How to manipulate the microbiota: Prebiotics. In: Crusio W.E., Dong H., Lambris J.D., Radeke H.H., Rezaei N., editors. Advances in Experimental Medicine and Biology. Volume 902. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2016. pp. 119–142. PubMed

Kumar C.G., Sripada S., Poornachandra Y. Status and future prospects of fructooligosaccharides as nutraceuticals. In: Grumezescu A.M., Holban A.M., editors. Role of Materials Science in Food Bioengineering. Elsevier BV; Amsterdam, The Netherlands: 2018. pp. 451–503.

Sabater-Molina M., Larqué E., Torrella F., Zamora S. Dietary fructooligosaccharides and potential benefits on health. J. Physiol. Biochem. 2009;65:315–328. doi: 10.1007/BF03180584. PubMed DOI

Sánchez-Martínez M.J., Soto-Jover S., Antolinos V., Martínez-Hernández G.B., López-Gómez A. Manufacturing of short-chain fructooligosaccharides: From laboratory to industrial scale. Food Eng. Rev. 2020;12:149–172. doi: 10.1007/s12393-020-09209-0. DOI

De La Rosa O., Flores-Gallegos A.C., Muñíz-Marquez D., Nobre C., Contreras-Esquivel J.C., Aguilar C.N. Fructooligosaccharides production from agro-wastes as alternative low-cost source. Trends Food Sci. Technol. 2019;91:139–146. doi: 10.1016/j.tifs.2019.06.013. DOI

Martin B.R., Braun M.M., Wigertz K., Bryant R., Zhao Y., Lee W., Kempa-Steczko A., Weaver C.M. Fructo-oligosaccharides and calcium absorption and retention in adolescent girls. J. Am. Coll. Nutr. 2010;29:382–386. doi: 10.1080/07315724.2010.10719855. PubMed DOI

Flores-Maltos D.A., Mussatto S.I., Contreras-Esquivel J.C., Rodríguez-Herrera R., Teixeira J.A., Aguilar C.N. Biotechnological production and application of fructooligosaccharides. Crit. Rev. Biotechnol. 2016;36:259–267. doi: 10.3109/07388551.2014.953443. PubMed DOI

Akkerman R., Faas M.M., De Vos P. Non-digestible carbohydrates in infant formula as substitution for human milk oligosaccharide functions: Effects on microbiota and gut maturation. Crit. Rev. Food Sci. Nutr. 2019;59:1486–1497. doi: 10.1080/10408398.2017.1414030. PubMed DOI

Mutanda T., Mokoena M.P., Olaniran A.O., Wilhelmi B.S., Whiteley C.G. Microbial enzymatic production and applications of short-chain fructooligosaccharides and inulooligosaccharides: Recent advances and current perspectives. J. Ind. Microbiol. Biotechnol. 2014;41:893–906. doi: 10.1007/s10295-014-1452-1. PubMed DOI

Tokunaga T. Novel physiological function of fructooligosaccharides. BioFactors. 2004;21:89–94. doi: 10.1002/biof.552210117. PubMed DOI

Singh J.J., Jadaun J.S., Narnoliya L.K., Pandey A. Prebiotic oligosaccharides: Special focus on fructooligosaccharides, its biosynthesis and bioactivity. Appl. Biochem. Biotechnol. 2017;183:613–635. doi: 10.1007/s12010-017-2605-2. PubMed DOI

Michel M.R., Rodríguez-Jasso R.M., Aguilar C.N., Gonzalez-Herrera S.M., Flores-Gallegos A.C., Rodríguez-Herrera R. Fructosyltransferase sources, production, and applications for prebiotics production. In: Rao V., Rao L., editors. Probiotics and Prebiotics in Human Nutrition and Health. InTech; London, UK: 2016.

Vallejo-García L.C., Rodríguez-Alegría M.E., Munguía A.L. Enzymatic process yielding a diversity of inulin-type microbial fructooligosaccharides. J. Agric. Food Chem. 2019;67:10392–10400. doi: 10.1021/acs.jafc.9b03782. PubMed DOI

Monsan P.F., Ouarné F. Oligosaccharides derived from sucrose. In: Rastall R.A., Charalampopoulos D., editors. Prebiotics and Probiotics Science and Technology. Springer International Publishing; Geneva, Switzerland: 2009. pp. 293–336.

Lateef A., Oloke J., Gueguim-Kana E., Raimi O. Production of fructosyltransferase by a local isolate of Aspergillus nigerin both submerged and solid substrate media. Acta Aliment. 2012;41:100–117. doi: 10.1556/AAlim.41.2012.1.12. DOI

Martins G.N., Ureta M.M., Tymczyszyn E.E., Castilho P.C., Gomez-Zavaglia A. Technological aspects of the production of fructo and galacto-oligosaccharides. Enzymatic synthesis and hydrolysis. Front. Nutr. 2019;6:78. doi: 10.3389/fnut.2019.00078. PubMed DOI PMC

Padilla B., Frau F., Ruiz-Matute A.I., Montilla A., Belloch C., Manzanares P., Corzo N. Production of lactulose oligosaccharides by isomerisation of transgalactosylated cheese whey permeate obtained by β-galactosidases from dairy Kluyveromyces. J. Dairy Res. 2015;82:356–364. doi: 10.1017/S0022029915000217. PubMed DOI

Torres D.P., Gonçalves M.D.P.F., Teixeira J.A., Rodrigues L.R. Galacto-oligosaccharides: Production, properties, applications, and significance as prebiotics. Compr. Rev. Food Sci. Food Saf. 2010;9:438–454. doi: 10.1111/j.1541-4337.2010.00119.x. PubMed DOI

Palmacci E.R., Plante O.J., Hewitt M.C., Seeberger P.H. Automated synthesis of oligosaccharides. Helv. Chim. Acta. 2003;86:3975–3990. doi: 10.1002/hlca.200390331. DOI

Macfarlane G.T., Steed H., Macfarlane S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol. 2007;104:305–344. doi: 10.1111/j.1365-2672.2007.03520.x. PubMed DOI

O’Callaghan A., van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 2016;7:925. PubMed PMC

Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G.A.D., Gasbarrini A., Mele M.C. What is the healthy gut microbiota composition? A Changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7:14. doi: 10.3390/microorganisms7010014. PubMed DOI PMC

Marín-Manzano M.C., Abecia L., Hernández-Hernández O., Sanz M.L., Montilla A., Olano A., Rubio L.A., Moreno F.J., Clemente A. Galacto-oligosaccharides derived from lactulose exert a selective stimulation on the growth of bifidobacterium animalis in the large intestine of growing rats. J. Agric. Food Chem. 2013;61:7560–7567. doi: 10.1021/jf402218z. PubMed DOI

Palcic M.M. Biocatalytic synthesis of oligosaccharides. Curr. Opin. Biotechnol. 1999;10:616–624. doi: 10.1016/S0958-1669(99)00044-0. PubMed DOI

Gänzle M.G. Enzymatic synthesis of galacto-oligosaccharides and other lactose derivatives (hetero-oligosaccharides) from lactose. Int. Dairy J. 2012;22:116–122. doi: 10.1016/j.idairyj.2011.06.010. DOI

Weijers C.A., Franssen M.C., Visser G.M. Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol. Adv. 2008;26:436–456. doi: 10.1016/j.biotechadv.2008.05.001. PubMed DOI

Oliveira D.L., Wilbey R.A., Grandison A.S., Roseiro L.B. Milk oligosaccharides: A review. Int. J. Dairy Technol. 2015;68:305–321. doi: 10.1111/1471-0307.12209. DOI

Zeuner B., Teze D., Muschiol J., Meyer A.S. Synthesis of human milk oligosaccharides: Protein engineering strategies for improved enzymatic transglycosylation. Molecules. 2019;24:2033. doi: 10.3390/molecules24112033. PubMed DOI PMC

Cheng W., Lu J., Lin W., Wei X., Li H., Zhao X., Jiang A., Yuan J. Effects of a galacto-oligosaccharide-rich diet on fecal microbiota and metabolite profiles in mice. Food Funct. 2018;9:1612–1620. doi: 10.1039/C7FO01720K. PubMed DOI

Karlsson E.N., Schmitz E., Linares-Pastén J.A., Adlercreutz P. Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties. Appl. Microbiol. Biotechnol. 2018;102:9081–9088. doi: 10.1007/s00253-018-9343-4. PubMed DOI PMC

Jain I., Kumar V., Satyanarayana T. Xylooligosaccharides: An economical prebiotic from agroresidues and their health benefits. Indian J. Exp. Boil. 2015;53:131–142. PubMed

Zúñiga M., Monedero V., Yebra M.J. Utilization of host-derived glycans by intestinal lactobacillus and bifidobacterium species. Front. Microbiol. 2018;9:1917. doi: 10.3389/fmicb.2018.01917. PubMed DOI PMC

Markowiak P., Ślizewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9:1021. doi: 10.3390/nu9091021. PubMed DOI PMC

Childs C.E., Röytiö H., Alhoniemi E., Fekete A.A., Forssten S.D., Hudjec N., Ni Lim Y., Steger C.J., Yaqoob P., Tuohy K.M., et al. Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: A double-blind, placebo-controlled, randomised, factorial cross-over study. Br. J. Nutr. 2014;111:1945–1956. doi: 10.1017/S0007114513004261. PubMed DOI

Qiang X., YongLie C., QianBing W. Health benefit application of functional oligosaccharides. Carbohydr. Polym. 2009;77:435–441. doi: 10.1016/j.carbpol.2009.03.016. DOI

Lin S.-H., Chou L.-M., Chien Y.-W., Chang J.-S., Lin C.-I. Prebiotic Effects of xylooligosaccharides on the improvement of microbiota balance in human subjects. Gastroenterol. Res. Pract. 2016;2016:1–6. doi: 10.1155/2016/5789232. PubMed DOI PMC

Bosscher D. Fructan Prebiotics Derived from Inulin. In: Rastall R.A., Charalampopoulos D., editors. Prebiotics and Probiotics Science and Technology. Springer International Publishing; Geneva, Switzerland: 2009. pp. 163–205.

Ende W.V.D. Novel fructan exohydrolase: Unique properties and applications for human health. J. Exp. Bot. 2018;69:4227–4231. doi: 10.1093/jxb/ery268. PubMed DOI PMC

Delzenne N.M., Kok N. Effects of fructans-type prebiotics on lipid metabolism. Am. J. Clin. Nutr. 2001;73:456s–458s. doi: 10.1093/ajcn/73.2.456s. PubMed DOI

Meyer T.S.M., Miguel A.S.M., Fernández D.E.R., Ortiz G.M.D. Biotechnological production of oligosaccharides–Applications in the food industry. In: Eissa A.A., editor. Food Production and Industry. InTech; London, UK: 2015.

Gänzle M.G., Follador R. Metabolism of oligosaccharides and starch in lactobacilli: A review. Front. Microbiol. 2012;3:340. doi: 10.3389/fmicb.2012.00340. PubMed DOI PMC

Singh D.P., Singh J., Boparai R.K., Zhu J., Mantri S., Khare P., Khardori R., Kondepudi K.K., Chopra K., Bishnoi M. Isomalto-oligosaccharides, a prebiotic, functionally augment green tea effects against high fat diet-induced metabolic alterations via preventing gut dysbacteriosis in mice. Pharm. Res. 2017;123:103–113. doi: 10.1016/j.phrs.2017.06.015. PubMed DOI

Švejstil R., Musilová S., Rada V. Raffinose-series oligosaccharides in soybean products. Sci. Agric. Bohem. 2015;46:73–77. doi: 10.1515/sab-2015-0019. DOI

González-Rodríguez I., Ruiz L., Gueimonde M., Margolles A., Sánchez B. Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. Fems Microbiol. Lett. 2012;340:1–10. doi: 10.1111/1574-6968.12056. PubMed DOI

Niittynen L., Kajander K., Korpela R. Galacto-oligosaccharides and bowel function. Scand. J. Food Nutr. 2007;51:62–66. doi: 10.1080/17482970701414596. DOI

Battistini C., Gullón B., Ichimura E.S., Gomes A.M.P., Ribeiro E.P., Kunigk L., Moreira J.U.V., Jurkiewicz C. Development and characterization of an innovative synbiotic fermented beverage based on vegetable soybean. Braz. J. Microbiol. 2018;49:303–309. doi: 10.1016/j.bjm.2017.08.006. PubMed DOI PMC

Manderson K., Pinart M., Tuohy K.M., Grace W.E., Hotchkiss A.T., Widmer W., Yadhav M.P., Gibson G.R., Rastall R.A. In vitro determination of prebiotic properties of oligosaccharides derived from an orange juice manufacturing by-product stream. Appl. Environ. Microbiol. 2005;71:8383–8389. doi: 10.1128/AEM.71.12.8383-8389.2005. PubMed DOI PMC

Pérez-López E., Cela D., Costabile A., Mateos-Aparicio I., Rupérez P. In vitro fermentability and prebiotic potential of soyabean Okara by human faecal microbiota. Br. J. Nutr. 2016;116:1116–1124. doi: 10.1017/S0007114516002816. PubMed DOI

Carlson J., Esparza J., Swan J., Taussig D., Combs J., Slavin J. In vitro analysis of partially hydrolyzed guar gum fermentation differences between six individuals. Food Funct. 2016;7:1833–1838. doi: 10.1039/C5FO01232E. PubMed DOI

Thombare N., Jha U., Mishra S., Siddiqui M. Guar gum as a promising starting material for diverse applications: A review. Int. J. Biol. Macromol. 2016;88:361–372. doi: 10.1016/j.ijbiomac.2016.04.001. PubMed DOI

Carlson J.L., Erickson J.M., Lloyd B.B., Slavin J.L. Health effects and sources of prebiotic dietary fiber. Curr. Dev. Nutr. 2018;2:nzy005. doi: 10.1093/cdn/nzy005. PubMed DOI PMC

Sharma G., Sharma S., Kumar A., Al-Muhtaseb A.H., Naushad M., Ghfar A.A., Mola G.T., Stadler F.J. Guar gum and its composites as potential materials for diverse applications: A review. Carbohydr. Polym. 2018;199:534–545. doi: 10.1016/j.carbpol.2018.07.053. PubMed DOI

Reider S.J., Moosmang S., Tragust J., Trgovec-Greif L., Tragust S., Perschy L., Przysiecki N., Sturm S., Tilg H., Stuppner H., et al. Prebiotic effects of partially hydrolyzed guar gum on the composition and function of the human microbiota—Results from the PAGODA Trial. Nutrients. 2020;12:1257. doi: 10.3390/nu12051257. PubMed DOI PMC

Voragen A.G.J., Coenen G.-J., Verhoef R.P., Schols H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009;20:263–275. doi: 10.1007/s11224-009-9442-z. DOI

Yapo B.M. Pectic substances: From simple pectic polysaccharides to complex pectins—A new hypothetical model. Carbohydr. Polym. 2011;86:373–385. doi: 10.1016/j.carbpol.2011.05.065. DOI

Harholt J., Suttangkakul A., Scheller H.V. Biosynthesis of Pectin. Plant Physiol. 2010;153:384–395. doi: 10.1104/pp.110.156588. PubMed DOI PMC

Gawkowska D., Cybulska J., Zdunek A. Structure-related gelling of pectins and linking with other natural compounds: A Review. Polymers. 2018;10:762. doi: 10.3390/polym10070762. PubMed DOI PMC

Babbar N., Dejonghe W., Sforza S., Elst K. Enzymatic pectic oligosaccharides (POS) production from sugar beet pulp using response surface methodology. J. Food Sci. Technol. 2017;54:3707–3715. doi: 10.1007/s13197-017-2835-x. PubMed DOI PMC

Cano M.E., García-Martin A., Morales P.C., Wojtusik M., Santos V.E., Kovensky J., Ladero M. Production of oligosaccharides from agrofood wastes. Fermentation. 2020;6:31. doi: 10.3390/fermentation6010031. DOI

Larsen N., De Souza C.B., Krych L., Cahú T.B., Wiese M., Kot W., Hansen K.M., Blennow A., Venema K., Jespersen L. Potential of pectins to beneficially modulate the gut microbiota depends on their structural properties. Front. Microbiol. 2019;10:223. doi: 10.3389/fmicb.2019.00223. PubMed DOI PMC

Zaman S.A., Sarbini S.R. The potential of resistant starch as a prebiotic. Crit. Rev. Biotechnol. 2015;36:1–7. doi: 10.3109/07388551.2014.993590. PubMed DOI

Maier T.V., Lucio M., Lee L.H., Verberkmoes N.C., Brislawn C.J., Bernhardt J., Lamendella R., McDermott J.E., Bergeron N., Heinzmann S.S., et al. Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. mBio. 2017;8:e01343-17. doi: 10.1128/mBio.01343-17. PubMed DOI PMC

Kalmokoff M., Zwicker B., O’Hara M., Matias F., Green J., Shastri P., Green-Johnson J., Brooks S. Temporal change in the gut community of rats fed high amylose cornstarch is driven by endogenous urea rather than strictly on carbohydrate availability. J. Appl. Microbiol. 2013;114:1516–1528. doi: 10.1111/jam.12157. PubMed DOI

Zhu C.-L., Zhao X.-H. In vitro fermentation of a retrograded maize starch by healthy adult fecal extract and impacts of exogenous microorganisms on three acids production. Starch Stärke. 2012;65:330–337. doi: 10.1002/star.201200100. DOI

Tachon S., Zhou J., Keenan M., Martin R., Marco M.L. The intestinal microbiota in aged mice is modulated by dietary resistant starch and correlated with improvements in host responses. FEMS Microbiol. Ecol. 2012;83:299–309. doi: 10.1111/j.1574-6941.2012.01475.x. PubMed DOI

Al-Ghazzewi F.H., Khanna S., Tester R.F., Piggott J. The potential use of hydrolysed konjac glucomannan as a prebiotic. J. Sci. Food Agric. 2007;87:1758–1766. doi: 10.1002/jsfa.2919. DOI

Connolly M.L., Lovegrove J.A., Tuohy K.M. Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. J. Funct. Foods. 2010;2:219–224. doi: 10.1016/j.jff.2010.05.001. DOI

Chen H.-L., Cheng H.-C., Wu W.-T., Liu Y.-J., Liu S.-Y. Supplementation of Konjac glucomannan into a low-fiber chinese diet promoted bowel movement and improved colonic ecology in constipated adults: A placebo-controlled, diet-controlled trial. J. Am. Coll. Nutr. 2008;27:102–108. doi: 10.1080/07315724.2008.10719681. PubMed DOI

Chen H.-L., Cheng H.-C., Liu Y.-J., Liu S.-Y., Wu W.-T. Konjac acts as a natural laxative by increasing stool bulk and improving colonic ecology in healthy adults. Nutrients. 2006;22:1112–1119. doi: 10.1016/j.nut.2006.08.009. PubMed DOI

Harmayani E., Aprilia V., Marsono Y. Characterization of glucomannan from Amorphophallus oncophyllus and its prebiotic activity in vivo. Carbohydr. Polym. 2014;112:475–479. doi: 10.1016/j.carbpol.2014.06.019. PubMed DOI

Prado S.B.R.D., Castro-Alves V.C., Ferreira G.F., Fabi J.P. Ingestion of non-digestible carbohydrates from plant-source foods and decreased risk of colorectal cancer: A review on the biological effects and the mechanisms of action. Front. Nutr. 2019;6:72. doi: 10.3389/fnut.2019.00072. PubMed DOI PMC

Schütz K., Carle R., Schieber A. Taraxacum—A review on its phytochemical and pharmacological profile. J. Ethnopharmacol. 2006;107:313–323. doi: 10.1016/j.jep.2006.07.021. PubMed DOI

Sa`id A.M., Mustapha H., Mashi J., Muhammad Y., Abubakar S., Gadanya A. Nutritional and pharmacological potential of ethanol leaves extract of taraxacum officinale. Asian J. Biol. Sci. 2019;12:1–8. doi: 10.3923/ajbs.2019.1.8. DOI

Qureshi S., Adil S., El-Hack M.A., Alagawany M., Farag M. Beneficial uses of dandelion herb (Taraxacum officinale) in poultry nutrition. World’s Poult. Sci. J. 2017;73:591–602. doi: 10.1017/S0043933917000459. DOI

Mahboubi M., Mahboubi M. Hepatoprotection by dandelion (Taraxacum officinale) and mechanisms. Asian Pac. J. Trop. Biomed. 2020;10:1. doi: 10.4103/2221-1691.273081. DOI

Lis B., Olas B. Pro-health activity of dandelion (Taraxacum officinale L.) and its food products—History and present. J. Funct. Foods. 2019;59:40–48. doi: 10.1016/j.jff.2019.05.012. DOI

Fatima T., Bashir O., Naseer B., Zameer Hussain S., Tabasum Fatima C., Fatima T., Zameer Hussain S. Dandelion: Phytochemistry and clinical potential. J. Med. Plants Stud. 2018;6:198–202.

Ivanov I.G. Polyphenols Content and Antioxidant Activities of Taraxacum officinale F.H. Wigg (Dandelion) Leaves. [(accessed on 10 October 2020)];Int. J. Pharmacogn. Phytochem. Res. 2014 6:889–893. Available online: www.ijppr.com.

Trojanová I., Rada V., Kokoska L., Vlková E. The bifidogenic effect of Taraxacum officinale root. Fitoterapia. 2004;75:760–763. doi: 10.1016/j.fitote.2004.09.010. PubMed DOI

Joshi D., Roy S., Banerjee S. Prebiotics: A functional food in health and disease. In: MandaL S.C., Konishi T., Mandal V., editors. Natural Products and Drug Discovery: An Integrated Approach. Elsevier; Amsterdam, The Netherlands: 2018. pp. 507–523.

Devaraj E. Hepatoprotective properties of dandelion: Recent update. J. Appl. Pharm. Sci. 2016;6:202–205. doi: 10.7324/JAPS.2016.60429. DOI

Mudgil D., Barak S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int. J. Biol. Macromol. 2013;61:1–6. doi: 10.1016/j.ijbiomac.2013.06.044. PubMed DOI

Leroy G., Grongnet J.F., Mabeau S., Le Corre D., Baty-Julien C. Changes in inulin and soluble sugar concentration in artichokes (Cynara scolymus L.) during storage. J. Sci. Food Agric. 2010;90:1203–1209. doi: 10.1002/jsfa.3948. PubMed DOI

Vasudeva N., Das S., Sharma S. Cichorium intybus: A concise report on its ethnomedicinal, botanical, and phytopharmacological aspects. Drug Dev. Ther. 2016;7:1. doi: 10.4103/2394-6555.180157. DOI

Nwafor I.C., Shale K., Achilonu M.C. Chemical composition and nutritive benefits of chicory (Cichorium intybus) as an ideal complementary and/or alternative livestock feed supplement. Sci. World J. 2017;2017:1–11. doi: 10.1155/2017/7343928. PubMed DOI PMC

Abbas Z.K., Saggu S., Sakeran M.I., Zidan N., Rehman H., Ansari A.A. Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi J. Biol. Sci. 2015;22:322–326. doi: 10.1016/j.sjbs.2014.11.015. PubMed DOI PMC

El-Kholy W.M., Aamer R.A., Ali A.N.A. Utilization of inulin extracted from chicory (Cichorium intybus L.) roots to improve the properties of low-fat synbiotic yoghurt. Ann. Agric. Sci. 2020;65:59–67. doi: 10.1016/j.aoas.2020.02.002. DOI

Chikkerur J., Samanta A.K., Kolte A.P., Dhali A., Roy S. Production of short chain fructo-oligosaccharides from inulin of chicory root using fungal endoinulinase. Appl. Biochem. Biotechnol. 2019;191:695–715. doi: 10.1007/s12010-019-03215-7. PubMed DOI

Rodríguez-García J., Salvador A., Hernando I. Replacing fat and sugar with inulin in cakes: Bubble size distribution, physical and sensory properties. Food Bioprocess Technol. 2014;7:964–974. doi: 10.1007/s11947-013-1066-z. DOI

Kulczyński B., Kobus-Cisowska J., Taczanowski M., Kmiecik D., Gramza-Michałowska A. The chemical composition and nutritional value of chia seeds—Current state of knowledge. Nutrients. 2019;11:1242. doi: 10.3390/nu11061242. PubMed DOI PMC

Hrnčič M.K., Ivanovski M., Cör D., Knez Ž. Chia Seeds (Salvia Hispanica L.): An overview-phytochemical profile, isolation methods, and application. Molecules. 2020;25:11. doi: 10.3390/molecules25010011. PubMed DOI PMC

Santillán-Álvarez A., Dublán-García O., López-Martínez L.X., Quintero-Salazar B., Gómez-Oliván L.M., Díaz-Bandera D., Hernández-Navarro M.D. Effect of chia seed on physicochemical and sensory characteristics of common carp restructured as functional food. J. Food Sci. Eng. 2017;7 doi: 10.17265/2159-5828/2017.03.001. DOI

Imran M., Nadeem M., Manzoor M.F., Javed A., Ali Z., Akhtar M.N., Ali M., Hussain Y. Fatty acids characterization, oxidative perspectives and consumer acceptability of oil extracted from pre-treated chia (Salvia hispanica L.) seeds. Lipids Health Dis. 2016;15:162. doi: 10.1186/s12944-016-0329-x. PubMed DOI PMC

Tamargo A., Cueva C., Laguna L., Moreno-Arribas M., Muñoz L.A. Understanding the impact of chia seed mucilage on human gut microbiota by using the dynamic gastrointestinal model simgi. J. Funct. Foods. 2018;50:104–111. doi: 10.1016/j.jff.2018.09.028. DOI

Da Silva B.P., Kolba N., Martino H.S.D., Hart J., Tako E. Soluble extracts from chia seed (Salvia hispanica L.) affect brush border membrane functionality, morphology and intestinal bacterial populations in vivo (Gallus gallus) Nutrients. 2019;11:2457. doi: 10.3390/nu11102457. PubMed DOI PMC

Bekheet S., Sota V. Biodiversity and medicinal uses of globe artichoke (Cynara scolymus L.) plant. J. Biodivers. Conserv. Bioresour. Manag. 2019;5:39–54. doi: 10.3329/jbcbm.v5i1.42184. DOI

Praznik W., Cieślik E., Filipiak-Florkiewicz A. Soluble dietary fibers in Jerusalem artichoke powders: Composition and ap-plication in bread. Nahrung Food. 2002;46:151–157. doi: 10.1002/1521-3803(20020501)46:3<151::AID-FOOD151>3.0.CO;2-4. PubMed DOI

Lombardo S., Pandino G., Mauromicale G. Minerals profile of two globe artichoke cultivars as affected by NPK fertilizer regimes. Food Res. Int. 2017;100:95–99. doi: 10.1016/j.foodres.2017.08.028. PubMed DOI

Van Hul M., Cani P.D. Targeting carbohydrates and polyphenols for a healthy microbiome and healthy weight. Curr. Nutr. Rep. 2019;8:307–316. doi: 10.1007/s13668-019-00281-5. PubMed DOI PMC

Pandey K.R., Naik S.R., Vakil B.V. Probiotics, prebiotics and synbiotics—A review. J. Food Sci. Technol. 2015;52:7577–7587. doi: 10.1007/s13197-015-1921-1. PubMed DOI PMC

Terpou A., Papadaki A., Lappa I.K., Kachrimanidou V., Bosnea L.A., Kopsahelis N. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients. 2019;11:1591. doi: 10.3390/nu11071591. PubMed DOI PMC

Mikaili P., Maadirad S., Moloudizargari M., Aghajanshakeri S., Sarahroodi S. Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iran. J. Basic Med. Sci. 2013;16:1031–1048. PubMed PMC

Zhang N., Huang X., Zeng Y., Wu X., Peng X. Study on prebiotic effectiveness of neutral garlic fructan in vitro. Food Sci. Hum. Wellness. 2013;2:119–123. doi: 10.1016/j.fshw.2013.07.001. DOI

Esfahlan A.J., Jamei R., Esfahlan R.J. The importance of almond (Prunus amygdalus L.) and its by-products. Food Chem. 2010;120:349–360. doi: 10.1016/j.foodchem.2009.09.063. DOI

Mandalari G., Tomaino A., Arcoraci T., Martorana M., Turco V.L., Cacciola F., Rich G., Bisignano C., Saija A., Dugo P., et al. Characterization of polyphenols, lipids and dietary fiber from almond skins (Amygdalus communis L.) J. Food Compos. Anal. 2010;23:166–174. doi: 10.1016/j.jfca.2009.08.015. DOI

Chen C.-Y., Lapsley K., Blumberg J. A nutrition and health perspective on almonds. J. Sci. Food Agric. 2006;86:2245–2250. doi: 10.1002/jsfa.2659. DOI

Chen C.-Y.O., Milbury P.E., Blumberg J.B. Polyphenols in almond skins after blanching modulate plasma biomarkers of oxidative stress in healthy humans. Antioxidants. 2019;8:95. doi: 10.3390/antiox8040095. PubMed DOI PMC

Mandalari G., Nuenopalop C., Bisignano G., Wickham M.S.J., Narbad A. Potential prebiotic properties of almond (Amygdalus communis L.) Seeds. Appl. Environ. Microbiol. 2008;74:4264–4270. doi: 10.1128/AEM.00739-08. PubMed DOI PMC

Liu Z., Lin X., Huang G., Zhang W., Rao P., Ni L. Prebiotic effects of almonds and almond skins on intestinal microbiota in healthy adult humans. Anaerobe. 2014;26:1–6. doi: 10.1016/j.anaerobe.2013.11.007. PubMed DOI

Liu Z., Wang W., Huang G., Zhang W., Ni L. In vitro and in vivo evaluation of the prebiotic effect of raw and roasted almonds (Prunus amygdalus) J. Sci. Food Agric. 2016;96:1836–1843. doi: 10.1002/jsfa.7604. PubMed DOI PMC

Goyal A., Sharma V., Upadhyay N., Gill S., Sihag M.K. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol. 2014;51:1633–1653. doi: 10.1007/s13197-013-1247-9. PubMed DOI PMC

Kajla P., Sharma A., Sood D.R. Flaxseed—A potential functional food source. J. Food Sci. Technol. 2015;52:1857–1871. doi: 10.1007/s13197-014-1293-y. PubMed DOI PMC

Dzuvor C.K.O., Taylor J.T., Acquah C., Pan S., Agyei D. Bioprocessing of functional ingredients from flaxseed. Molecules. 2018;23:2444. doi: 10.3390/molecules23102444. PubMed DOI PMC

Power K.A., Lepp D., Zarepoor L., Monk J.M., Wu W., Tsao R., Liu R. Dietary flaxseed modulates the colonic microenvironment in healthy C57Bl/6 male mice which may alter susceptibility to gut-associated diseases. J. Nutr. Biochem. 2016;28:61–69. doi: 10.1016/j.jnutbio.2015.09.028. PubMed DOI

Zhang X., Wang H., Yin P., Fan H., Sun L., Liu Y. Flaxseed oil ameliorates alcoholic liver disease via anti-inflammation and modulating gut microbiota in mice. Lipids Health Dis. 2017;16:1–10. doi: 10.1186/s12944-016-0392-3. PubMed DOI PMC

Singh Bora K., Sharma A. Phytoconstituents and therapeutic potential of Allium cepa Linn.—A Review. Pharmacogn. Rev. 2009;3:170.

Nicastro H.L., Ross S.A., Milner J.A. Garlic and onions: Their cancer prevention properties. Cancer Prev. Res. 2015;8:181–189. doi: 10.1158/1940-6207.CAPR-14-0172. PubMed DOI PMC

Slavin J.L. Carbohydrates, dietary fiber, and resistant starch in white vegetables: Links to health outcomes. Adv. Nutr. 2013;4:351S–355S. doi: 10.3945/an.112.003491. PubMed DOI PMC

Galdón B.R., Rodríguez C.T., Rodríguez E.R., Romero C.D. Fructans and major compounds in onion cultivars (Allium cepa) J. Food Compos. Anal. 2009;22:25–32. doi: 10.1016/j.jfca.2008.07.007. DOI

Vinke P.C., El Aidy S., Van Dijk G. The role of supplemental complex dietary carbohydrates and gut microbiota in promoting cardiometabolic and immunological health in obesity: Lessons from healthy non-obese individuals. Front. Nutr. 2017;4:34. doi: 10.3389/fnut.2017.00034. PubMed DOI PMC

Sargautiene V., Nakurte I., Nikolajeva V. Broad prebiotic potential of non-starch polysaccharides from oats (Avena sativa L.): An in vitro Study. Pol. J. Microbiol. 2018;67:307–313. doi: 10.21307/pjm-2018-036. PubMed DOI PMC

Rasane P., Jha A., Sabikhi L., Kumar A., Unnikrishnan V.S. Nutritional advantages of oats and opportunities for its pro-cessing as value added foods—A review. J. Food Sci. Technol. 2013;52:662–675. doi: 10.1007/s13197-013-1072-1. PubMed DOI PMC

Kaur R., Sharma M., Ji D., Xu M., Agyei D. Structural features, modification, and functionalities of beta-glucan. Fibers. 2019;8:1. doi: 10.3390/fib8010001. DOI

Henrion M., Francey C., Lê K.-A., Lamothe L. Cereal B-glucans: The impact of processing and how it affects physiological responses. Nutrients. 2019;11:1729. doi: 10.3390/nu11081729. PubMed DOI PMC

El Khoury D., Cuda C., Luhovyy B.L., Anderson G.H. Beta glucan: Health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012;2012:1–28. doi: 10.1155/2012/851362. PubMed DOI PMC

Blattner F.R. Taxonomy of the genus hordeum and barley (Hordeum vulgare) Compend. Plant Genomes. 2018:11–23. doi: 10.1007/978-3-319-92528-8_2. DOI

Lahouar L., Ghrairi F., El Arem A., Medimagh S., El Felah M., Ben Salem H., Achour L. Biochemical composition and nutritional evaluation of barley rihane (Hordeum vulgare L.) Afr. J. Tradit. Complement. Altern. Med. 2016;14:310–317. doi: 10.21010/ajtcam.v14i1.33. PubMed DOI PMC

Das A., Raychaudhuri U., Chakraborty R. Cereal based functional food of Indian subcontinent: A review. J. Food Sci. Technol. 2011;49:665–672. doi: 10.1007/s13197-011-0474-1. PubMed DOI PMC

Bell V., Ferrão J., Pimentel L., Pintado M., Fernandes T. One health, fermented foods, and gut microbiota. Foods. 2018;7:195. doi: 10.3390/foods7120195. PubMed DOI PMC

McKevith B. Nutritional aspects of cereals. Nutr. Bull. 2004;29:111–142. doi: 10.1111/j.1467-3010.2004.00418.x. DOI

Jayachandran M., Chen J., Chung S.S.M., Xu B. A critical review on the impacts of β-glucans on gut microbiota and human health. J. Nutr. Biochem. 2018;61:101–110. doi: 10.1016/j.jnutbio.2018.06.010. PubMed DOI

Salmerón I. Fermented cereal beverages: From probiotic, prebiotic and synbiotic towards Nanoscience designed healthy drinks. Lett. Appl. Microbiol. 2017;65:114–124. doi: 10.1111/lam.12740. PubMed DOI

Steele K., Dickin E., Keerio M., Samad S., Kambona C., Brook R., Thomas W., Frost G. Breeding low-glycemic index barley for functional food. Field Crop. Res. 2013;154:31–39. doi: 10.1016/j.fcr.2013.07.018. DOI

Holscher H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8:172–184. doi: 10.1080/19490976.2017.1290756. PubMed DOI PMC

Hemarajata P., Versalovic J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Ther. Adv. Gastroenterol. 2012;6:39–51. doi: 10.1177/1756283X12459294. PubMed DOI PMC

Nath A., Molnár M.A., Csighy A., Kőszegi K., Galambos I., Huszár K.P., Koris A., Vatai G. Biological activities of lac-tose-based prebiotics and symbiosis with probiotics on controlling osteoporosis, blood-lipid and glucose levels. Medicina. 2018;54:98. doi: 10.3390/medicina54060098. PubMed DOI PMC

Khangwal I., Shukla P. Potential prebiotics and their transmission mechanisms: Recent approaches. J. Food Drug Anal. 2019;27:649–656. doi: 10.1016/j.jfda.2019.02.003. PubMed DOI PMC

De Souza Aquino J., Batista K.S., Menezes F.N.D.D., Lins P.P., de Sousa Gomes J.A., da Silva L.A. Functional Food—Improve Health through Adequate Food. InTech; London, UK: 2017. Models to evaluate the prebiotic potential of foods.

Zhang T., Yang Y., Liang Y., Jiao X., Zhao C. Beneficial effect of intestinal fermentation of natural polysaccharides. Nutrients. 2018;10:1055. doi: 10.3390/nu10081055. PubMed DOI PMC

Cho S.S., Finocchiaro T. Handbook of Prebiotics and Probiotics Ingredients: Health Benefits and Food Applications. CRC Press; Boca Raton, FL, USA: 2009.

Janardhana V., Broadway M.M., Bruce M.P., Lowenthal J.W., Geier M.S., Hughes R.J., Bean A.G.D. Prebiotics modulate immune responses in the gut-associated lymphoid tissue of chickens. J. Nutr. 2009;139:1404–1409. doi: 10.3945/jn.109.105007. PubMed DOI

Hirayama D., Iida T., Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 2017;19:92. doi: 10.3390/ijms19010092. PubMed DOI PMC

Peng M., Tabashsum Z., Anderson M., Truong A., Houser A.K., Padilla J., Akmel A., Bhatti J., Rahaman S.O., Biswas D. Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Compr. Rev. Food Sci. Food Saf. 2020;19:1908–1933. doi: 10.1111/1541-4337.12565. PubMed DOI

Cani P.D., Possemiers S., Van de Wiele T., Guiot Y., Everard A., Rottier O., Geurts L., Naslain D., Neyrinck A., Lambert D.M., et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven im-provement of gut permeability. Gut. 2009;58:1091–1103. doi: 10.1136/gut.2008.165886. PubMed DOI PMC

Meng X., Li S., Li Y., Gan R.-Y., Li H.-B. Gut microbiota’s relationship with liver disease and role in hepatoprotection by dietary natural products and probiotics. Nutrients. 2018;10:1457. doi: 10.3390/nu10101457. PubMed DOI PMC

Mohajeri M.H., Brummer R.J.M., Rastall R.A., Weersma R.K., Harmsen H.J.M., Faas M., Eggersdorfer M. The role of the microbiome for human health: From basic science to clinical applications. Eur. J. Nutr. 2018;57:1–14. doi: 10.1007/s00394-018-1703-4. PubMed DOI PMC

Walter J. Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Appl. Environ. Microbiol. 2008;74:4985–4996. doi: 10.1128/AEM.00753-08. PubMed DOI PMC

Oak S.J., Jha R. The effects of probiotics in lactose intolerance: A systematic review. Crit. Rev. Food Sci. Nutr. 2019;59:1675–1683. doi: 10.1080/10408398.2018.1425977. PubMed DOI

Rivière A., Selak M., Lantin D., Leroy F., De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front. Microbiol. 2016;7:979. doi: 10.3389/fmicb.2016.00979. PubMed DOI PMC

Lopetuso L.R., Scaldaferri F., Petito V., Gasbarrini A. Commensal clostridia: Leading players in the maintenance of gut homeostasis. Gut Pathog. 2013;5:1–23. doi: 10.1186/1757-4749-5-23. PubMed DOI PMC

Cani P.D., de Vos W.M. Next-generation beneficial microbes: The case of Akkermansia muciniphila. Front. Microbiol. 2017;8:1765. doi: 10.3389/fmicb.2017.01765. PubMed DOI PMC

Legette L.L., Lee W., Martin B.R., Story J.A., Campbell J.K., Weaver C.M. Prebiotics Enhance magnesium absorption and inulin-based fibers exert chronic effects on calcium utilization in a postmenopausal rodent model. J. Food Sci. 2012;77:88–94. doi: 10.1111/j.1750-3841.2011.02612.x. PubMed DOI

Whisner C.M., Castillo L.F. Prebiotics, bone and mineral metabolism. Calcif. Tissue Int. 2018;102:443–479. doi: 10.1007/s00223-017-0339-3. PubMed DOI PMC

Singh R., Kumar M., Mittal A., Mehta P.K. Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech. 2017;7:1–14. doi: 10.1007/s13205-016-0586-4. PubMed DOI PMC

Rowland I., Gibson G., Heinken A., Scott K., Swann J., Thiele I., Tuohy K. Gut microbiota functions: Metabolism of nu-trients and other food components. Eur. J. Nutr. 2018;57:1. doi: 10.1007/s00394-017-1445-8. PubMed DOI PMC

Morrison D.J., Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200. doi: 10.1080/19490976.2015.1134082. PubMed DOI PMC

Dalile B., Van Oudenhove L., Vervliet B., Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain commu-nication. Nat. Rev. Gastroenterol. Hepatol. 2019;16:461–478. doi: 10.1038/s41575-019-0157-3. PubMed DOI

Schulthess J., Pandey S., Capitani M., Rue-Albrecht K.C., Arnold I., Franchini F., Chomka A., Ilott N.E., Johnston D.G., Pires E., et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity. 2019;50:432–445.e7. doi: 10.1016/j.immuni.2018.12.018. PubMed DOI PMC

Venegas D.P., De La Fuente M.K., Landskron G., González M.J., Quera R., Dijkstra G., Harmsen H.J.M., Faber K.N., Hermoso M.A. Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277. PubMed DOI PMC

Christiansen C.B., Gabe M.B.N., Svendsen B., Dragsted L.O., Rosenkilde M.M., Holst J.J. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am. J. Physiol. Liver Physiol. 2018;315:G53–G65. doi: 10.1152/ajpgi.00346.2017. PubMed DOI

Russo E., Giudici F., Fiorindi C., Ficari F., Scaringi S., Amedei A. Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease. Front. Immunol. 2019;10:2754. doi: 10.3389/fimmu.2019.02754. PubMed DOI PMC

Kho Z.Y., Lal S.K. The human gut microbiome—A potential controller of wellness and disease. Front. Microbiol. 2018;9:1835. doi: 10.3389/fmicb.2018.01835. PubMed DOI PMC

Collins F.L., Rios-Arce N.D., Schepper J.D., Parameswaran N., McCabe L.R. The Potential of probiotics as a therapy for osteoporosis. In: Cani P.D., Britton R.A., editors. Bugs as Drugs. Volume 5. American Society of Microbiology; Washington, DC, USA: 2017. pp. 213–233. PubMed PMC

Makki K., Deehan E.C., Walter J., Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23:705–715. doi: 10.1016/j.chom.2018.05.012. PubMed DOI

Dubey M.R., Patel V.P. Probiotics: A promising tool for calcium absorption. Open Nutr. J. 2018;12:59–69. doi: 10.2174/1874288201812010059. DOI

Abrams S.A., Griffin I.J., Hawthorne K.M., Liang L., Gunn S.K., Darlington G., Ellis K.J. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am. J. Clin. Nutr. 2005;82:471–476. doi: 10.1093/ajcn/82.2.471. PubMed DOI

Scholz-Ahrens K.E., Ade P., Marten B., Weber P., Timm W., Aςil Y., Gluër C.C., Schrezenmeir J. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J. Nutr. 2007;137:838S–846S. doi: 10.1093/jn/137.3.838S. PubMed DOI

Wang B., Yao M., Lv L., Ling Z., Li L. The human microbiota in health and disease. Engineering. 2017;3:71–82. doi: 10.1016/J.ENG.2017.01.008. DOI

Özdemir Ö. Various effects of different probiotic strains in allergic disorders: An update from laboratory and clinical data. Clin. Exp. Immunol. 2010;160:295–304. doi: 10.1111/j.1365-2249.2010.04109.x. PubMed DOI PMC

Childs C.E., Calder P.C., Miles E.A. Diet and immune function. Nutrients. 2019;11:1933. doi: 10.3390/nu11081933. PubMed DOI PMC

Brosseau C., Selle A., Palmer D.J., Prescott S.L., Barbarot S., Bodinier M. Prebiotics: Mechanisms and preventive effects in allergy. Nutrients. 2019;11:1841. doi: 10.3390/nu11081841. PubMed DOI PMC

Osborn D.A., Sinn J.K.H. Prebiotics in infants for prevention of allergy. Cochrane Database Syst. Rev. 2013:CD006474. doi: 10.1002/14651858.CD006474.pub3. PubMed DOI

Jerram S.T., Dang M.N., Leslie R.D. The role of epigenetics in Type 1 diabetes. Curr. Diabetes Rep. 2017;17:1–11. doi: 10.1007/s11892-017-0916-x. PubMed DOI PMC

Cerdó T., García-Santos J.A., Bermúdez M.G., Campoy C. The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients. 2019;11:635. doi: 10.3390/nu11030635. PubMed DOI PMC

Ortega Á., Berná G., Rojas A., Martín F., Soria B. Gene-diet interactions in type 2 diabetes: The chicken and egg debate. Int. J. Mol. Sci. 2017;18:1188. doi: 10.3390/ijms18061188. PubMed DOI PMC

Harsch I.A., Konturek P.C. The role of gut microbiota in obesity and Type 2 and Type 1 diabetes mellitus: New insights into “old” diseases. Med. Sci. 2018;6:32. doi: 10.3390/medsci6020032. PubMed DOI PMC

Kim J.S., Nam K., Chung S.-J. Effect of nutrient composition in a mixed meal on the postprandial glycemic response in healthy people: A preliminary study. Nutr. Res. Pract. 2019;13:126–133. doi: 10.4162/nrp.2019.13.2.126. PubMed DOI PMC

Russell W.R., Baka A., Björck I., Delzenne N., Gao D., Griffiths H.R., Hadjilucas E., Juvonen K., Lahtinen S., Lansink M., et al. Impact of diet composition on blood glucose regulation. Crit. Rev. Food Sci. Nutr. 2016;56:541–590. doi: 10.1080/10408398.2013.792772. PubMed DOI

Mirmiran P. Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: A review. World J. Diabetes. 2014;5:267–281. doi: 10.4239/wjd.v5.i3.267. PubMed DOI PMC

Ludwig D.S., Hu F.B., Tappy L., Brand-Miller J. Dietary carbohydrates: Role of quality and quantity in chronic disease. BMJ. 2018;361:k2340. doi: 10.1136/bmj.k2340. PubMed DOI PMC

Yang J. Ph.D. Thesis. University of Nebraska-Lincoln; Lincoln, NE, USA: 2015. Influence of Native and Processed Cereal Grain Fibers on Gut Health.

Festi D., Schiumerini R., Eusebi L.H., Marasco G., Taddia M., Colecchia A. Gut microbiota and metabolic syndrome. World J. Gastroenterol. 2014;20:16079–16094. doi: 10.3748/wjg.v20.i43.16079. PubMed DOI PMC

Delzenne N.M., Cani P., Everard A., Neyrinck A.M., Bindels L.B. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia. 2015;58:2206–2217. doi: 10.1007/s00125-015-3712-7. PubMed DOI

Elgendy M.M., Othman H., Aly H.J. Necrotizing enterocolitis: New insights into pathogenesis and mechanisms. Nat. Rev. Gastroenterol. Hepatol. 2016;13:590–600. doi: 10.1038/nrgastro.2016.119. PubMed DOI PMC

Gephart S.M., McGrath J.M., Effken J.A., Halpern M.D. Necrotizing enterocolitis risk. Adv. Neonatal Care. 2012;12:77–87. doi: 10.1097/ANC.0b013e31824cee94. PubMed DOI PMC

Wall R., Ross R.P., Ryan C.A., Hussey S., Murphy B., Fitzgerald G.F., Stanton C. Role of gut microbiota in early infant development. Clin. Med. Pediatr. 2009;3:45–54. doi: 10.4137/CMPed.S2008. PubMed DOI PMC

Indrio F., Riezzo G., Raimondi F., Bisceglia M., Cavallo L., Francavilla R. The effects of probiotics on feeding tolerance, bowel habits, and gastrointestinal motility in preterm newborns. J. Pediatr. 2008;152:801–806. doi: 10.1016/j.jpeds.2007.11.005. PubMed DOI

Raskov H., Burcharth J., Pommergaard H.-C., Rosenberg J. Irritable bowel syndrome, the microbiota and the gut-brain axis. Gut Microbes. 2016;7:365–383. doi: 10.1080/19490976.2016.1218585. PubMed DOI PMC

Spiller R. Review article: Probiotics and prebiotics in irritable bowel syndrome. Aliment. Pharmacol. Ther. 2008;28:385–396. doi: 10.1111/j.1365-2036.2008.03750.x. PubMed DOI

Hasan N., Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ. 2019;7:e7502. doi: 10.7717/peerj.7502. PubMed DOI PMC

Currò D., Ianiro G., Pecere S., Bibbò S., Cammarota G. Probiotics, fiber and herbal medicinal products for functional and inflammatory bowel disorders. Br. J. Pharmacol. 2017;174:1426–1449. doi: 10.1111/bph.13632. PubMed DOI PMC

Cao Y., Shen J., Ran Z.H. Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: A meta-analysis and systematic review of the literature. Gastroenterol. Res. Pract. 2014;2014:1–7. doi: 10.1155/2014/872725. PubMed DOI PMC

Gulzar N., Saleem I.M., Rafiq S., Nadeem M. Therapeutic Potential of probiotics and prebiotics. In: Mahmoudi R., Moosazad S., Aghaei K., editors. Oral Health by Using Probiotic Products. IntechOpen; London, UK: 2019.

Chung W.S.F., Walker A.W., Louis P., Parkhill J., Vermeiren J., Bosscher D., Duncan S.H., Flint H.J. Modulation of the human gut microbiota by dietary fibers occurs at the species level. BMC Biol. 2016;14:1–13. doi: 10.1186/s12915-015-0224-3. PubMed DOI PMC

Lee Y.K., Salminen S. Handbook of Probiotics and Prebiotics. John Wiley & Sons; Hoboken, NJ, USA: 2009.

Verdenelli M.C., Cecchini C., Coman M.M., Silvi S., Orpianesi C., Coata G., Cresci A., Di Renzo G.C. Impact of probiotic synbio® administered by vaginal suppositories in promoting vaginal health of apparently healthy women. Curr. Microbiol. 2016;73:483–490. doi: 10.1007/s00284-016-1085-x. PubMed DOI

Recine N., Palma E., Domenici L., Giorgini M., Imperiale L., Sassu C., Musella A., Marchetti C., Muzii L., Panici P.B. Restoring vaginal microbiota: Biological control of bacterial vaginosis. A prospective case–control study using Lactobacillus rhamnosus BMX 54 as adjuvant treatment against bacterial vaginosis. Arch. Gynecol. Obs. 2016;293:101–107. doi: 10.1007/s00404-015-3810-2. PubMed DOI

Borges S., Silva J., Teixeira P. The role of lactobaclli and probiotics in maintaining vaginal health. Arch. Gynecol. Obs. 2014;289:479–489. doi: 10.1007/s00404-013-3064-9. PubMed DOI

Li J., McCormick J., Bocking A., Reid G. Importance of vaginal microbes in reproductive health. Reprod. Sci. 2012;19:235–242. doi: 10.1177/1933719111418379. PubMed DOI

Yang S., Reid G., Challis J.R.G., Kim S.O., Gloor G.B., Bocking A.D. Is there a role for probiotics in the prevention of preterm birth? Front. Immunol. 2015;6:62. doi: 10.3389/fimmu.2015.00062. PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

In Vitro Utilization of Prebiotics by Listeria monocytogenes

. 2024 Sep 11 ; 12 (9) : . [epub] 20240911

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...