Current antibiotic resistance patterns of rare uropathogens: survey from Central European Urology Department 2011-2019
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, pozorovací studie
Grantová podpora
Thomayer Hospital - TH, 00064190
Ministerstvo Zdravotnictví Ceské Republiky (CZ)
PubMed
33849512
PubMed Central
PMC8042353
DOI
10.1186/s12894-021-00821-8
PII: 10.1186/s12894-021-00821-8
Knihovny.cz E-zdroje
- Klíčová slova
- Acinetobacter, Anti-infective agents, Bacterial, Citrobacter, Drug resistance, Enterobacter, Morganella, Providencia, Serratia, Stenotrophomonas, Urinary, Urinary tract infections,
- MeSH
- bakteriální léková rezistence * MeSH
- časové faktory MeSH
- centra terciární péče MeSH
- gramnegativní bakterie účinky léků izolace a purifikace MeSH
- infekce močového ústrojí mikrobiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- nemocniční oddělení MeSH
- retrospektivní studie MeSH
- senioři MeSH
- urologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: While the resistance rates of commonly detected uropathogens are well described, those of less frequent Gram-negative uropathogenic bacteria have seldom been reported. The aim of this study was to examine the resistance rates of less frequent uropathogenic Gram-negatives in a population of patients treated in a Department of Urology of a tertiary referral centre in Central Europe over a period of 9 years. METHODS: Data on all positive urine samples from urological in- and out-patients were extracted form the Department of Clinical Microbiology database from 2011 to 2019. Numbers of susceptible and resistant isolates per year were calculated for these uropathogens: Acinetobacter spp. (n = 74), Citrobacter spp. (n = 60), Enterobacter spp. (n = 250), Morganella morganii (n = 194), Providencia spp. (n = 53), Serratia spp. (n = 82) and Stenotrophomonas maltophilia (n = 27). Antimicrobial agents selected for the survey included: ampicillin, amoxicillin/clavulanic acid, piperacillin/tazobactam; cefuroxime, cefotaxime, ceftazidime and cefepime; ciprofloxacin and ofloxacin; gentamicin and amikacin; ertapenem, meropenem and imipenem; trimethoprim-sulfamethoxazole (co-trimoxazole), nitrofurantoin and colistin. RESULTS: Penicillin derivatives have generally poor effect except piperacillin/tazobactam. Cefuroxime is not efficient unlike cefotaxime (except against Acinetobacter spp. and S. maltophilia). Susceptibility to fluoroquinolones is limited. Amikacin is somewhat more efficient than gentamicine but susceptibilities for both safely exceed 80%. Nitrofurantoin shows virtually no efficiency. Cotrimoxazole acts well against Citrobacter spp., Serratia spp. and it is the treatment of choice for S. maltophilia UTIs. Among carbapenems, ertapenem was less efficient than meropenem and imipenem except for S. maltophilia whose isolates were mostly not suceptible to any carbapenems. CONCLUSIONS: Uropathogenic microorganisms covered in this report are noteworthy for their frequently multi-drug resistant phenotypes. Knowledge of resistance patterns helps clinicians choose the right empirical antibiotic treatment when the taxonomical assignment of the isolate is known but sensitivity results are pending.
Zobrazit více v PubMed
Gajdács M, Urbán E. Resistance trends and epidemiology of Citrobacter—Enterobacter—Serratia in urinary tract infections of inpatients and outpatients (RECESUTI): a 10-year survey. Medicina (B Aires) 2019;55(285):1–13. PubMed PMC
Zowawi HM, Harris PNA, Roberts MJ, Tambyah PA, Schembri M, Pezzani MD, et al. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat Rev Urol. 2015;12:570–80. doi: 10.1038/nrurol.2015.199. PubMed DOI
Schaeffer A, Schaeffer E. Infections of the urinary tract. In: Wein A, Kavoussi L, editors. Campbell-Walsh Urology. 10th ed. 2012. p. 258–60.
François M, Hanslik T, Dervaux B, Le Strat Y, Coignard B, Souty C, et al. The economic burden of urinary tract infections in women visiting general practices in France: a cross-sectional survey. BMC Health Serv Res. 2016;16(1):1–10. doi: 10.1186/s12913-016-1620-2. PubMed DOI PMC
Vallejo-Torres L, Pujol M, Shaw E, Wiegand I, Vigo JM, Stoddart M, et al. Cost of hospitalised patients due to complicated urinary tract infections: a retrospective observational study in countries with high prevalence of multidrug-resistant Gram-negative bacteria: The COMBACTE-MAGNET, RESCUING study. BMJ Open. 2018;8(4):1–9. doi: 10.1136/bmjopen-2017-020251. PubMed DOI PMC
Bonkat G, Bartoletti R, Bruyère F, Cai T, S.E. G, Köves B, et al. Urological infections [Internet]. 2020 [cited 2020 Sep 17]. https://uroweb.org/guideline/urological-infections/.
Cullen IM, Manecksha RP, Mccullagh E, Ahmad S, Kelly FO, Flynn RJ, et al. The changing pattern of antimicrobial resistance within 42 033 Escherichia coli isolates from nosocomial, community and urology patient-specific urinary tract infections, Dublin, 1999–2009. BJUI Int. 2011;109(109):1198–1206. PubMed
Iacchini S, Sabbatucci M, Gagliotti C, Rossolini GM, Moro ML, Iannazzo S, et al. Bloodstream infections due to carbapenemas eproducing Enterobacteriaceae in Italy: results from nationwide surveillance, 2014 to 2017. Eurosurveillance. 2019;24(5):66. doi: 10.2807/1560-7917.ES.2019.24.5.1800159. PubMed DOI PMC
Lob SH, Nicolle LE, Hoban DJ, Kazmierczak KM, Badal RE, Sahm DF. Susceptibility patterns and ESBL rates of Escherichia coli from urinary tract infections in Canada and the United States, SMART 2010–2014. Diagn Microbiol Infect Dis. 2016;85(4):459–465. doi: 10.1016/j.diagmicrobio.2016.04.022. PubMed DOI
Guyomard-Rabenirina S, Malespine J, Ducat C, Sadikalay S, Falord M, Harrois D, et al. Temporal trends and risks factors for antimicrobial resistant Enterobacteriaceae urinary isolates from outpatients in Guadeloupe. BMC Microbiol. 2016;16:121. doi: 10.1186/s12866-016-0749-9. PubMed DOI PMC
Sierra-Díaz E, Hernández-ríos CJ, Bravo-cuellar A. Antibiotic resistance: microbiological profile of urinary tract infections in Mexico. Circ Circ. 2019;87:176–182. PubMed
Okeke IN, Laxminarayan R, Bhutta ZA, Duse AG, Jenkins P, Brien TFO, et al. AMR Resistance in developing countries. Lancet Infect Dis. 2005;5(August):481–493. doi: 10.1016/S1473-3099(05)70189-4. PubMed DOI
Fasugba O, Mitchell BG, Mnatzaganian G, Das A, Collignon P, Gardner A. Five-year antimicrobial resistance patterns of urinary Escherichia coli at an Australian Tertiary Hospital: time series analyses of prevalence data. PLoS ONE. 2016;11(10):1–14. doi: 10.1371/journal.pone.0164306. PubMed DOI PMC
Hyun M, Noh CI, Ryu SY, Kim HA. Changing trends in clinical characteristics and antibiotic susceptibility of Klebsiella pneumoniae bacteremia. Korean J Intern Med. 2018;33:595–603. doi: 10.3904/kjim.2015.257. PubMed DOI PMC
Karlowsky JA, Hoban DJ, Hackel MA, Lob SH, Sahm DF. Antimicrobial susceptibility of Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Asia-Pacific countries: SMART 2013–2015. J Med Microbiol. 2017;66(1):61–69. doi: 10.1099/jmm.0.000421. PubMed DOI
Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA. 2018;115(15):E3463–E3470. doi: 10.1073/pnas.1717295115. PubMed DOI PMC
Stapleton PJ, Lundon DJ, McWade R, Scanlon N, Hannan MM, O’Kelly F, et al. Antibiotic resistance patterns of Escherichia coli urinary isolates and comparison with antibiotic consumption data over 10 years, 2005–2014. Ir J Med Sci. 2017;186(3):733–741. doi: 10.1007/s11845-016-1538-z. PubMed DOI
Kandil H, Cramp E, Vaghela T. Trends in antibiotic resistance in urologic practice. Eur Urol Focus. 2016;2(4):363–73. doi: 10.1016/j.euf.2016.09.006. PubMed DOI
Fleming-Dutra K, Hersh AL, Shapiro DJ. Prevalence of inappropriate antibiotic prescriptions among US ambulatory care visits, 2010–2011. JAMA. 2016;315(17):1865–1873. doi: 10.1001/jama.2016.4151. PubMed DOI
Chardavoyne PC, Kasmire KE. Appropriateness of Antibiotic Prescriptions for urinary tract infections. West J Emerg Med. 2020;21(3):633–639. doi: 10.5811/westjem.2020.1.45944. PubMed DOI PMC
Harris PNA, Wei JY, Shen AW, Abdile AA, Paynter S, Huxley RR, et al. Carbapenems versus alternative antibiotics for the treatment of bloodstream infections caused by Enterobacter, Citrobacter or Serratia species: a systematic review with meta-analysis. J Antimicrob Chemother. 2016;71(2):296–306. doi: 10.1093/jac/dkv346. PubMed DOI
Thaden JT, Pogue JM, Kaye KS. Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae. Virulence. 2017;8(4):403–16. doi: 10.1080/21505594.2016.1207834. PubMed DOI PMC
Bergogne-Bérézin E, Towner KJ. Acinetobacter spp as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996;9(2):148–65. doi: 10.1128/CMR.9.2.148. PubMed DOI PMC
Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev. 2012;25(1):2–41. doi: 10.1128/CMR.00019-11. PubMed DOI PMC
Hrbacek J, Cermak P, Zachoval R. Current antibiotic resistance trends of uropathogens in central europe: survey from a tertiary hospital urology department 2011–2019. Antibiotics. 2020;9(9):1–11. doi: 10.3390/antibiotics9090630. PubMed DOI PMC
Gajdács M, Urbán E. Comparative epidemiology and resistance trends of proteae in urinary tract infections of inpatients and outpatients: a 10-year retrospective study. Antibiotics. 2019;8(91):1–13. PubMed PMC
Fajfr M, Louda M, Paterová P, Ryšková L, Pacovský J, Košina J, et al. The susceptibility to fosfomycin of Gram-negative bacteria isolates from urinary tract infection in the Czech Republic: data from a unicentric study. BMC Urol. 2017;17(1):1–6. doi: 10.1186/s12894-017-0222-6. PubMed DOI PMC
Jiménez-Guerra G, Borrego-Jiménez J, Gutiérrez-Soto B, Expósito-Ruiz M, Navarro-Marí JM, Gutiérrez-F, et al. Evolución de la sensibilidad a los antibióticos de Enterobacter cloacae, Morganella morganii, Klebsiella aerogenes y Citrobacter freundii causantes de infecciones del tracto urinario: un estudio de vigilancia epidemiológica de 11 años. Enferm Infecc Microbiol Clin. 2019. 10.1016/j.eimc.2019.07.010. PubMed
Jiménez-Guerra G, Heras-Cañas V, Gutiérrez-Soto M, Aznarte-Padial M del P, Expósito-Ruiz M, Navarro-Marí JM, et al. Urinary tract infection by acinetobacter baumannii and pseudomonas aeruginosa: evolution of antimicrobial resistance and therapeutic alternatives. J Med Microbiol. 2018;67(6):790–7. PubMed
de Lemos MC, de Paixao EF, de Souza Santos MAR. Stenotrophomonas maltophilia isolates in a tertiary care hospital in Northeastern Brazil. Braz J Hea Rev. 2019;2(4):3373–3384. doi: 10.34119/bjhrv2n4-099. DOI
Nyc O, Matejková J. Stenotrophomonas maltophilia: significant contemporary hospital pathogen—review. Folia Microbiol Praha. 2010;55(3):286–294. doi: 10.1007/s12223-010-0043-4. PubMed DOI
Munoz-Price S, Weinstein RA. Acinetobacter infection. N Engl J Med. 2008;358(12):1271–1281. doi: 10.1056/NEJMra070741. PubMed DOI
Moy S, Sharma R. Treatment outcomes in infections caused by “SPICE” (Serratia, Pseudomonas, Indole-positive Proteus, Citrobacter, and Enterobacter) organisms: Carbapenem versus Noncarbapenem Regimens. Clin Ther. 2017;39(1):170–176. doi: 10.1016/j.clinthera.2016.11.025. PubMed DOI
Chassin-Trubert CA-M. Síndrome de la bolsa de orina púrpura: un fenómeno inusual y muy llamativo. Rev Med Chile. 2014;142:1482–1484. doi: 10.4067/S0034-98872014001100018. PubMed DOI
Davin-Regli A, Pagès J. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol. 2015;6:392. doi: 10.3389/fmicb.2015.00392. PubMed DOI PMC
Chang C-L, Su L-H, Lu C-M, Tai F-T, Huang Y-C, Chang K-K. Outbreak of ertapenem-resistant Enterobacter cloacae urinary tract infections due to a contaminated ureteroscope. J Hosp Infect. 2013;85(2):118–124. doi: 10.1016/j.jhin.2013.06.010. PubMed DOI
Mahlen SD. Serratia infections: from military experiments to current practice. Clin Microbiol Rev. 2011;24(4):755–791. doi: 10.1128/CMR.00017-11. PubMed DOI PMC
Su L, Ou JT, Leu H, Chiang P, Chiu Y, Chia J, et al. Extended epidemic of nosocomial urinary tract infections caused by Serratia marcescens. J Clin Microbiol. 2003;41(10):4726–4732. doi: 10.1128/JCM.41.10.4726-4732.2003. PubMed DOI PMC
O'Hara CM, Brenner FW, Miller JM. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev. 2000;13(4):534–46. PubMed PMC
Choi HK, Kim YK, Kim HY, Park JE, Uh Y. Clinical and microbiological features of Providencia bacteremia: experience at a tertiary care hospital. Korean J Intern Med. 2015;30:219–225. doi: 10.3904/kjim.2015.30.2.219. PubMed DOI PMC