Current Antibiotic Resistance Trends of Uropathogens in Central Europe: Survey from a Tertiary Hospital Urology Department 2011-2019
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32971752
PubMed Central
PMC7559630
DOI
10.3390/antibiotics9090630
PII: antibiotics9090630
Knihovny.cz E-zdroje
- Klíčová slova
- E. coli, Enterobateriaceae, Enterococcus, Klebsiella, Proteus, Pseudomonas, antibiotics, resistance, urinary tract infection,
- Publikační typ
- časopisecké články MeSH
Monitoring of pathogen resistance profiles is necessary to guide empirical antibiotic therapy before culture and sensitivity results become available. The aim of this study was to describe current antibiotic resistance patterns of five most frequent causative uropathogens in a Department of Urology of a tertiary referral centre in Central Europe over a period of nine years. The Hospital Department of Clinical Microbiology database was used to extract data on all positive urine samples from inpatients in the Department of Urology between 2011 and 2019. Numbers of susceptible and resistant isolates per year were calculated for five most frequent uropathogens: Escherichia coli, Enterococcus spp., Klebsiella spp., Pseudomonas aeruginosa, and Proteus spp. Antimicrobial agents selected for the survey included: ampicillin, amoxicillin/clavulanic acid, piperacillin/tazobactam; cefuroxime, cefotaxime, ceftazidime and cefepime; ciprofloxacin and ofloxacin; gentamicin and amikacin; ertapenem, meropenem and imipenem; trimethoprim-sulfamethoxazole (co-trimoxazole), nitrofurantoin, colistin, and vancomycin. High resistance rates of Gram-negative uropathogens were demonstrated to most common antimicrobials, with statistically significant increasing or decreasing trends in some cases. No carbapenem-resistant Enterobacteriaceae were isolated. Vancomycin-resistant Enterococcus spp. strains were rare in our population.
Zobrazit více v PubMed
Manyi-Loh C., Mamphweli S., Meyer E., Okoh A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules. 2018;23:795. doi: 10.3390/molecules23040795. PubMed DOI PMC
Bonkat G., Müller G., Braissant O., Frei R., Tschudin-Suter S., Rieken M., Wyler S., Gasser T.C., Bachmann A., Widmer A.F. Increasing prevalence of ciprofloxacin resistance in extended-spectrum-beta-lactamase-producing Escherichia coli urinary isolates. World J. Urol. 2013;31:1427–1432. doi: 10.1007/s00345-013-1031-5. PubMed DOI
Iacchini S., Sabbatucci M., Gagliotti C., Rossolini G.M., Moro M.L., Iannazzo S., D’Ancona F., Pezzotti P., Pantosti A. Bloodstream infections due to carbapenemas eproducing Enterobacteriaceae in Italy: Results from nationwide surveillance, 2014 to 2017. Eurosurveillance. 2019;24:1800159. doi: 10.2807/1560-7917.ES.2019.24.5.1800159. PubMed DOI PMC
Cullen I.M., Manecksha R.P., Mccullagh E., Ahmad S., O’Kelly F., Flynn R.J., McDermott T., Murphy P., Grainger R., Fennell J.P., et al. The changing pattern of antimicrobial resistance within 42 033 Escherichia coli isolates from nosocomial, community and urology patient-specific urinary tract infections, Dublin, 1999–2009. BJUI Int. 2011;109:1198–1206. doi: 10.1111/j.1464-410X.2011.10528.x. PubMed DOI
Lob S.H., Nicolle L.E., Hoban D.J., Kazmierczak K.M., Badal R.E., Sahm D.F. Susceptibility patterns and ESBL rates of Escherichia coli from urinary tract infections in Canada and the United States, SMART 2010–2014. Diagn. Microbiol. Infect. Dis. 2016;85:459–465. doi: 10.1016/j.diagmicrobio.2016.04.022. PubMed DOI
Guyomard-Rabenirina S., The Laboratory Working Group. Malespine J., Ducat C., Sadikalay S., Falord M., Harrois D., Richard V., Dozois C., Breurec S., et al. Temporal trends and risks factors for antimicrobial resistant Enterobacteriaceae urinary isolates from outpatients in Guadeloupe. BMC Microbiol. 2016;16:121. doi: 10.1186/s12866-016-0749-9. PubMed DOI PMC
Sierra-Díaz E., Hernández-ríos C.J., Bravo-cuellar A. Antibiotic resistance: Microbiological profile of urinary tract infections in Mexico. Cir. Cir. 2019;87:176–182. doi: 10.24875/CIRU.18000494. PubMed DOI
Okeke I.N., Laxminarayan R., Bhutta Z.A., Duse A.G., Jenkins P., O’Brien T.F., Pablos-Mendez A., Klugman K.P. AMR Resistance in developing countries. Lancet Infect. Dis. 2005;5:481–493. doi: 10.1016/S1473-3099(05)70189-4. PubMed DOI
Fasugba O., Mitchell B.G., Mnatzaganian G., Das A., Collignon P., Gardner A. Five-Year Antimicrobial Resistance Patterns of Urinary Escherichia coli at an Australian Tertiary Hospital: Time Series Analyses of Prevalence Data. PLoS ONE. 2016;11:e0164306. doi: 10.1371/journal.pone.0164306. PubMed DOI PMC
Hyun M., Noh C.I., Ryu S.Y., Kim H.A. Changing trends in clinical characteristics and antibiotic susceptibility of Klebsiella pneumoniae bacteremia. Korean J. Intern. Med. 2018;33:595–603. doi: 10.3904/kjim.2015.257. PubMed DOI PMC
Karlowsky J.A., Hoban D.J., Hackel M.A., Lob S.H., Sahm D.F. Antimicrobial susceptibility of Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Asia-Pacific countries: SMART 2013–2015. J. Med. Microbiol. 2017;66:61–69. doi: 10.1099/jmm.0.000421. PubMed DOI
World Health Organization . 2019 Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline. WHO; Geneva, Switzerland: 2019. [(accessed on 24 April 2020)]. Available online: https://www.who.int/medicines/areas/rational_use/antibacterial_agents_clinical_development/en/
Frost I., Van Boeckel T.P., Pires J., Craig J., Laxminarayan R. Global geographic trends in antimicrobial resistance: The role of international travel. J. Travel Med. 2019;26:taz036. doi: 10.1093/jtm/taz036. PubMed DOI
Zowawi H.M., Harris P.N.A., Roberts M.J., Tambyah P.A., Schembri M.A., Pezzani M.D., Williamson D.A., Paterson D. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat. Rev. Urol. 2015;12:570–580. doi: 10.1038/nrurol.2015.199. PubMed DOI
Schaeffer A., Schaeffer E. Infections of the urinary tract. In: Wein A., Kavoussi L., editors. Campbell-Walsh Urology. 10th ed. Elsevier Saunders; Philadelphia, PA, USA: 2012. pp. 258–260.
François M., Hanslik T., Dervaux B., Le Strat Y., Souty C., Vaux S., Maugat S., Rondet C., Sarazin M., Heym B., et al. The economic burden of urinary tract infections in women visiting general practices in France: A cross-sectional survey. BMC Health Serv. Res. 2016;16:365. doi: 10.1186/s12913-016-1620-2. PubMed DOI PMC
Vallejo-Torres L., Pujol M., Shaw E., Wiegand I., Vigo J.M., Stoddart M., Grier S., Gibbs J., Vank C., Cuperus N., et al. Cost of hospitalised patients due to complicated urinary tract infections: A retrospective observational study in countries with high prevalence of multidrug-resistant Gram-negative bacteria: The COMBACTE-MAGNET, RESCUING study. BMJ Open. 2018;8:e020251. doi: 10.1136/bmjopen-2017-020251. PubMed DOI PMC
Stapleton P.J., Lundon D.J., McWade R., Scanlon N., Hannan M.M., O’Kelly F., Lynch M. Antibiotic resistance patterns of Escherichia coli urinary isolates and comparison with antibiotic consumption data over 10 years, 2005–2014. Ir. J. Med. Sci. 2017;186:733–741. doi: 10.1007/s11845-016-1538-z. PubMed DOI
Klein E.Y., Van Boeckel T.P., Martinez E., Pant S., Gandra S., Levin S.A., Goossens H., Laxminarayan R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA. 2018;115:E3463–E3470. doi: 10.1073/pnas.1717295115. PubMed DOI PMC
Kandil H., Cramp E., Vaghela T. Trends in Antibiotic Resistance in Urologic Practice. Eur. Urol. Focus. 2016;2:363–373. doi: 10.1016/j.euf.2016.09.006. PubMed DOI
Adriaenssens N., Coenen S., Versporten A., Muller A., Minalu G., Faes C., Vankerckhoven V., Aerts M., Hens N., Molenberghs G., et al. European Surveillance of Antimicrobial Consumption (ESAC): Outpatient antibiotic use in Europe (1997–2009) J. Antimicrob. Chemother. 2011;66:3–12. doi: 10.1093/jac/dkr190. PubMed DOI
Durkin M.J., Keller M., Butler A.M., Kwon J.H., Dubberke E.R., Miller A.C., Polgreen P.M., Olsen M.A. An assessment of inappropriate antibiotic use and guideline adherence for uncomplicated urinary tract infections. Open Forum Infect. Dis. 2018;5:ofy198. doi: 10.1093/ofid/ofy198. PubMed DOI PMC
Fleming-Dutra K., Hersh A.L., Shapiro D.J. Prevalence of Inappropriate Antibiotic Prescriptions Among US Ambulatory Care Visits, 2010–2011. JAMA. 2016;315:1865–1873. doi: 10.1001/jama.2016.4151. PubMed DOI
Chardavoyne P.C., Kasmire K.E. Appropriateness of Antibiotic Prescriptions for Urinary Tract Infections. West. J. Emerg. Med. 2020;21:633–639. doi: 10.5811/westjem.2020.1.45944. PubMed DOI PMC
Cai T., Palagin I., Brunelli R., Cipelli R., Pellini E., Truzzi J.C., Van Bruwaene S. Office-based approach to urinary tract infections in 50,000 patients: Results from the REWIND study. Int. J. Antimicrob. Agents. 2020;56:105966. doi: 10.1016/j.ijantimicag.2020.105966. PubMed DOI
Luepke K.H., Luepke K.H., Boucher H., Russo R.L., Bonney M.W., Hunt T.D., Mohr J.F. Past, Present, and Future of Antibacterial Economics: Increasing Bacterial Resistance, Limited Antibiotic Pipeline, and Societal Implications. Pharmacotherapy. 2017;37:71–84. doi: 10.1002/phar.1868. PubMed DOI
Theuretzbacher U., Bush K., Harbarth S., Paul M., Rex J.H., Tacconelli E., Thwaites G.E. Critical analysis of antibacterial agents in clinical development. Nat. Rev. Microbiol. 2020;18:286–298. doi: 10.1038/s41579-020-0340-0. PubMed DOI
Theuretzbacher U., Piddock L.J.V. Non-traditional antibacterial therapeutic options and challenges. Cell Host Microbe. 2019;26:61–72. doi: 10.1016/j.chom.2019.06.004. PubMed DOI
Tiwari V., Mishra N., Gadani K., Solanki P.S., Shah N.A., Tiwari M. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against Carbapenem-Resistant Acinetobacter baumannii. Front. Microbiol. 2018;9:1218. doi: 10.3389/fmicb.2018.01218. PubMed DOI PMC
Abdelhamid A.G., Esaam A., Hazaa M.M. Cell free preparations of probiotics exerted antibacterial and antibiofilm activities against multidrug resistant E. coli. Saudi Pharm. J. 2018;26:603–607. doi: 10.1016/j.jsps.2018.03.004. PubMed DOI PMC
Iseppi R., Di Cerbo A., Aloisi P., Manelli M., Pellesi V., Provenzano C., Camellini S., Messi P., Sabia C. In vitro activity of essential oils against planktonic and biofilm cells of extended-spectrum β-lactamase (ESBL)/carbapenamase-producing gram-negative bacteria involved in human nosocomial infections. Antibiotics. 2020;9:272. doi: 10.3390/antibiotics9050272. PubMed DOI PMC
Sybesma W., Zbinden R., Chanishvili N., Kutateladze M., Chkhotua A., Ujmajuridze A., Mehnert U., Kessler T.M. Bacteriophages as Potential Treatment for Urinary Tract Infections. Front. Microbiol. 2016;7:465. doi: 10.3389/fmicb.2016.00465. PubMed DOI PMC
Magyar A., Koves B., Nagy K., Dobák A., Arthanareeswaran V.K.A., Bálint P., Wagenlehner F., Tenke P. Spectrum and antibiotic resistance of uropathogens between 2004 and 2015 in a tertiary care hospital in Hungary. J. Med. Microbiol. 2017;66:788–797. doi: 10.1099/jmm.0.000498. PubMed DOI
Toner L., Papa N., Aliyu S.H., Dev H., Lawrentschuk N., Al-Hayek S. Extended-spectrum beta-lactamase-producing Enterobacteriaceae in hospital urinary tract infections: Incidence and antibiotic susceptibility profile over 9 years. World J. Urol. 2016;34:1031–1037. doi: 10.1007/s00345-015-1718-x. PubMed DOI
Sbiti M., Lahmadi K., Louzi L. Profil épidémiologique des entérobactéries uropathogènes productrices de bêta-lactamases à spectre élargi. Pan Afr. Med. J. 2017;28:29. doi: 10.11604/pamj.2017.28.29.11402. PubMed DOI PMC
Cho Y.H., Jung S.I., Chung H.S., Yu H.S., Hwang E.C., Kim S.-O., Kang T.W., Kwon D.D., Park K. Antimicrobial susceptibilities of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in health care-associated urinary tract infection: Focus on susceptibility to fosfomycin. Int. Urol. Nephrol. 2015;47:1059–1066. doi: 10.1007/s11255-015-1018-9. PubMed DOI
Fajfr M., Louda M., Paterová P., Ryskova L., Pacovský J., Košina J., Žemličková H., Brodak M. The susceptibility to fosfomycin of Gram-negative bacteria isolates from urinary tract infection in the Czech Republic: Data from a unicentric study. BMC Urol. 2017;17:33. doi: 10.1186/s12894-017-0222-6. PubMed DOI PMC
van der Donk C.F.M., Beisser P.S., Hoogkamp-Korstanje J.A.A., Bruggeman C.A., Stobberingh E.E. A 12 year (1998–2009) antibiotic resistance surveillance of Klebsiella pneumoniae collected from intensive care and urology patients in 14 Dutch hospitals. J. Antimicrob. Chemother. 2011;66:855–858. doi: 10.1093/jac/dkq538. PubMed DOI
Gajdács M., Urbán E. Comparative Epidemiology and Resistance Trends of Proteae in Urinary Tract Infections of Inpatients and Outpatients: A 10-Year Retrospective Study. Antibiotics. 2019;8:91. doi: 10.3390/antibiotics8030091. PubMed DOI PMC
Lupo A., Haenni M., Madec J.-Y. Antimicrobial Resistance in Acinetobacter spp. and Pseudomonas spp. Microbiol. Spectr. 2018;6 doi: 10.1128/microbiolspec.ARBA-0007-2017. PubMed DOI PMC
Tolker-Nielsen T.I.M., Brinch U.C., Ragas P.C., Andersen J.B.O., Jacobsen C.S., Molin S. Development and Dynamics of Pseudomonas sp. Biofilms. J. Bacteriol. 2000;182:6482–6489. doi: 10.1128/JB.182.22.6482-6489.2000. PubMed DOI PMC
EMEA Disabling and Potentially Permanent Side Effects Lead to Suspension or Restrictions of Quinolone and Fluoroquinolone Antibiotics. [(accessed on 12 April 2020)]; Available online: https://www.ema.europa.eu/en/news/disabling-potentially-permanent-side-effects-lead-suspension-restrictions-quinolone-fluoroquinolone.
Bonkat G., Wagenlehner F. In the Line of Fire: Should Urologists Stop Prescribing Fluoroquinolones as Default ? Eur. Urol. 2019;75:205–207. doi: 10.1016/j.eururo.2018.10.057. PubMed DOI
Toner L., Papa N., Aliyu S.H., Dev H., Lawrentschuk N., Al-Hayek S. Vancomycin resistant enterococci in urine cultures: Antibiotic susceptibility trends over a decade at a tertiary hospital in the United Kingdom. Investig. Clin. Urol. 2016;57:129–134. doi: 10.4111/icu.2016.57.2.129. PubMed DOI PMC
Bonkat G., Bartoletti R., Bruyère F., Cai T., Geerlings S., Köves B., Schubert S., Wagenlehner F. Urological Infections. [(accessed on 17 September 2020)];2020 Available online: https://uroweb.org/guideline/urological-infections/
Wagenlehner F.M., Tandoğdu Z., Bartoletti R., Cai T., Cek M., Kulchavenya E.V., Koves B., Naber K., Perepanova T.S., Tenke P., et al. The global prevalence of infections in urology study: A long-term, worldwide surveillance study on urological infections. Pathogens. 2016;5:10. doi: 10.3390/pathogens5010010. PubMed DOI PMC