Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, N.I.H., Intramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.
Grant support
R15 GM114739
NIGMS NIH HHS - United States
E0767001
U.S. Food and Drug Administration
E0765001
U.S. Food and Drug Administration
P30 CA015083
NCI NIH HHS - United States
R15 GM137288
NIGMS NIH HHS - United States
PubMed
33863344
PubMed Central
PMC8051090
DOI
10.1186/s13059-021-02315-0
PII: 10.1186/s13059-021-02315-0
Knihovny.cz E-resources
- Keywords
- Analytical performance, Molecular diagnostics, Oncopanel sequencing, Precision medicine, Reproducibility, Target enrichment,
- MeSH
- Molecular Diagnostic Techniques methods standards MeSH
- Genetic Testing methods standards MeSH
- Genomics methods standards MeSH
- Polymorphism, Single Nucleotide MeSH
- Humans MeSH
- Mutation MeSH
- Biomarkers, Tumor * MeSH
- Neoplasms diagnosis genetics MeSH
- Oncogenes * MeSH
- Reproducibility of Results MeSH
- Sensitivity and Specificity MeSH
- DNA Copy Number Variations MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Names of Substances
- Biomarkers, Tumor * MeSH
BACKGROUND: Targeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S. Food and Drug Administration-led SEquence Quality Control project phase2 (SEQC2) effort, we perform a cross-platform multi-lab evaluation of eight Pan-Cancer panels to assess best practices for oncopanel sequencing. RESULTS: All panels demonstrate high sensitivity across targeted high-confidence coding regions and variant types for the variants previously verified to have variant allele frequency (VAF) in the 5-20% range. Sensitivity is reduced by utilizing VAF thresholds due to inherent variability in VAF measurements. Enforcing a VAF threshold for reporting has a positive impact on reducing false positive calls. Importantly, the false positive rate is found to be significantly higher outside the high-confidence coding regions, resulting in lower reproducibility. Thus, region restriction and VAF thresholds lead to low relative technical variability in estimating promising biomarkers and tumor mutational burden. CONCLUSION: This comprehensive study provides actionable guidelines for oncopanel sequencing and clear evidence that supports a simplified approach to assess the analytical performance of oncopanels. It will facilitate the rapid implementation, validation, and quality control of oncopanels in clinical use.
Accugenomics Inc 1410 Commonwealth Drive Suite 105 Wilmington NC 20403 USA
Agilent Technologies 11011 N Torrey Pines Rd La Jolla CA 92037 USA
Agilent Technologies 1834 State Hwy 71 West Cedar Creek TX 78612 USA
Agilent Technologies 5301 Stevens Creek Blvd Santa Clara CA 95051 USA
Astrazeneca Pharmaceuticals 35 Gatehouse Dr Waltham MA 02451 USA
Bioinformatics Integrated DNA Technologies Inc 1710 Commercial Park Coralville IA 52241 USA
Bioinformatics Research Institute of Molecular Biotechnology Boku University Vienna Vienna Austria
Cancer Genetics Inc 201 Route 17 N Meadows Office Building Rutherford NJ 07070 USA
Center for Genomic Sciences LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
Center for Genomics School of Medicine Loma Linda University Loma Linda CA 92350 USA
Center for Individualized Medicine Mayo Clinic Scottsdale AZ 85259 USA
Clinical Diagnostic Division Thermo Fisher Scientific 46500 Kato Rd Fremont CA 94538 USA
Clinical Laboratory Burning Rock Biotech Guangzhou 510300 Guangdong China
College of Chemistry Sichuan University Chengdu 610064 Sichuan China
Department of Biotechnology Boku University Vienna Austria
Department of Genetics University of North Carolina 250 Bell Tower Drive Chapel Hill NC 27599 USA
Department of Health Sciences Mayo Clinic Scottsdale AZ 85259 USA
Department of Oncology Shanghai Medical College Fudan University Shanghai 200032 China
Department of Pathology and Laboratory Medicine Western University London Ontario N6A3K7 Canada
Department of Pathology Strata Oncology Inc Ann Arbor MI 48103 USA
Division of Anatomic Pathology Mayo Clinic 200 1st Street SW Rochester MN 55905 USA
Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN 55905 USA
Fondazione Bruno Kessler 38123 Trento Italy
Fudan Gospel Joint Research Center for Precision Medicine Fudan University Shanghai 200438 China
Garvan Institute of Medical Research Sydney NSW Australia
Geneis 5 Guangshun North St Chaoyang District Beijing 100102 China
Geneplus PKUCare Industrial Park Changping District Beijing 102206 China
Genomics and Epigenetics Theme Garvan Institute of Medical Research Sydney NSW Australia
Genycell Biotech España Calle Garrido Atienza 18320 Santa Fe Granada Spain
Greenwood Genetic Center 106 Gregor Mendel Circle Greenwood SC 29646 USA
Human Genome Sequencing Center Baylor College of Medicine 1 Baylor Plaza Houston TX 77030 USA
Human Phenome Institute Fudan University Shanghai 201203 China
iGeneTech 8 Shengmingyuan Rd Zhongguancun Life Science Park Changping District Beijing 100080 China
Illumina Inc 5200 Illumina Way San Diego CA 92122 USA
Immuneering Corporation One Broadway 14th Floor Cambridge MA 02142 USA
Institute for Molecular Medicine Finland FI 00014 University of Helsinki Helsinki Finland
Institute of Pathology Fudan University Shanghai 200032 China
JMP Life Sciences SAS Institute Inc Cary NC 27519 USA
Kinghorn Centre for Clinical Genomics Garvan Institute of Medical Research Sydney NSW Australia
Laboratory for Molecular Genetics Endocrine Practice Im Weiher 12 69121 Heidelberg Germany
Lucas County Coroner's Office 2595 Arlington Ave Toledo OH 43614 USA
Małopolska Centre of Biotechnology Jagiellonian University Krakow Poland
Marketing Integrated DNA Technologies Inc 1710 Commercial Park Coralville IA 52241 USA
Massachusetts General Hospital Harvard Medical School Boston MA 02114 USA
Molecular Laboratory Prof F Raue Im Weiher 12 Heidelberg Germany
National Centre for Cardiovascular Research Madrid Spain
National Institute of Environmental Health Sciences Research Triangle Park NC 27709 USA
OmniSeq Inc 700 Ellicott St Buffalo NY 14203 USA
Q2 Solutions EA Genomics 5927 S Miami Blvd Morrisville NC 27560 USA
Research and Development Burning Rock Biotech Shanghai 201114 China
Research and Development QIAGEN Sciences Inc Frederick MD 21703 USA
Research and Development Roche Sequencing Solutions Inc 500 South Rosa Rd Madison WI 53719 USA
ResearchDx Inc 5 Mason Irvine CA 92618 USA
Science for Life Laboratory Karolinska Institutet Tomtebodavägen 23B 171 65 Solna Sweden
St Vincent's Clinical School Faculty of Medicine University of New South Wales Sydney NSW Australia
St Vincent's Clinical School University of New South Wales Sydney NSW 2010 Australia
Stanford Genome Technology Center Stanford University Palo Alto CA 94304 USA
Thermo Fisher Scientific 110 Miller Ave Ann Arbor MI 48104 USA
See more in PubMed
Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol. 2013;8(7):823–59. 10.1097/JTO.0b013e318290868f. PubMed
Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT, Hersey P, Kefford R, Lawrence D, Puzanov I, Lewis KD, Amaravadi RK, Chmielowski B, Lawrence HJ, Shyr Y, Ye F, Li J, Nolop KB, Lee RJ, Joe AK, Ribas A. Survival in BRAF V600–mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366(8):707–714. doi: 10.1056/NEJMoa1112302. PubMed DOI PMC
Berger MF, Mardis ER. The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol. 2018;15(6):353–365. doi: 10.1038/s41571-018-0002-6. PubMed DOI PMC
Cordova-Delgado M, Pinto MP, Retamal IN, Muñoz-Medel M, Bravo ML, Fernández MF, Cisternas B, Mondaca S, Sanchez C, Galindo H, Nervi B, Ibáñez C, Acevedo F, Madrid J, Peña J, Koch E, Maturana MJ, Romero D, de la Jara N, Torres J, Espinoza M, Balmaceda C, Liao Y, Li Z, Freire M, Gárate-Calderón V, Cáceres J, Sepúlveda-Hermosilla G, Lizana R, Ramos L, Artigas R, Norero E, Crovari F, Armisén R, Corvalán AH, Owen GI, Garrido M. High proportion of potential candidates for immunotherapy in a Chilean cohort of gastric cancer patients: results of the FORCE1 study. Cancers. 2019;11(9):1275. doi: 10.3390/cancers11091275. PubMed DOI PMC
Heeke AL, Pishvaian MJ, Lynce F, Xiu J, Brody JR, Chen W-J, et al. Prevalence of homologous recombination–related gene mutations across multiple cancer types. JCO Precis Oncol. 2018;2:PO.17.00286. 10.1200/PO.17.00286. PubMed PMC
Kacew AJ, Harris EJ, Lorch JH, Haddad RI, Chau NG, Rabinowits G, LeBoeuf NR, Schmults CD, Thakuria M, MacConaill LE, Hanna GJ. Chromosome 3q arm gain linked to immunotherapy response in advanced cutaneous squamous cell carcinoma. Eur J Cancer. 2019;113:1–9. doi: 10.1016/j.ejca.2019.03.004. PubMed DOI
Hiley CT, Le Quesne J, Santis G, Sharpe R, de Castro DG, Middleton G, et al. Challenges in molecular testing in non-small-cell lung cancer patients with advanced disease. Lancet. 2016;388(10048):1002–1011. doi: 10.1016/S0140-6736(16)31340-X. PubMed DOI
Martin P, Shiau CJ, Pasic M, Tsao M, Kamel-Reid S, Lin S, Tudor R, Cheng S, Higgins B, Burkes R, Ng M, Arif S, Ellis PM, Hubay S, Kuruvilla S, Laurie SA, Li J, Hwang D, Lau A, Shepherd FA, le LW, Leighl NB. Clinical impact of mutation fraction in epidermal growth factor receptor mutation positive NSCLC patients. Br J Cancer. 2016;114(6):616–622. doi: 10.1038/bjc.2016.22. PubMed DOI PMC
Groopman EE, Rasouly HM, Gharavi AG. Genomic medicine for kidney disease. Nat Rev Nephrol. 2018;14(2):83–104. doi: 10.1038/nrneph.2017.167. PubMed DOI PMC
Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, Chandramohan R, Liu ZY, Won HH, Scott SN, Brannon AR, O'Reilly C, Sadowska J, Casanova J, Yannes A, Hechtman JF, Yao J, Song W, Ross DS, Oultache A, Dogan S, Borsu L, Hameed M, Nafa K, Arcila ME, Ladanyi M, Berger MF. Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn. 2015;17(3):251–264. doi: 10.1016/j.jmoldx.2014.12.006. PubMed DOI PMC
Gagan J, Van Allen EM. Next-generation sequencing to guide cancer therapy. Genome Med. 2015;7(1):80. doi: 10.1186/s13073-015-0203-x. PubMed DOI PMC
Samstein RM, Lee C-H, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A, Kaley TJ, Kendall SM, Motzer RJ, Hakimi AA, Voss MH, Russo P, Rosenberg J, Iyer G, Bochner BH, Bajorin DF, al-Ahmadie HA, Chaft JE, Rudin CM, Riely GJ, Baxi S, Ho AL, Wong RJ, Pfister DG, Wolchok JD, Barker CA, Gutin PH, Brennan CW, Tabar V, Mellinghoff IK, DeAngelis LM, Ariyan CE, Lee N, Tap WD, Gounder MM, D’Angelo SP, Saltz L, Stadler ZK, Scher HI, Baselga J, Razavi P, Klebanoff CA, Yaeger R, Segal NH, Ku GY, DeMatteo RP, Ladanyi M, Rizvi NA, Berger MF, Riaz N, Solit DB, Chan TA, Morris LGT. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51(2):202–206. doi: 10.1038/s41588-018-0312-8. PubMed DOI PMC
Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34. 10.1186/s13073-017-0424-2. PubMed PMC
FoundationOne. FoundationOne CDx Technical Information. https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019C.pdf. Accessed 24 Feb. 2020.
Omics Core by NantHealth, Inc. 510(k) Premarket Notification. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm? ID=K190661. Accessed 24 Mar 2020.
PGDx elio tissue complete by Personal Genome Diagnostic, Inc. 510(k) Premarket Notification. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm? ID=K192063. Accessed 13 Dec 2020.
Lemery S, Keegan P, Pazdur R. First FDA approval agnostic of Cancer site — when a biomarker defines the indication. N Engl J Med. 2017;377(15):1409–1412. doi: 10.1056/NEJMp1709968. PubMed DOI
FDA approves third oncology drug that targets a key genetic driver of cancer, rather than a specific type of tumor. https://www.fda.gov/news-events/press-announcements/fda-approves-third-oncology-drug-targets-key-genetic-driver-cancer-rather-specific-type-tumor. Accessed 13 Mar 2020.
Meric-Bernstam F, Brusco L, Shaw K, Horombe C, Kopetz S, Davies MA, Routbort M, Piha-Paul SA, Janku F, Ueno N, Hong D, de Groot J, Ravi V, Li Y, Luthra R, Patel K, Broaddus R, Mendelsohn J, Mills GB. Feasibility of large-scale genomic testing to facilitate enrollment onto Genomically matched clinical trials. J Clin Oncol. 2015;33(25):2753–2762. doi: 10.1200/JCO.2014.60.4165. PubMed DOI PMC
Gray SW, Hicks-Courant K, Cronin A, Rollins BJ, Weeks JC. Physicians’ attitudes about multiplex tumor genomic testing. J Clin Oncol. 2014;32(13):1317–1323. doi: 10.1200/JCO.2013.52.4298. PubMed DOI PMC
Jameson GS, Petricoin EF, Sachdev J, Liotta LA, Loesch DM, Anthony SP, Chadha MK, Wulfkuhle JD, Gallagher RI, Reeder KA, Pierobon M, Fulk MR, Cantafio NA, Dunetz B, Mikrut WD, von Hoff DD, Robert NJ. A pilot study utilizing multi-omic molecular profiling to find potential targets and select individualized treatments for patients with previously treated metastatic breast cancer. Breast Cancer Res Treat. 2014;147(3):579–588. doi: 10.1007/s10549-014-3117-1. PubMed DOI
Tsongalis GJ, Peterson JD, de AFB, Tunkey CD, Gallagher TL, Strausbaugh LD, et al. Routine use of the ion torrent AmpliSeq™ Cancer hotspot panel for identification of clinically actionable somatic mutations. Clin Chem Lab Med. 2013;52(5):707–14. 10.1515/cclm-2013-0883. PubMed
Garofalo A, Sholl L, Reardon B, Taylor-Weiner A, Amin-Mansour A, Miao D, Liu D, Oliver N, MacConaill L, Ducar M, Rojas-Rudilla V, Giannakis M, Ghazani A, Gray S, Janne P, Garber J, Joffe S, Lindeman N, Wagle N, Garraway LA, van Allen EM. The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine. Genome Med. 2016;8(1):79. doi: 10.1186/s13073-016-0333-9. PubMed DOI PMC
Kuderer NM, Burton KA, Blau S, Rose AL, Parker S, Lyman GH, Blau CA. Comparison of 2 commercially available next-generation sequencing platforms in oncology. JAMA Oncol. 2017;3(7):996–998. doi: 10.1001/jamaoncol.2016.4983. PubMed DOI PMC
Garcia EP, Minkovsky A, Jia Y, Ducar MD, Shivdasani P, Gong X, Ligon AH, Sholl LM, Kuo FC, MacConaill LE, Lindeman NI, Dong F. Validation of OncoPanel: a targeted next-generation sequencing assay for the detection of somatic variants in cancer. Arch Pathol Lab Med. 2017;141(6):751–758. doi: 10.5858/arpa.2016-0527-OA. PubMed DOI
Jones WD. SEQC2 Oncopanel sequencing working group. A verified genomic reference sample for assessing performance of cancer panels detecting small variants of low allele frequency. Genome Biol. 10.1186/s13059-021-02316-z. PubMed PMC
MAQC Consortium The MicroArray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006;24(9):1151–1161. doi: 10.1038/nbt1239. PubMed DOI PMC
SEQC/MAQC-III Consortium A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the sequencing quality control consortium. Nat Biotechnol. 2014;32(9):903–914. doi: 10.1038/nbt.2957. PubMed DOI PMC
MAQC Consortium. Shi L, Campbell G, Jones WD, Campagne F, Wen Z, et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol. 2010;28(8):827–838. doi: 10.1038/nbt.1665. PubMed DOI PMC
Shi L, Perkins RG, Fang H, Tong W. Reproducible and reliable microarray results through quality control: good laboratory proficiency and appropriate data analysis practices are essential. Curr Opin Biotechnol. 2008;19(1):10–18. doi: 10.1016/j.copbio.2007.11.003. PubMed DOI
Xiao W, SEQC2 Somatic Mutation Working Group. Achieving reproducibility and accuracy in cancer mutation detection with whole-genome and whole-exome sequencing. bioRxiv. 2019. 10.1101/626440. Accessed 24 Feb 2020.
Fang LT, SEQC2 Somatic Mutation Working Group. Establishing reference samples for detection of somatic mutations and germline variants with NGS technologies. bioRxiv. 2019. 10.1101/625624. Accessed 24 Feb 2020.
Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 2020;10(12):1808–1825. doi: 10.1158/2159-8290.CD-20-0522. PubMed DOI PMC
Novoradovskaya N, Whitfield ML, Basehore LS, Novoradovsky A, Pesich R, Usary J, Karaca M, Wong WK, Aprelikova O, Fero M, Perou CM, Botstein D, Braman J. Universal reference RNA as a standard for microarray experiments. BMC Genomics. 2004;5(1):20. doi: 10.1186/1471-2164-5-20. PubMed DOI PMC
Thermo Scientific. AcroMetrix Oncology Hotspot Control Package Insert. https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FCDD%2Fmanuals%2FMAN0010820-AMX-Oncology-Hotspot-Ctrl-EN.pdf&title=QWNyb01ldHJpeCBPbmNvbG9neSBIb3RzcG90IENvbnRyb2wgUGFja2FnZSBJbnNlcnQgW0VOXQ==. Accessed 24 Apr 2019.
Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, et al. Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines. Cell Syst. 2018;6(3):271–81.e7. 10.1016/j.cels.2018.03.002. PubMed PMC
Campbell PJ, Getz G, Korbel JO, Stuart JM, Jennings JL, Stein LD, et al. Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82–93. 10.1038/s41586-020-1969-6. PubMed PMC
Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;15(2):121–132. doi: 10.1038/nrg3642. PubMed DOI
Zhang Y, SEQC2 Oncopanel Sequencing Working Group. Deep oncopanel sequencing reveals fixation time- and within block position-dependent quality degradation in FFPE processed samples. bioRxiv. 2021. 10.1101/2021.04.06.438687. Accessed 8 Apr 2021.
Willey JC, Morrison T, Austermiller B, Crawford EL, Craig DJ, Blomquist TM, et al. Advancing quality-control for NGS measurement of actionable mutations in circulating tumor DNA. bioRxiv. 2021. 10.1101/2021.04.06.438497. Accessed 8 Apr 2021. PubMed PMC
Allgäuer M, Budczies J, Christopoulos P, Endris V, Lier A, Rempel E, Volckmar AL, Kirchner M, von Winterfeld M, Leichsenring J, Neumann O, Fröhling S, Penzel R, Thomas M, Schirmacher P, Stenzinger A. Implementing tumor mutational burden (TMB) analysis in routine diagnostics—a primer for molecular pathologists and clinicians. Transl Lung Cancer Res. 2018;7(6):703–715. doi: 10.21037/tlcr.2018.08.14. PubMed DOI PMC
Buchhalter I, Rempel E, Endris V, Allgäuer M, Neumann O, Volckmar A-L, Kirchner M, Leichsenring J, Lier A, von Winterfeld M, Penzel R, Christopoulos P, Thomas M, Fröhling S, Schirmacher P, Budczies J, Stenzinger A. Size matters: dissecting key parameters for panel-based tumor mutational burden analysis. Int J Cancer. 2019;144(4):848–858. doi: 10.1002/ijc.31878. PubMed DOI
Budczies J, Allgäuer M, Litchfield K, Rempel E, Christopoulos P, Kazdal D, Endris V, Thomas M, Fröhling S, Peters S, Swanton C, Schirmacher P, Stenzinger A. Optimizing panel-based tumor mutational burden (TMB) measurement. Ann Oncol. 2019;30(9):1496–1506. doi: 10.1093/annonc/mdz205. PubMed DOI
Gong B, Xu J. SEQC2 Onco-panel Sequencing Working Group - PanCancer panel Study. BioProject PRJNA677997. NCBI. 2021. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA677997. Accessed 26 Feb 2021.
Gong B, Xu J. SEQC2 Onco-panel Sequencing Working Group - PanCancer panel Study. figshare. 2021. https://figshare.com/projects/SEQC2_Onco-panel_Sequencing_Working_Group_-_PanCancer_panel_Study/94520. Accessed 25 Feb 2021.