The role of foreign technologies and R&D in innovation processes within catching-up CEE countries

. 2021 ; 16 (4) : e0250307. [epub] 20210422

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33886616

Prior research showed that there is a growing consensus among researchers, which point out a key role of external knowledge sources such as external R&D and technologies in enhancing firms´ innovation. However, firms´ from catching-up Central and Eastern European (CEE) countries have already shown in the past that their innovation models differ from those applied, for example, in Western Europe. This study therefore introduces a novel two-staged model combining artificial neural networks and random forests to reveal the importance of internal and external factors influencing firms´ innovation performance in the case of 3,361 firms from six catching-up CEE countries (Czech Republic, Slovakia, Poland, Estonia, Latvia and Lithuania), by using the World Banks´ Enterprise Survey data from 2019. We confirm the hypothesis that innovators in the catching-up CEE countries depend more on internal knowledge sources and, moreover, that participation in the firms groups represents an important factor of firms´ innovation. Surprisingly, we reject the hypothesis that foreign technologies are a crucial source of external knowledge. This study contributes to the theories of open innovation and absorptive capacity in the context of selected CEE countries and provides several practical implications for firms.

Zobrazit více v PubMed

Beise M, Rennings K. Lead markets and regulation: a framework for analyzing the international diffusion of environmental innovations. Ecological Economics. 2005;52(1):5–17. 10.1016/j.ecolecon.2004.06.007 DOI

Garcia-Pozo A, Gémar G, Sevilla-Sevilla C. Determinants of eco-innovation: Comparative analysis of the industrial and services sectors. Environmental Engineering and Management Journal. 2016;15(7):1473–1479. 10.30638/eemj.2016.158 DOI

Acs ZJ, Varga A. Geography, endogenous growth, and innovation. International Regional Science Review. 2002; 25(1):132–148. 10.1177/016001702762039484 DOI

Audretsch D, Keilbach M. Entrepreneurship and regional growth: an evolutionary interpretation. Journal of Evolutionary Economics. 2004;14(5):605–616. 10.1007/s00191-004-0228-6 DOI

Huggins R, Thompson P. Entrepreneurship, innovation and regional growth: a network theory. Small Business Economics. 2015;45(1):103–128. 10.1007/s11187-015-9643-3 DOI

Foray D. The Economics of Knowledge. Cambridge, London: MIT Press; 2004.

Brinkley I. Defining the knowledge economy. London: The Work Foundation; 2006.

Halaskova M, Gavurova B, Kocisova K. Research and Development Efficiency in Public and Private Sectors: An Empirical Analysis of EU Countries by Using DEA Methodology. Sustainability. 2020;12:7050. 10.3390/su12177050 DOI

Carlile PR., Rebentisch ES. Into the Black Box: The Knowledge Transformation Cycle. Management Science. 2003;49(9):1180–1195. 10.1287/mnsc.49.9.1180.16564 DOI

Choi K, Narasimhan R, Kim SW. Opening the technological innovation black box: The case of the electronics industry in Korea. European Journal of Operational Research. 2016;250(1):192–203. 10.1016/j.ejor.2015.08.054 DOI

Hajek P, Stejskal J. Intelligent Prediction of Firm Innovation Activity—The Case of Czech Smart Cities. In: Information Innovation Technology in Smart Cities. Singapore: Springer; 2018. pp. 123–136. 10.1007/978-981-10-1741-4_9 DOI

Prokop V, Stejskal J, Hudec O. Collaboration for innovation in small CEE countries. E+M Ekonomie a Management. 2019; 22(1):130–144. 10.15240/tul/001/2019-1-009 DOI

Kallaste M, Kalantaridis C, Venesaar U. Open Innovation in Enterprise Strategies in Central and Eastern Europe: The Case of Estonia. Research in Economics and Business: Central and Eastern Europe. 2019;10(2): 42–63.

Olaru M, Dinu V, Keppler T, Mocan B, Mateiu A. Study on the open innovation practices in Romanian SMEs. Amfiteatru Economic. 2015;17(9):1129–1141.

Pece AM, Simona OEO, Salisteanu F. Innovation and economic growth: An empirical analysis for CEE countries. Procedia Economics and Finance. 2015;26:461–467. 10.1016/S2212-5671(15)00874-6. DOI

Vásquez-Urriago ÁR, Barge-Gil A, Rico AM. Science and technology parks and cooperation for innovation: Empirical evidence from Spain. Research Policy. 2016;45(1):137–147. 10.1016/j.respol.2015.07.006 DOI

Prokop V, Odei SA, Stejskal J. Propellants of University-Industry-Government Synergy: Comparative Study of Czech and Slovak Manufacturing Industries. Ekonomicky casopis. 2018;66(10):987–1001.

Niebuhr A, Peters JC, Schmidke A. Spatial sorting of innovative firms and heterogeneous effects of agglomeration on innovation in Germany. The Journal of Technology Transfer. 2020;45(5):1343–1375. 10.1007/s10961-019-09755-8 DOI

Odei SA, Stejskal J, Prokop V. Revisiting the Factors Driving Firms’ Innovation Performances: the Case of Visegrad Countries. Journal of the Knowledge Economy. 2020; forthcoming. 10.1007/s13132-020-00669-7 DOI

Prokop V, Stejskal J. The Effects of Cooperation and Knowledge Spillovers in Knowledge Environment. In: Stejskal J, Hajek P, Hudec O, editors. Knowledge Spillovers in Regional Innovation Systems. Cham: Springer Publishing; 2018. pp. 3–46). 10.1007/978-3-319-67029-4_1 DOI

Kafetzopoulos D, Skalkos D. An audit of innovation drivers: some empirical findings in Greek agri-food firms. European Journal of Innovation Management. 2019;22(2):361–382. 10.1108/EJIM-07-2018-0155 DOI

Li Y, Jiang W, Yang L, Wu T. On neural networks and learning systems for business computing. Neurocomputing. 2018;275:1150–1159. 10.1016/j.neucom.2017.09.054 DOI

Nawar S., & Mouazen A. M. (2017). Comparison between random forests, artificial neural networks and gradient boosted machines methods of on-line Vis-NIR spectroscopy measurements of soil total nitrogen and total carbon. Sensors. 2017;17(10):2428. 10.3390/s17102428 PubMed DOI PMC

McCann P, Ortega-Argilés R. Modern regional innovation policy. Cambridge Journal of Regions, Economy and Society. 2013;6(2):187–216. 10.1093/cjres/rst007 DOI

Mytelka LK, Smith K. Policy learning and innovation theory: an interactive and co-evolving process. Research Policy. 2002;31(8):1467–1479. 10.1016/S00487333(02)00076-8 DOI

Guisado-González M, Vila-Alonso M, Guisado-Tato M. Radical innovation, incremental innovation and training: Analysis of complementarity. Technology in Society. 2016;44:48–54. 10.1016/j.techsoc.2015.08.003 DOI

Coccia M. Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technology Analysis. 2017;29(9):1048–1061. 10.1080/09537325.2016.1268682 DOI

Slater SF, Mohr JJ, Sengupta S. Radical product innovation capability: Literature Review, Synthesis, and Illustrative Research Propositions. The Journal of Product Innovation Management. 2014;31(3):552–566. 10.1111/jpim.12113 DOI

Jensen MB, Johnson B, Lorenz E, Lundvall BÅ. Forms of knowledge and modes of innovation. Research Policy. 2007;36(5):680–693. 10.1016/j.respol.2007.01.006 DOI

Lundvall BÅ, Johnson B. The Learning Economy. Journal of Industry Studies. 1994;1(2):23–42. 10.1080/13662719400000002 DOI

Arrow KJ. Economic welfare and the allocations of resources of invention. In: The Rate and Direction of Inventive Activity: Economic and Social Factors. Princeton: Princeton University Press; 1962. pp. 609–626.

Karlsson C, Manduchi A. Knowledge spillovers in a spatial context—a critical review and assessment. In: Fischer MM, Fröhlich J, editors. Knowledge, complexity and innovation systems. Heidelberg: Springer; 2001. pp 101–123.

Borrás S, Edquist C. Innovation Policy for Knowledge Production and R&D: the Investment Portfolio Approach. In: Crespi F, Quatraro F, editors. The Economics of Knowledge, Innovation and Systemic Technology Policy. London and New York: Routledge; 2015. pp. 361–382.

Fischer MM, Scherngell T, Jansenberger E. The Geography of Knowledge Spillovers Between High-Technology Firms in Europe: Evidence from a Spatial Interaction Modeling Perspective. Geographical Analysis. 2006;38(3):288–309. 10.1111/j.1538-4632.2006.00687.x DOI

Fischer MM., Varga A. Spatial knowledge spillovers and university research: Evidence from Austria. Annals of Regional Science. 2003;37(2):303–322. 10.1007/s001680200115 DOI

Proximity Boschma R. and innovation: a critical assessment. Regional Studies. 2005;39(1):61–74. 10.1080/0034340052000320887 DOI

Boschma R, Frenken K. The spatial evolution of innovation networks: a proximity perspective. In: Boschma R, Martin R., editors. The Handbook of Evolutionary Economic Geography. Cheltenham: Edward Elgar Publishing; 2010. pp. 120–135.

Fitjar RD, Gjelsvik M. Why do firms collaborate with local universities?. Regional Studies. 2018; 52(11):1525–1536. 10.1080/00343404.2017.1413237 DOI

Laursen K, Reichstein T, Salter A. Exploring the Effect of Geographical Proximity and University Quality on University-Industry Collaboration in the United Kingdom. Regional Studies. 2011;45(4):507–523. 10.1080/00343400903401618 DOI

Ritala P, Hurmelinna Laukkanen P. Incremental and Radical Innovation in Coopetition-The Role of Absorptive Capacity and Appropriability. Journal of Product Innovation Management. 2013;30(1):154–169. 10.1111/j.1540-5885.2012.00956.x DOI

Marzucchci A, Antonioli D, Montresor S. Industry-research Cooperation within and across Regional Boundaries. What does Innovation Policy Add?. Papers in Regional Science. 2015;94(3):499–525. 10.1111/pirs.12079 DOI

Powell WW, Grodal S. Networks of innovators. In: Fagerberg J, Mowery DC, Nelson RR, editors. The Oxford Handbook of Innovation. Oxford: Oxford University Press; 2005. pp. 56–85.

Etzkowitz H. The triple helix: university-industry-government innovation in action. 1st ed. New York: Routledge; 2008.

Leydesdorff L. The knowledge-based economy: modeled, measured, simulated. Boca Raton: Universal publishers; 2006. 10.1207/s15516709cog0000_96 DOI

Carayannis EG, Grigoroudis E, Campbell DFJ, Meissner D, Stamati D. The ecosystem as helix: an exploratory theory-building study of regional co-opetitive entrepreneurial ecosystems as Quadruple/Quintuple Helix Innovation Models. R&D Management. 2018;48(1):148–162. 10.1111/radm.12300 DOI

Chesbrough HW. Open Innovation: The New Imperative for Creating and Profiting from Technology. Boston: Harvard Business School Press; 2003.

Chesbrough H, Crowther AK Beyond high tech: early adopters of open innovation in other industries. R&D Management. 2006;36(3):229–236. 10.1111/j.1467-9310.2006.00428.x DOI

Chesbrough H, Bogers M. Explicating open innovation: clarifying an emerg-ing paradigm for understanding innovation. In: Chesbrough H, Vanhaverbeke W, West J, editors. New Frontiers in Open Innovation. Oxford: Oxford University Press; 2014. pp. 3–28.

West J, Salter A, Vanhaverbeke W, Chesbrough H. Open innovation: The next decade. Research Policy. 2014; 43(5):805–811. 10.1016/j.respol.2014.03.001 DOI

Camisón C, Villar-López A. Organizational innovation as an enabler of technological innovation capabilities and firm performance. Journal of Business Research. 2014;67(1):2891–2902. 10.1016/j.jbusres.2012.06.004 DOI

Dost M, Badir YF, Sambasivan M, Umrani WA. Open-and-closed process innovation generation and adoption: Analyzing the effects of sources of knowledge. Technology in Society. 2020; 62(August 2020):1–8. 10.1016/j.techsoc.2020.101309 DOI

Kotkova Striteska M, Prokop V. Dynamic Innovation Strategy Model in Practice of Innovation Leaders and Followers in CEE Countries—A Prerequisite for Building Innovative Ecosystems. Sustainability. 2020;12(9), 3918. 10.3390/su12093918 DOI

Hu D, Wang Y, Li Y. How does open innovation modify the relationship between environmental regulations and productivity?. Business Strategy and the Environment. 2017;26(8):1132–1143. 10.1002/bse.1974 DOI

Parisi ML, Schiantarelli F, Sembenelli A. Productivity, innovation and R&D: Micro evidence for Italy. European Economic Review. 2006;50(8):2037–2061. 10.1016/j.euroecorev.2005.08.002 DOI

Sharma SK, Sharma M. Examining the role of trust and quality dimensions in the actual usage of mobile banking services: An empirical investigation. International Journal of Information Management. 2019;44:65–75.

Fu X., Pietrobelli C., Soete L. The role of foreign technology and indigenous innovation in the emerging economies: technological change and catching-up. World development. 2011;39(7):1204–1212.

Lee JS, Park JH, Bae ZT. The effects of licensing-in on innovative performance in different technological regimes. Research Policy. 2017;46(2):485–496. 10.1016/j.respol.2016.12.002 DOI

Parsaie A. Predictive modeling the side weir discharge coefficient using neural network. Modeling Earth Systems and Environment. 2016;2(2):1–11. 10.1007/s40808-016-0123-9 DOI

Camelo HN, Lucio PS, Leal Junior JBV, Carvalho PCM, Santos DG. Innovative hybrid models for forecasting time series applied in wind generation based on the combination of time series models with artificial neural networks. Energy. 2018;151, 347–357. 10.1016/j.energy.2018.03.077 DOI

Dahikar SS, Rode SV. Agricultural crop yield prediction using artificial neural network approach. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering. 2014;2(1): 683–686.

Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology. 1996;49(11):1225–1231. 10.1016/s0895-4356(96)00002-9 PubMed DOI

Chiddarwar SS, Babu NR. Comparison of RBF and MLP neural networks to solve inverse kinematic problem for 6R serial robot by a fusion approach. Engineering Applications of Artificial Intelligence. 2010;23(7):1083–1092. 10.1016/j.engappai.2010.01.028 DOI

Berg J, Nyström K. A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing. 2018;317:28–41. 10.1016/j.neucom.2018.06.056 DOI

Ebrahimzadeh A, Khazaee A. Detection of premature ventricular contractions using MLP neural networks: A comparative study. Measurement. 2010;43(1):103–112. 10.1016/j.measurement.2009.07.002 DOI

Sung AH. Ranking importance of input parameters of neural networks. Expert Systems with Applications. 1998;15(3–4):405–411. 10.1016/S0957-4174(98)00041-4 DOI

Hadzima-Nyarko M, Nyarko EK, Morić D. A neural network based modelling and sensitivity analysis of damage ratio coefficient. Expert Systems with Applications. 2011;38(10):13405–13413. 10.1016/j.eswa.2011.04.169 DOI

Beucher A, Møller AB, Greve MH. Artificial neural networks and decision tree classification for predicting soil drainage classes in Denmark. Geoderma. 2019;352: 351–359. 10.1016/j.geoderma.2017.11.004 DOI

Frosst N, Hinton G. Distilling a neural network into a soft decision tree. arXiv:1711.09784. [Preprint]. 2017 [cited 2020 May 15]. Available from: https://arxiv.org/pdf/1711.09784.pdf.

Hsieh CH, Lu RH, Lee NH, Chiu WT, Hsu MH, Li YCJ. Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. Surgery. 2011;149(1):87–93. 10.1016/j.surg.2010.03.023 PubMed DOI

Olutayo VA, Eludire AA. Traffic accident analysis using decision trees and neural networks. International Journal of Information Technology and Computer Science. 2014; 2:22–28. 10.5815/ijitcs.2014.02.03 DOI

Breiman, L. Using adaptive bagging to debias regressions. Technical Report 547, Statistics Dept. UCB, 1999.

Gislason PO, Benediktsson JA, Sveinsson JR. Random forests for land cover classification. Pattern recognition letters. 2006;27(4):294–300.

Breiman L. Bagging predictors. Machine Learning. 1996; 26(2):123–140.

Breiman L. Random forests. Machine learning. 2001;45(1):5–32.

Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. Belmont, CA: Wadsworth. International Group, 432, 1984, pp. 151–166.

Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. Boca Raton: Champmaen & Hall/CRC; 1984.

Wu D. Supplier selection: A hybrid model using DEA, decision tree and neural network. Expert systems with Applications. 2009;36(5):9105–9112. 10.1016/j.eswa.2008.12.039 DOI

Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. Journal of biomedical informatics. 2002;35(5–6):352–359. 10.1016/s1532-0464(03)00034-0 PubMed DOI

Kamiński B, Jakubczyk M, Szufel P. A framework for sensitivity analysis of decision trees. Central European journal of operations research. 2018;26(1):135–159. 10.1007/s10100-017-0479-6 PubMed DOI PMC

Sharma C. Effects of R&D and foreign technology transfer on productivity and innovation: an enterprises-level evidence from Bangladesh. Asian Journal of Technology Innovation. 2019; 27(1): 46–70.

Leong LY, Hew TS, Ooi KB, Wei J. Predicting mobile wallet resistance: A two-staged structural equation modeling-artificial neural network approach. International Journal of Information Management. 2020;51, 102047.

Kurt I, Ture M, Kurum AT. Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Systems with Applications. 2008;34(1):366–374. 10.1016/j.eswa.2006.09.004 DOI

Hajek P, Henriques R. Modelling innovation performance of European regions using multi-output neural networks. PLoS ONE. 2017;12(10):1–21. 10.1371/journal.pone.0185755 PubMed DOI PMC

Belso-Martínez JA, Mas-Verdu F, Chinchilla-Mira L. How do interorganizational networks and firm group structures matter for innovation in clusters: Different networks, different results. Journal of Small Business Management. 2020; 58(1):73–105.

Odei SA, Stejskal J. Do firms R&D collaborations with the science system and enterprise group partners stimulate their product and process innovations?. Economies. 2019; 7(2): 43.

Park BI, Choi J. Control mechanisms of MNEs and absorption of foreign technology in cross-border acquisitions. International Business Review. 2014;23(1):130–144. 10.1016/j.ibusrev.2013.03.004 DOI

Frank AG, Cortimiglia MN, Ribeiro JLD, de Oliveira LS. The effect of innovation activities on innovation outputs in the Brazilian industry: Market-orientation vs. technology-acquisition strategies. Research Policy. 2016;45(3): 577–592. 10.1016/j.respol.2015.11.011 DOI

Oughton C, Landabaso M, Morgan K. The regional innovation paradox: innovation policy and industrial policy. The Journal of Technology Transfer. 2002;27(1):97–110. 10.1023/A:1013104805703 DOI

Chesbrough H. The future of open innovation: The future of open innovation is more extensive, more collaborative, and more engaged with a wider variety of participants. Research-Technology Management. 2017;60(1):35–38. 10.1080/08956308.2017.1255054 DOI

Lewin AY, Massini S, Peeters C. Microfoundations of internal and external absorptive capacity routines. Organization science. 2011;22(1): 81–98.

Thompson M. Social capital, innovation and economic growth. Journal of behavioral and experimental economics. 2018;73(April 2018):46–52. 10.1016/j.socec.2018.01.005 DOI

Chalmers DM, Balan-Vnuk E. Innovating not-for-profit social ventures: Exploring the microfoundations of internal and external absorptive capacity routines. International Small Business Journal. 2013;31(7):785–810.

Wang J, Cheng GHL, Chen T, Leung K. Team creativity/innovation in culturally diverse teams: A meta‐analysis. Journal of Organizational Behavior. 2019;40(6):693–708. 10.1002/job.2362 DOI

Kang JH, Solomon GT, Choi DY. CEOs’ leadership styles and managers’ innovative behaviour: Investigation of intervening effects in an entrepreneurial context. Journal of Management Studies. 2015;52(4):531–554. 10.1111/joms.12125 DOI

Andersson M., Lööf H. Small business innovation: firm level evidence from Sweden. The Journal of Technology Transfer. 2012;37(5):732–754.

Barroso-Castro C, Villegas-Periñan MD M, Casillas-Bueno, JC. How boards’ internal and external social capital interact to affect firm performance. Strategic Organization. 2016;14(1):6–31.

Bendig D, Foege JN, Endriß S, Brettel M. The Effect of Family Involvement on Innovation Outcomes: The Moderating Role of Board Social Capital. Journal of Product Innovation Management. 2020;37(3):249–272.

Zhang G., Hu M. Y., Patuwo B. E., & Indro D. C. (1999). Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. European journal of operational research, 116(1), 16–32.

Setiono R. Feedforward neural network construction using cross validation. Neural Computation. 2001; 13(12):2865–2877. 10.1162/089976601317098565 PubMed DOI

Zhang J. Developing robust non-linear models through bootstrap aggregated neural networks. Neurocomputing. 1999; 25(1–3):93–113.

Tiwari MK, Adamowski J. Urban water demand forecasting and uncertainty assessment using ensemble wavelet‐bootstrap‐neural network models. Water Resources Research. 2013;49(10):6486–6507.

Leung FH F, Lam HK, Ling SH, Tam PK S. Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Transactions on Neural networks. 2003; 14(1):79–88. 10.1109/TNN.2002.804317 PubMed DOI

Tsai JT, Chou JH, Liu TK. Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm. IEEE Transactions on Neural Networks. 2006; 17(1):69–80. 10.1109/TNN.2005.860885 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...