Phylogenomics resolves deep subfamilial relationships in Malvaceae s.l
Language English Country Great Britain, England Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33892500
PubMed Central
PMC8496235
DOI
10.1093/g3journal/jkab136
PII: 6248091
Knihovny.cz E-resources
- Keywords
- Malvaceae s.l, historical diversification, next-generation sequencing, phylogenomics, plastomes,
- MeSH
- Bayes Theorem MeSH
- Biological Evolution MeSH
- Phylogeny MeSH
- Malvaceae * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Malvaceae s.l., the most diverse family within Malvales, includes well-known species of great economic importance like cotton, cacao, and durian. Despite numerous phylogenetic analyses employing multiple markers, relationships between several of its nine subfamilies, particularly within the largest lineage /Malvadendrina, remain unclear. In this study, we attempted to resolve the relationships within the major clades of Malvaceae s.l. using plastid genomes of 48 accessions representing all subfamilies. Maximum likelihood and Bayesian analyses recovered a fully resolved and well-supported topology confirming the split of the family into /Byttneriina (/Grewioideae +/Byttnerioideae) and /Malvadendrina. Within /Malvadendrina, /Helicteroideae occupied the earliest branching position, followed by /Sterculioideae, /Brownlowioideae, /Tiliodeae, and /Dombeyoideae formed a clade sister to /Malvatheca (/Malvoideae +/Bombacoideae), a grouping morphologically supported by the lack of androgynophore. Results from dating analyses suggest that all subfamilies originated during hot or warm phases in the Late Cretaceous to Paleocene. This study presents a well-supported phylogenetic framework for Malvaceae s.l. that will aid downstream revisions and evolutionary studies of this economically important plant family.
Alliance for Conservation Tree Genomics 06000 Luang Prabang Laos
Biodiversity Genomics Team Guangxi University Nanning Guangxi 530005 China
Herbarium UPRRP Department of Biology University of Puerto Rico San Juan PR 00925 2537 USA
Institute of Parasitology Biology Centre CAS 37005 České Budějovice Czech Republic
National Parks Board Singapore Botanic Gardens Singapore 259569 Singapore
Naturalis Biodiversity Center 2333 CR Leiden The Netherlands
Université Paris Saclay INRAE Etude du Polymorphisme des Génomes Végétaux 91000 Evry France
See more in PubMed
Abdullah F, Mehmood I, Shahzadi S, Waseem B, Mirza, et al.2020. Chloroplast genome of Hibiscus rosa-sinensis (Malvaceae): comparative analyses and identification of mutational hotspots. Genomics. 112:581–591. PubMed
Alverson WS. 1991. A synopsis of Phragmotheca (Bombacaceae), with two new species and a new subspecies. Brittonia. 43:73–87.
Alverson WS, Kenneth KG, Baum DA, Chase MW, Swensen SMR, et al.1998. Circumscription of the malvales and relationships to other rosidae: evidence from rbcL sequence data. Am J Bot. 85:876–887. PubMed
Alverson WS, Whitlock B, Nyffeler R, Bayer C, Baum DA.. 1999. Phylogeny of the core malvales from ndhF sequence data. Am J Bot. 86:1474–1486. PubMed
Areces-Berazain F, Ackerman JD.. 2016. Phylogenetics, delimitation and historical biogeography of the pantropical tree genus Thespesia (Malvaceae, Gossypieae). Bot J Linn Soc. 181:171–198.
Areces-Berazain F, Ackerman JD.. 2017. Diversification and fruit evolution in eumalvoids (Malvaceae). Bot J Linn Soc. 184:401–417.
Areces-Berazain F, Vega-Lopez VJ.. 2019. Hampea lanceolata (Malvaceae, Malvoideae), a new species from Chiapas and Oaxaca, Mexico. Phytotaxa. 404:121–126.
Areces-Berazain F, Wang Y, Hinsinger DD, Strijk JS.. 2020. Plastome comparative genomics in maples resolves the infrageneric backbone relationships. PeerJ. 8:e9483. PubMed PMC
Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, et al.2011. The genome of Theobroma cacao. Nat Genet. 43:101–108. PubMed
Baum DA, Oginuma K.. 1994. A Review of chromosome numbers in Bombacaceae with new counts for Adansonia. Taxon. 43:11–20.
Baum AD, William AS, Nyffeler R.. 1998. A Durian by any other name: taxonomy and nomenclature of the core Malvales. Harv Pap Bot. 3:315–330.
Baum AD, Smith SD, Yen A, William AS, Nyffeler R, et al.2004. Phylogenetic relationships of malvatheca (Bombacoideae and Malvoideae; Malvaceae sensu lato) as inferred from plastid DNA sequences. Am J Bot 91:1863–1871. PubMed
Bayer C, Fay MF, Bruijn AY, Savolainen V, Morton CM, et al.1999. Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpb and rbcL DNA sequences. Bot J Linn Soc. 129:267–303.
Bayer C, Kubitzki K.. 2003. Malvaceae. In: Kubitzki K, Bayer C, editors. Dicotyledons: The Families and Genera of Vascular Plants, Malvales, Capparales and Non-betalain Caryophyllales, Vol. 5, Berlin: Springer, p. 225–312.
Berry EW. 1938. Tertiary flora from the Rio Pichileufu. Argentina Spec Pap Geol Soc Am. 12:1–149.
Bentham G, Hooker JD.. 1867. Genera Plantarum ad Exemplaria Imprimis in Herbariis Kewensibus Servata Definita, vol. 1, part 1. London, UK: Reeve.
Binh HT, Van Ngoc N, Tagane S, Toyama H, Mase K, et al.2018. Taxonomic study of Quercus langbianensis complex based on morphology and DNA barcodes of classic and next generation sequences. PhytoKeys. 95:37–70. PubMed PMC
Bossert S, Danforth BN.. 2018. On the universality of target-enrichment baits for phylogenomic research. Methods Ecol Evol. 9:1453–1460.
Bovini MG. 2016. Two new species of Sida (Malvaceae: Malvoideae) for Brazil. Phytotaxa. 282:291–295.
Brunken U, Muellner AN.. 2012. A New tribal classification of Grewioideae (Malvaceae) based on morphological and molecular phylogenetic evidence. Syst Bot. 37:699–711.
Carvalho MR, Herrera FA, Jaramillo CA, Wing SL, Callejas R.. 2011. Paleocene Malvaceae from northern South America and their biogeographical implications. Am J Bot. 98:1337–1355. PubMed
Chambers TC, Godwin H.. 1961. The fine structure of the Pollen Wall of Tilia platyphyllos. New Phytol. 60:393–399.
Chambers TC, Godwin H.. 1971. Scanning electron microscopy of Tilia pollen. New Phytol. 70:687–692.
Cheek M. 2007. The identity and conservation status of Indagator fordii (Brownlowiaceae/Malvaceae-Brownlowioideae, Formerly Tiliaceae), a monotypic tree genus from Queensland. Australia. Kew Bull. 62:641–645.
Christenhusz MJM, Byng JW.. 2016. The number of known plants species in the world and its annual increase. Phytotaxa. 261:201–217.
Conover JL, Karimi N, Stenz N, Tate JA, Wolff K, et al.2019. A Malvaceae Mystery: a mallow maelstrom of genome multiplications and maybe misleading methods? J. Integr. Plant Biol. 61:12–31. PubMed
Cvetković T, Hinsinger DD, Strijk JS.. 2017. The first complete chloroplast sequence of a major tropical timber tree in the Meranti family: Vatica odorata (Dipterocarpaceae). Mitochondrial DNA B. 2:52–53. PubMed PMC
Cvetković T, Hinsinger DD, Strijk JS.. 2019. Exploring evolution and diversity of Chinese Dipterocarpaceae using next-generation sequencing. Sci. Rep. 9:11639. PubMed PMC
Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, et al.2019. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 37:291–294. PubMed PMC
De Carvalho-Sobrinho JG, De Queiroz LP.. 2008. Ceiba rubriflora (Malvaceae: Bombacoideae), a new species from Bahia, Brazil. Kew Bull. 63:649–653.
De Carvalho-Sobrinho JG, William AS, Alcantara S, Queiroz LP, Mota AC, et al.2016. Revisiting the phylogeny of Bombacoideae (Malvaceae): novel relationships, morphologically cohesive clades, and a new tribal classification based on multilocus phylogenetic analyses. Mol Phylogenet Evol. 101:56–74. PubMed
Dehay C. 1941. L’appareil libero-ligneux foliaire des Sterculiacées. Ann Sci Nat Bot XI. 2:127–128.
Dehay C. 1942. Remarques sur 1∋αππαρειλ libero-ligneux foliaire des Sterculiacées Bull. Soc Bot France. 89:76–78.
Dierckxsens N, Mardulyn P, Smits G.. 2016. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45:e18. PubMed PMC
Doyle JJ, Doyle JL.. 1990. Isolation of plant DNA from fresh tissue. Focus. 12:13–15.
Drummond AJ, Rambaut A.. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 7:214. PubMed PMC
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A.. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4:e88. PubMed PMC
Dutra TL, Batten DJ.. 2000. Upper cretaceous floras of King George Island, West Antarctica, and their palaeoenvironmental and phytogeographic implications. Cretac. Res. 21:181–209.
Edlin HL. 1935a. A critical revision of certain taxonomic groups of the malvales. New Phytol. 34:1–20.
Edlin HL. 1935b. A critical revision of certain taxonomic groups of the Malvales, part II. New Phytol. 34:122–143.
El Naggar SMI. 2001. Systematic implications of seed coat morphology in Malvaceae. Pak J Biol. Sci. 4:822–828.
Falque M, Kodia AA, Sounigo O, Eskes AB, Charrier A.. 1992. Gamma-irradiation of cacao (Theobroma cacao L.) pollen: Effect on pollen grain viability, germination and mitosis and on fruit set. Euphytica. 64:167–172.
Feigin CY, Newton AH, Doronina L, Schmitz J, Hipsley CA.. 2018. Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore. Nat Ecol Evol. 2:182–192. PubMed
Fryxell PA. 1968. A redefinition of the tribe Gossypieae. Bot Gaz. 129:296–308.
Fuchs HP. 1967. Pollen morphology of the family Bombacaceae. Rev Palaeobot Palyno. 3:119–132.
Ganesan SK, Middleton DJ, Wilkie P.. 2020. A revision of Pterospermum (Malvaceae: Dombeyoideae) in Malesia. Edinburgh J Bot. 77:161–241.
Hamdy R, Shamso E.. 2010. Pollen morphology of Sterculiaceae (s.str.) in Egypt and its taxonomic significance. Egypt J Bot. 50:103–117.
Heath TA, Hedtke SM, Hillis DM.. 2008. Taxon sampling and accuracy of phylogenetic analyses. J Syst Evol. 46:239–257.
Heckenhauer J, Samuel R, Ashton PS, Paun, Kamariah AS. 2018. Phylogenomics resolves evolutionary relationships and provides insights into floral evolution in the tribe Shoreeae (Dipterocarpaceae). Mol Phylogenet Evol. 127:1–13. PubMed
Hernández-Gutiérrez R, Magallón S.. 2019. The timing of Malvales evolution: incorporating its extensive fossil record to inform about lineage diversification. Mol Phylogenet Evol. 140:106606. PubMed
Hinsinger DD, Strijk JS.. 2015. Complete chloroplast genome sequence of Castanopsis concinna (Fagaceae), a threatened species from Hong Kong and South-Eastern China. Mitochondrial DNA A. 28:65–66. PubMed
Huber BT, MacLeod KG, Watkins DK, Coffin MF.. 2018. The rise and fall of the Cretaceous Hot Greenhouse climate. Global Planet Change. 167:1–23.
Hutchinson J. 1926. The Families of Flowering Plants. London, UK: Macmillan.
Hutchinson J. 1967. The Genera of Flowering Plants, Dicotyledones, vol. 2. Oxford, UK: Clarendon Press.
Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, et al.2019. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Syst Biol. 68:594–606. PubMed PMC
Jones MR, Good JM.. 2016. Detecting selection in natural populations: making sense of genome scans and towards alternative solutions, targeted capture in evolutionary and ecological genomics. Mol Ecol. 25:185–202. PubMed PMC
Judd WS, Manchester RS.. 1997. Circumscription of Malvaceae (Malvales) as determined by a preliminary cladistic analysis of morphological, anatomical, palynological, and chemical characters. Brittonia. 49:384–405.
Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ.. 2008. Plant Systematics: A Phylogenetic Approach, 3rd ed.Sunderland: Sinauer Associates Inc.
Katoh K, Standley DM.. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772–780. PubMed PMC
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, et al.2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28:1647–1649. PubMed PMC
Kostermans AJGH. 1958. The genus Durio Adans. (Bombac.). Reinwardtia. 4:47–153.
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A.. 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference, version 0.9.0. Bioinformatics. 35:4453–4455. PubMed PMC
Kubitzki K, Chase MW.. 2003. Introduction to Malvales. In: Kubitzki K, Bayer C, editors. The Families and Genera of Vascular Plants. Flowering Plants. Dicotyledons: Malvales, Capparales and Nonbetalain Caryophyllales. vol. 5, Berlin, Germany: Springer-Verlag, p. 12–17.
Le Péchon T, Gigord LD.. 2014. On the relevance of molecular tools for taxonomic revision in Malvales, Malvaceae s.l., and Dombeyoideae. Methods Mol Biol. 1115:337–363. PubMed
Liu C, Shi L, Zhu Y, Chen H, Zhang J, et al.2012. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genom. 13:1–7. PubMed PMC
Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T.. 2015. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207:437–453. PubMed
Miller MA, Pfeiffer W, Schwartz T.. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees.Proceedings of the Gateway Computing Environments Workshop (GCE), 2010, New Orleans, LA, USA, p. 1–8.
Muller J. 1968. Palynology of the Pedawan and Plateau Sandstone Formations (Cretaceous-Eocene) in Sarawak. Malaysia Micropaleontol. 14:1–37.
Nee S, May RM, Harvey PH.. 1994. The reconstructed evolutionary process. Philos Trans R Soc B Biol Sci. 344:305–311. PubMed
Nyffeler R, Baum DA.. 2000. Phylogenetic relationships of the durians (Bombacaceae-Durioneae or/Malvaceae/Helicteroideae/Durioneae) based on chloroplast and nuclear ribosomal DNA Sequences. Plant Syst Evol. 224:55–82.
Nyffeler R, Baum DA.. 2001. Systematics and character evolution in Durio s. lat (Malvaceae/Helicteroideae/Durioneae or Bombacaceae-Durioneae). Org Divers Evol. 1:165–178.
Nyffeler R, Bayer C, Alverson WS, Yen A, Whitlock BA, et al.2005. Phylogenetic analysis of the Malvadendrina clade (Malvaceae s.l.) based on plastid DNA sequences. Org Divers Evol. 5:109–123.
ORG.ASM. 2016. ORG.ASM: organellar assembler. (Accessed: 2019 February 1). http://pythonhosted.org/ORG.asm/.
Perveen A, Qaiser M.. 2009. Pollen flora of Pakistan- Malvaceae: Dombeyoideae- LXII. Pak J Bot. 41:491–494.
Rambaut A, Drummond AJ.. 2017a. LogCombiner v.2.4.7. Part of the BEAST2 package. (Accessed: 2019 June 10). http://beast2.cs.auckland.ac.nz/.
Rambaut A, Drummond AJ.. 2017b. TreeAnnotator v 2.4.7. Part of the BEAST2 package. (Accessed: 2019 June 10). http://beast2.cs.auckland.ac.nz/.
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA.. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 67:901–904. PubMed PMC
Richardson JE, Whitlock BA, Meerow AW, Madriñán S.. 2015. The age of chocolate: a diversification history of Theobroma and Malvaceae. Front Ecol Evol. 3:120.
Rouse GE, Hopkins WS Jr, Piel KM.. 1970. Palynology of some Late Cretaceous and Early Tertiary deposits in British Columbia and adjacent Alberta. In: Kosanke RM, Cross AT, editors. Symposium on Palynology of the Late Cretaceous and Early Tertiary, vol. 27, p. ; 213–246. Geological Society of America, Boulder, Colorado, USA.
Silveira Júnior CEA, Lima LCL, Saba MD.. 2017. Pollen morphology of Waltheria L. (Malvaceae-Byttnerioideae) from Bahia. Acta Bot Bras. 31:597–612.
Singh RP, Chauhan MPS.. 1984. Seed structure and systematic position of Hampea nutricia (Malvaceae). Plant Syst Evol. 147:55–61.
Smith DS, Baum DA.. 2003. Core Malvales. http://tolweb.org/Core_Malvales/. In: The Tree of Life Web Project. (Accessed: 2019 May 15). http://tolweb.org/.
Schenk JJ. 2016. Consequences of secondary calibrations on divergence time estimates. PLoS One. 11:e0148228. PubMed PMC
Schulte JA. 2013. Undersampling taxa will underestimate molecular divergence dates: an example from the South American Lizard Clade Liolaemini. Int J Evol Biol. 2013:628467. PubMed PMC
Schumann K. 1890. Tiliaceae, Malvaceae, Bombacaceae, Sterculiaceae. In: Engler A, Prantl K, editors. Die Naturlichen Pflanzenfamilien. Vol. III, 6. Leipzig: W. Engelmann, p. 8–99.
Soltis DE, Gitzendanner MA, Stull G, Chester M, Chanderbali A, et al.2013. The potential of genomics in plant systematics. Taxon. 62:886–898.
Stevens PF. 2001. Angiosperm phylogeny website, version 2017 July 14 [more or less continuously updated]. (Accessed: 2019 May 20). http://www.mobot.org/MOBOT/Research/APweb/.
Strijk JS, Binh HT, Ngoc NV, Pereira JT, Slik JF, et al.2020. Museomics for reconstructing historical floristic exchanges: divergence of stone oaks across Wallacea. PLoS One. 15:e0232936. PubMed PMC
Suchard MA, Rambaut A.. 2009. Many-core algorithms for statistical phylogenetics. Bioinformatics. 25:1370–1376. PubMed PMC
Suyama Y, Matsuki Y.. 2015. MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci. Rep. 5:1–12. PubMed PMC
Takhtajan A. 1997. Diversity and Classification of Flowering Plants. New York, NY: Columbia University Press.
Takhtajan A. 2009. Diversity and Classification of Flowering Plants. New York, NY: Springer Science & Business Media.
Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, et al.2017. GeSeq - versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45:W6–W11. PubMed PMC
Van Der Hammen T. 1954. El desarrollo de la flora Columbiana en los periodos geologicos I: Maectrichtiano hasta terciario mas inferior (Una investigación Palinológica de la formación de Guaduas y equivalentes). Boletín Geológico. Tomo II, No Bogotá: 49–106.
von Balthazar M, Alverson WS, Schönenberger J, Baum DA.. 2004. Comparative floral development and androecium structure in Malvoideae (Malvaceae s.l.). Int. J. Plant. Sci. 165:445–473.
von Balthazar MJ, Schönenberger WS, Alverson H, Bayer Hanka C.. 2006. Structure and evolution of the androecium in the Malvatheca clade (Malvaceae s.l.) and implications for Malvaceae and Malvales. Plant Syst Evol. 260:171–197.
Wheeler EA, Lehman TM.. 2000. Late Cretaceous woody dicots from the Aguja and Javelina Formations, Big Bend National Park, Texas, USA. IAWA J. 21:83–120.
Wheeler EA, Srivastava R, Manchester SR, Baas P, Wiemann M.. 2017. Surprisingly modern latest Cretaceous–earliest Paleocene woods of India. IAWA J. 38:456–542.
Whitlock B, Bayer C, Baum DA.. 2001. Phylogenetic relationships and floral evolution of the Byttnerioideae (‘Sterculiaceae’ or Malvaceae s.l.) based on sequences of the chloroplast gene ndhF. Syst. Bot. 26:420–437.
Wilkie P, Clark A, Pennington RT, Cheek M, Bayer C, et al.2006. Phylogenetic relationships within the subfamily Sterculioideae (Malvaceae /Sterculiaceae- Sterculieae) using the chloroplast gene ndhF. Syst. Bot. 31:160–170.
Woodcock DW, Meyer HW, Prado Y.. 2019. The Piedra Chamana fossil woods (Eocene, Peru), II. IAWA J. 40:551–595.
Zachos J, Pagani M, Sloan L, Thomas E, Billups K.. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 292:686–693. PubMed