Silver distribution in chronic wounds and the healing dynamics of chronic wounds treated with dressings containing silver and octenidine
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33908652
DOI
10.1096/fj.202100065r
Knihovny.cz E-zdroje
- Klíčová slova
- distribution of silver, hyaluronic acid, octenidine, silver, wound,
- MeSH
- antiinfekční látky farmakologie MeSH
- hojení ran účinky léků MeSH
- iminy MeSH
- lidé středního věku MeSH
- lidé MeSH
- obvazy statistika a číselné údaje MeSH
- popálení farmakoterapie MeSH
- pyridiny farmakologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stříbro farmakologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiinfekční látky MeSH
- iminy MeSH
- octenidine MeSH Prohlížeč
- pyridiny MeSH
- stříbro MeSH
Although silver is an efficient antimicrobial and is a widely used antiseptic in wound healing, previous studies have reported the cytotoxic in vitro effects of silver dressings. Moreover, few studies have addressed the distribution of silver in chronic wounds. The study compares the healing of chronic wounds treated with a standard-of-care silver dressing (Ag-CMC) and a dressing containing antiseptic octenidine (OCT-HA). Biopsies were taken from two wound areas before the commencement of treatment (baseline), after 2 weeks and after 6 weeks (the end of the study). We analyzed the histopathologic wound-healing score, silver distribution, and expression of selected genes. The wound-healing score improved significantly in the wounded area treated with OCT-HA after 2 weeks compared to the baseline and the Ag-CMC. The Ag-CMC wound areas improved after 6 weeks compared to the baseline. Moreover, collagen maturation and decreases in the granulocyte and macrophage counts were faster in the OCT-HA parts. Treatment with OCT-HA resulted in less wound slough. The silver, visualized via autometallography, penetrated approximately 2 mm into the wound tissue and associated around capillaries and ECM fibers, and was detected in phagocytes. The metallothionein gene expression was elevated in the Ag-CMC wound parts. This exploratory study determined the penetration of silver into human chronic wounds and changes in the distribution thereof during treatment. We observed that silver directly affects the cells in the wound and elevates the metallothionein gene expression. Octenidine and hyaluronan dressings provide a suitable alternative to silver and carboxymethyl cellulose dressings without supplying silver to the wound.
Cell Physiology Research Group Contipro a s Dolni Dobrouc Czech Republic
Department of Dermatovenereology 3rd Faculty of Medicine Charles University Prague Czech Republic
Zobrazit více v PubMed
Olsson M, Järbrink K, Divakar U, et al. The humanistic and economic burden of chronic wounds: a systematic review: the burden of chronic wounds. Wound Rep Reg. 2019;27:114-125.
Rahim K, Saleha S, Zhu X, Huo L, Basit A, Franco OL. Bacterial contribution in chronicity of wounds. Microb Ecol. 2017;73:710-721.
Djokić S. Antimicrobial activity of electrochemically oxidized silver and copper. ECS Trans. 2010;25:7-15.
Djokić SS, Burrell RE. Behavior of silver in physiological solutions. J Electrochem Soc. 1998;145:1426-1430.
Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R. Antimicrobial silver: uses, toxicity and potential for resistance. BioMetals. 2013;26:609-621.
Hwang I, Lee J, Hwang JH, Kim K-J, Lee DG. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J. 2012;279:1327-1338.
Bisson J-F, Hidalgo-Lucas S, Bouschbacher M, Thomassin L. Effects of TLC-Ag dressings on skin inflammation. J Dermatol. 2013;40:463-470.
Nadworny PL, Landry BK, Wang J, Tredget EE, Burrell RE. Does nanocrystalline silver have a transferable effect? Wound Repair Regen. 2010;18:254-265.
Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017;12:3941-3965.
Zhang X-F, Shen W, Gurunathan S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Mol Sci. 2016;17:1603.
Fumal I, Braham C, Paquet P, Piérard-Franchimont C, Piérard GE. The beneficial toxicity paradox of antimicrobials in leg ulcer healing impaired by a polymicrobial flora: a proof-of-concept study. Dermatology. 2002;204(Suppl 1):70-74.
Rosen J, Landriscina A, Kutner A, et al. Silver sulfadiazine retards wound healing in mice via alterations in cytokine expression. J Invest Dermatol. 2015;135:1459-1462.
Barillo DJ, Croutch CR, Barillo AR, Reid F, Singer A. Safety evaluation of silver-ion dressings in a porcine model of deep dermal wounds: a GLP study. Toxicol Lett. 2020;319:111-118.
Constable JD, Morris PJ, Burke JF, Constable JD. Absorption pattern of silver nitrate from open wounds. Plast Reconstr Surg. 1967;39:342-348.
Barillo DJ, Croutch CR, Reid F, Culley T, Sosna W, Roseman J. Blood and tissue silver levels following application of silver-based dressings to sulfur mustard chemical burns. J Burn Care Res. 2017;38:e818-e823.
Pfurtscheller K, Petnehazy T, Goessler W, Bubalo V, Kamolz L-P, Trop M. Transdermal uptake and organ distribution of silver from two different wound dressings in rats after a burn trauma. Wound Repair Regen. 2014;22:654-659.
Rigo C, Ferroni L, Tocco I, et al. Active silver nanoparticles for wound healing. Int J Mol Sci. 2013;14:4817-4840.
Coombs CJ, Wan AT, Masterton JP, Conyers RAJ, Pedersen J, Chia YT. Do burn patients have a silver lining? Burns. 1992;18:179-184.
Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol. 2018;98:257-267.
Roman M, Rigo C, Castillo-Michel H, et al. Spatiotemporal distribution and speciation of silver nanoparticles in the healing wound. Analyst. 2020;145(20):6456-6469.
Hübner N-O, Siebert J, Kramer A. Octenidine dihydrochloride, a modern antiseptic for skin, mucous membranes and wounds. Skin Pharmacol Physiol. 2010;23:244-258.
Kodedová M, Sigler K, Lemire BD, Gášková D. Fluorescence method for determining the mechanism and speed of action of surface-active drugs on yeast cells. Biotechniques. 2011;50:58-63.
Malanovic N, Ön A, Pabst G, Zellner A, Lohner K. Octenidine: novel insights into the detailed killing mechanism of Gram-negative bacteria at a cellular and molecular level. Int J Antimicrob Agents. 2020;56:106146.
Günther F, Blessing B, Dapunt U, Mischnik A, Mutters NT. Ability of chlorhexidine, octenidine, polyhexanide and chloroxylenol to inhibit metabolism of biofilm-forming clinical multidrug-resistant organisms. J Infect Prev. 2021;22:12-18.
Bührer C, Bahr S, Siebert J, Wettstein R, Geffers C, Obladen M. Use of 2% 2-phenoxyethanol and 0.1% octenidine as antiseptic in premature newborn infants of 23-26 weeks gestation. J Hosp Infect. 2002;51:305-307.
Vanscheidt W, Harding K, Téot L, Siebert J. Effectiveness and tissue compatibility of a 12-week treatment of chronic venous leg ulcers with an octenidine based antiseptic-a randomized, double-blind controlled study. Int Wound J. 2012;9:316-323.
Stahl J, Braun M, Siebert J, Kietzmann M. The percutaneous permeation of a combination of 0.1% octenidine dihydrochloride and 2% 2-phenoxyethanol (octenisept®) through skin of different species in vitro. BMC Vet Res. 2011;7(1):44.
Nikolić N, Kienzl P, Tajpara P, Vierhapper M, Matiasek J, Elbe-Bürger A. The antiseptic octenidine inhibits langerhans cell activation and modulates cytokine expression upon superficial wounding with tape stripping. J Immunol Res. 2019;2019:1-11. https://doi.org/10.1155/2019/5143635.
Seiser S, Janker L, Zila N, et al. Octenidine-based hydrogel shows anti-inflammatory and protease-inhibitory capacities in wounded human skin. Sci Rep. 2021;11:32.
Pavlík V, Sojka M, Mazúrová M, Velebný V. Dual role of iodine, silver, chlorhexidine and octenidine as antimicrobial and antiprotease agents. PLoS ONE. 2019;14:e0211055.
Hämmerle G, Strohal R. Efficacy and cost-effectiveness of octenidine wound gel in the treatment of chronic venous leg ulcers in comparison to modern wound dressings. Int Wound J. 2016;13:182-188.
Ghatak S, Maytin EV, Mack JA, et al. Roles of proteoglycans and glycosaminoglycans in wound healing and fibrosis. Int J Cell Biol. 2015;2015:1-20. https://doi.org/10.1155/2015/834893.
Petrey AC, de la Motte CA. Hyaluronan in inflammatory bowel disease: cross-linking inflammation and coagulation. Matrix Biol. 2019;78-79:314-323.
Cyphert JM, Trempus CS, Garantziotis S. Size matters: molecular weight specificity of hyaluronan effects in cell biology. Int J Cell Biol. 2015;2015:563818.
Longaker MT, Chiu ES, Adzick NS, Stern M, Harrison MR, Stern R. Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann Surg. 1991;213:292-296.
Mahedia M, Shah N, Amirlak B. Clinical evaluation of hyaluronic acid sponge with zinc versus placebo for scar reduction after breast surgery. Plast Reconstr Surg Glob Open. 2016;4:e791.
Monavarian M, Kader S, Moeinzadeh S, Jabbari E. Regenerative scar-free skin wound healing. Tissue Eng Part B Rev. 2019;25:294-311.
Catanzano O, D'Esposito V, Acierno S, et al. Alginate-hyaluronan composite hydrogels accelerate wound healing process. Carbohyd Polym. 2015;131:407-414.
Shatirishvili M, Burk AS, Franz CM, et al. Epidermal-specific deletion of CD44 reveals a function in keratinocytes in response to mechanical stress. Cell Death Dis. 2016;7:e2461.
Voigt J, Driver VR. Hyaluronic acid and wound healing. Wound Repair Regen. 2012;20:317-331.
Panuncialman J, Hammerman S, Carson P, Falanga V. Wound edge biopsy sites in chronic wounds heal rapidly and do not result in delayed overall healing of the wound. Wound Repair Regen. 2010;18:21-25.
Danscher G, Stoltenberg M, Juhl S. How to detect gold, silver and mercury in human brain and other tissues by autometallographic silver amplification. Neuropathol Appl Neurobiol. 1994;20:454-467.
Sultana J, Molla MR, Kamal M, Shahidullah M, Begum F, Bashar MA. Histological differences in wound healing in Maxillofacial region in patients with or without risk factors. Bangladesh J Pathol. 2009;1(24):3-8.
Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676-682.
R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.
Klein P, Sojka M, Kucera J, et al. A porcine model of skin wound infected with a polybacterial biofilm. Biofouling. 2018;34:226-236.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402-408.
Tak YK, Pal S, Naoghare PK, Rangasamy S, Song JM. Shape-dependent skin penetration of silver nanoparticles: does it really matter? Sci Rep. 2015;5:16908.
Fredriksson C, Kratz G, Huss F. Accumulation of silver and delayed re-epithelialization in normal human skin: an ex-vivo study of different silver dressings. Wounds. 2009;21:116-123.
Trop M, Novak M, Rodl S, Hellbom B, Kroell W, Goessler W. Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma. 2006;60:648-652.
Mulley G, Jenkins ATA, Waterfield NR. Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds. PLoS ONE. 2014;9:e94409.
Brouillard C, Bursztejn AC, Latarche C, et al. Silver absorption and toxicity evaluation of silver wound dressings in 40 patients with chronic wounds. J Eur Acad Dermatol Venereol. 2018;32(12):2295-2299.
Dalzon B, Aude-Garcia C, Diemer H, et al. The longer the worse: a combined proteomic and targeted study of the long-term versus short-term effects of silver nanoparticles on macrophages. Environ Sci Nano. 2020;7:2032-2046.
Brzicova T, Javorkova E, Vrbova K, et al. Molecular responses in THP-1 macrophage-like cells exposed to diverse nanoparticles. Nanomaterials. 2019;9:687.
Paul A, Ju H, Rangasamy S, Shim Y, Song JM. Nanosized silver (II) pyridoxine complex to cause greater inflammatory response and less cytotoxicity to RAW264.7 macrophage cells. Nanoscale Res Lett. 2015;10:140.
Souza HR, de Azevedo LR, Possebon L, et al. Heterogeneity of mast cells and expression of Annexin A1 protein in a second degree burn model with silver sulfadiazine treatment. PLoS ONE. 2017;12:e0173417.
Shim I, Choi K, Hirano S. Oxidative stress and cytotoxic effects of silver ion in mouse lung macrophages J774.1 cells. J Appl Toxicol. 2017;37:471-478.
Kaewamatawong T, Banlunara W, Maneewattanapinyo P, Thammachareon C, Ekgasit S. Acute and subacute pulmonary toxicity caused by a single intratracheal instillation of colloidal silver nanoparticles in mice: pathobiological changes and metallothionein responses. J Environ Pathol Toxicol Oncol. 2014;33:59-68.
Lansdown AB, Sampson B, Laupattarakasem P, Vuttivirojana A. Silver aids healing in the sterile skin wound: experimental studies in the laboratory rat. Br J Dermatol. 1997;137:728-735.
Inoue K, Takano H, Shimada A, Satoh M. Metallothionein as an anti-inflammatory mediator. Mediators Inflamm. 2009;2009:1-7.
Krasowski G, Jawień A, Tukiendorf A, et al. A comparison of an antibacterial sandwich dressing vs dressing containing silver. Wound Repair Regen. 2015;23:525-530.
Winter H, Haas N. Granulation tissue flap technique in extensive wounds for covering exposed bone after tumor excision. Dermatol Surg. 2000;26:829-834.
Chen Z, Dai T, Chen X, Tan L, Shi C. Activation and regulation of the granulation tissue derived cells with stemness-related properties. Stem Cell Res Ther. 2015;6:85.
Hartmann CA, Rode H, Kramer B. ActicoatTM stimulates inflammation, but does not delay healing, in acute full-thickness excisional wounds. Int Wound J. 2016;13:1344-1348.
Nadworny PL, Wang J, Tredget EE, Burrell RE. Anti-inflammatory activity of nanocrystalline silver-derived solutions in porcine contact dermatitis. J Inflamm. 2010;7:13.
Thomason HA, Lovett JM, Spina CJ, Stephenson C, McBain AJ, Hardman MJ. Silver oxysalts promote cutaneous wound healing independent of infection. Wound Repair Regen. 2018;26(2):144-152.
You C, Li Q, Wang X, et al. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci Rep. 2017;7:10489.
Nešporová K, Pavlík V, Šafránková B, et al. Effects of wound dressings containing silver on skin and immune cells. Sci Rep. 2020;10:15216.
figshare
10.6084/m9.figshare.11890155, 10.6084/m9.figshare.11855562, 10.6084/m9.figshare.11842413, 10.6084/m9.figshare.11842398, 10.6084/m9.figshare.11842383