Prostate Cancer Diagnostic Algorithm as a "Road Map" from the First Stratification of the Patient to the Final Treatment Decision

. 2021 Apr 07 ; 11 (4) : . [epub] 20210407

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33917253

Grantová podpora
CZ.02.1.01/0.0/0.0/16_013/0001674. BBMRI-CZ: Biobank network - a versatile platform for the research of the etiopathogenesis of diseases
FNPl, 00669806 Ministry of Health, Czech Republic - conceptual development of research organization (Faculty Hospital in Pilsen - FNPl, 00669806)

The diagnostics of prostate cancer are currently based on three pillars: prostate biomarker panel, imaging techniques, and histological verification. This paper presents a diagnostic algorithm that can serve as a "road map": from initial patient stratification to the final decision regarding treatment. The algorithm is based on a review of the current literature combined with our own experience. Diagnostic algorithms are a feature of an advanced healthcare system in which all steps are consciously coordinated and optimized to ensure the proper individualization of the treatment process. The prostate cancer diagnostic algorithm was created using the prostate specific antigen and in particular the Prostate Health Index in the first line of patient stratification. It then continued on the diagnostic pathway via imaging techniques, biopsy, or active surveillance, and then on to the treatment decision itself. In conclusion, the prostate cancer diagnostic algorithm presented here is a functional tool for initial patient stratification, comprehensive staging, and aggressiveness assessment. Above all, emphasis is placed on the use of the Prostate Health Index (PHI) in the first stratification of the patients as a predictor of aggressiveness and clinical stage of prostrate cancer (PCa). The inclusion of PHI in the algorithm significantly increases the accuracy and speed of the diagnostic procedure and allows to choose the optimal pathway just from the beginning. The use of advanced diagnostic techniques allows us to move towards to a more advanced level of cancer care. This diagnostics algorithm has become a standard of care in our hospital. The algorithm is continuously validated and modified based on our results.

Zobrazit více v PubMed

Database. [(accessed on 30 January 2020)]; Available online: https://Gco.Iarc.Fr/Today/Data/Factsheets/Cancers/27-Prostate-Fact-Sheet.Pdf.

Kucera R., Pecen L., Topolcan O., Dahal A.R., Costigliola V., Giordano F.A., Golubnitschaja O. Prostate Cancer Management: Long-Term Beliefs, Epidemic Developments in the Early Twenty-First Century and 3PM Dimensional Solutions. EPMA J. 2020;11:399–418. doi: 10.1007/s13167-020-00214-1. PubMed DOI PMC

Catalona W.J. Prostate Cancer Screening. Med. Clin. N. Am. 2018;102:199–214. doi: 10.1016/j.mcna.2017.11.001. PubMed DOI PMC

Nevo A., Navaratnam A., Andrews P. Prostate Cancer and the Role of Biomarkers. Abdom. Radiol. 2020;45:2120–2132. doi: 10.1007/s00261-019-02305-8. PubMed DOI

Dolejsova O., Kucera R., Fuchsova R., Topolcan O., Svobodova H., Hes O., Eret V., Pecen L., Hora M. The Ability of Prostate Health Index (PHI) to Predict Gleason Score in Patients with Prostate Cancer and Discriminate Patients Between Gleason Score 6 and Gleason Score Higher Than 6—A Study on 320 Patients After Radical Prostatectomy. Technol. Cancer Res. Treat. 2018;17:153303381878737. doi: 10.1177/1533033818787377. PubMed DOI PMC

Wilt T.J., Jones K.M., Barry M.J., Andriole G.L., Culkin D., Wheeler T., Aronson W.J., Brawer M.K. Follow-up of Prostatectomy versus Observation for Early Prostate Cancer. N. Engl. J. Med. 2017;377:132–142. doi: 10.1056/NEJMoa1615869. PubMed DOI

Maxeiner A., Kilic E., Matalon J., Friedersdorff F., Miller K., Jung K., Stephan C., Busch J. The Prostate Health Index PHI Predicts Oncological Outcome and Biochemical Recurrence after Radical Prostatectomy—Analysis in 437 Patients. Oncotarget. 2017;8:79279–79288. doi: 10.18632/oncotarget.17476. PubMed DOI PMC

Ferda J., Ferdová E., Baxa J., Fínek J., Topolčan O. 18F-Fluorocholine PET/MRI in Restaging of Prostatic Carcinoma in Relation to PSA Level and Detection of Active Disease. Anticancer Res. 2018;38:4139. doi: 10.21873/anticanres.12705. PubMed DOI

Stejskal J., Adamcová V., Záleský M., Novák V., Čapoun O., Fiala V., Dolejšová O., Sedláčková H., Veselý Š., Zachoval R. The Predictive Value of the Prostate Health Index vs. Multiparametric Magnetic Resonance Imaging for Prostate Cancer Diagnosis in Prostate Biopsy. World J. Urol. 2020:1–7. doi: 10.1007/s00345-020-03397-4. PubMed DOI

Novak V., Vesely S., Luksanová H., Prusa R., Capoun O., Fiala V., Dolejsová O., Sedlacková H., Kucera R., Stejskal J., et al. Preoperative Prostate Health Index Predicts Adverse Pathology and Gleason Score Upgrading after Radical Prostatectomy for Prostate Cancer. BMC Urol. 2020;20:144. doi: 10.1186/s12894-020-00711-5. PubMed DOI PMC

Bergdahl A.G., Wilderäng U., Aus G., Carlsson S., Damber J.-E., Frånlund M., Geterud K., Khatami A., Socratous A., Stranne J., et al. Role of Magnetic Resonance Imaging in Prostate Cancer Screening: A Pilot Study within the Göteborg Randomised Screening Trial. Eur. Urol. 2016;70:566–573. doi: 10.1016/j.eururo.2015.12.006. PubMed DOI PMC

Bratan F., Niaf E., Melodelima C., Chesnais A.L., Souchon R., Mège-Lechevallier F., Colombel M., Rouvière O. Influence of Imaging and Histological Factors on Prostate Cancer Detection and Localisation on Multiparametric MRI: A Prospective Study. Eur. Radiol. 2013;23:2019–2029. doi: 10.1007/s00330-013-2795-0. PubMed DOI

Turkbey B., Rosenkrantz A.B., Haider M.A., Padhani A.R., Villeirs G., Macura K.J., Tempany C.M., Choyke P.L., Cornud F., Margolis D.J., et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur. Urol. 2019;76:340–351. doi: 10.1016/j.eururo.2019.02.033. PubMed DOI

Rowe S.P., Pienta K.J., Pomper M.G., Gorin M.A. PSMA-RADS Version 1.0: A Step towards Standardizing the Interpretation and Reporting of PSMA–Targeted PET Imaging Studies. Eur. Urol. 2018;73:485–487. doi: 10.1016/j.eururo.2017.10.027. PubMed DOI PMC

Giovacchini G., Giovannini E., Leoncini R., Riondato M., Ciarmiello A. PET and PET/CT with Radiolabeled Choline in Prostate Cancer: A Critical Reappraisal of 20 Years of Clinical Studies. Eur. J. Nucl. Med. Mol. Imaging. 2017;44:1751–1776. doi: 10.1007/s00259-017-3700-x. PubMed DOI

Rauscher I., Maurer T., Fendler W.P., Sommer W.H., Schwaiger M., Eiber M. 68Ga-PSMA Ligand PET/CT in Patients with Prostate Cancer: How We Review and Report. Cancer Imaging. 2016;16:1–10. doi: 10.1186/s40644-016-0072-6. PubMed DOI PMC

Fendler W.P., Schmidt D.F., Wenter V., Thierfelder K.M., Zach C., Stief C., Bartenstein P., Kirchner T., Gildehaus F.J., Gratzke C., et al. 68Ga-PSMA-HBED-CC PET/CT Detects Location and Extent of Primary Prostate Cancer. J. Nucl. Med. 2016;57:1720–1725. doi: 10.2967/jnumed.116.172627. PubMed DOI

Von Eyben F.E., Picchio M., von Eyben R., Rhee H., Bauman G. 68Ga-Labeled Prostate-Specific Membrane Antigen Ligand Positron Emission Tomography/Computed Tomography for Prostate Cancer: A Systematic Review and Meta-Analysis. Eur. Urol. Focus. 2018;4:686–693. doi: 10.1016/j.euf.2016.11.002. PubMed DOI

Roach P.J., Francis R., Emmett L., Hsiao E., Kneebone A., Hruby G., Eade T., Nguyen Q.A., Thompson B.D., Cusick T., et al. The Impact of 68Ga-PSMA PET/CT on Management Intent in Prostate Cancer: Results of an Australian Prospective Multicenter Study. J. Nucl. Med. 2018;59:82–88. doi: 10.2967/jnumed.117.197160. PubMed DOI

Ahmed H.U., El-Shater Bosaily A., Brown L.C., Gabe R., Kaplan R., Parmar M.K., Collaco-Moraes Y., Ward K., Hindley R.G., Freeman A., et al. Diagnostic Accuracy of Multi-Parametric MRI and TRUS Biopsy in Prostate Cancer (PROMIS): A Paired Validating Confirmatory Study. Lancet. 2017;389:815–822. doi: 10.1016/S0140-6736(16)32401-1. PubMed DOI

Kasivisvanathan V., Stabile A., Neves J.B., Giganti F., Valerio M., Shanmugabavan Y., Clement K.D., Sarkar D., Philippou Y., Thurtle D., et al. Magnetic Resonance Imaging-Targeted Biopsy Versus Systematic Biopsy in the Detection of Prostate Cancer: A Systematic Review and Meta-Analysis. Eur. Urol. 2019;76:284–303. doi: 10.1016/j.eururo.2019.04.043. PubMed DOI

Zettinig O., Shah A., Hennersperger C., Eiber M., Kroll C., Kübler H., Maurer T., Milletarì F., Rackerseder J., Zu Berge C.S., et al. Multimodal Image-Guided Prostate Fusion Biopsy Based on Automatic Deformable Registration. Int. J. Comput. Assist. Radiol. Surg. 2015;10:1997–2007. doi: 10.1007/s11548-015-1233-y. PubMed DOI

Eiber M., Nekolla S.G., Maurer T., Weirich G., Wester H.-J., Schwaiger M. 68Ga-PSMA PET/MR with Multimodality Image Analysis for Primary Prostate Cancer. Abdom. Imaging. 2015;40:1769–1771. doi: 10.1007/s00261-014-0301-z. PubMed DOI

Liu C., Liu T., Zhang Z., Zhang N., Du P., Yang Y., Liu Y., Yu W., Li N., Gorin M.A., et al. 68Ga-PSMA PET/CT Combined with PET/Ultrasound-Guided Prostate Biopsy Can Diagnose Clinically Significant Prostate Cancer in Men with Previous Negative Biopsy Results. J. Nucl. Med. 2020;61:1314. doi: 10.2967/jnumed.119.235333. PubMed DOI PMC

Epstein J., Egevad L., Amin M., Delahunt B., Srigley J., Humphrey P., Al Hussain T., Algaba F., Aron M., Berman D., et al. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016;40:244–252. doi: 10.1097/PAS.0000000000000530. PubMed DOI

Xu J., Bock C., Janisse J., Schwartz K.L., Triest J., Cher M.L., Goodman M. Urologists’ Perceptions of Active Surveillance and Their Recommendations for Low-Risk Prostate Cancer Patients. UrologyJanuary. 2021 doi: 10.1016/j.urology.2020.12.037. in press. PubMed DOI

Bul M., Zhu X., Valdagni R., Pickles T., Kakehi Y., Rannikko A., Bjartell A., van der Schoot D.K., Cornel E.B., Conti G.N., et al. Active Surveillance for Low-Risk Prostate Cancer Worldwide: The PRIAS Study. Eur. Urol. 2013;63:597–603. doi: 10.1016/j.eururo.2012.11.005. PubMed DOI

Afshar-Oromieh A., Zechmann C.M., Malcher A., Eder M., Eisenhut M., Linhart H.G., Holland-Letz T., Hadaschik B.A., Giesel F.L., Debus J., et al. Comparison of PET Imaging with a 68Ga-Labelled PSMA Ligand and 18F-Choline-Based PET/CT for the Diagnosis of Recurrent Prostate Cancer. Eur. J. Nucl. Med. Mol. Imaging. 2014;41:11–20. doi: 10.1007/s00259-013-2525-5. PubMed DOI PMC

Mottet N., van den Bergh R.C.N., Briers E., Cornford P., De Santis M., Fanti S., Gillessen S., Grummet J., Henry A.M., Lam T.B., et al. European Association of Urology Guidelines. 2020 Edition. European Association of Urology Guidelines Office; Arnhem, The Netherlands: 2020. EAU—ESTRO—ESUR—SIOG Guidelines on Prostate Cancer 2020.

Anttinen M., Ettala O., Malaspina S., Jambor I., Sandell M., Kajander S., Rinta-Kiikka I., Schildt J., Saukko E., Rautio P., et al. A Prospective Comparison of 18F-Prostate-Specific Membrane Antigen-1007 Positron Emission Tomography Computed Tomography, Whole-Body 1.5 T Magnetic Resonance Imaging with Diffusion-Weighted Imaging, and Single-Photon Emission Computed Tomography/Computed Tomography with Traditional Imaging in Primary Distant Metastasis Staging of Prostate Cancer (PROSTAGE) Eur. Urol. Oncol. 2020:S2588931120300900. doi: 10.1016/j.euo.2020.06.012. PubMed DOI

Adeleke S., Latifoltojar A., Sidhu H., Galazi M., Shah T.T., Clemente J., Davda R., Payne H.A., Chouhan M.D., Lioumi M., et al. Localising Occult Prostate Cancer Metastasis with Advanced Imaging Techniques (LOCATE Trial): A Prospective Cohort, Observational Diagnostic Accuracy Trial Investigating Whole–Body Magnetic Resonance Imaging in Radio-Recurrent Prostate Cancer. BMC Med. Imaging. 2019;19:90. doi: 10.1186/s12880-019-0380-y. PubMed DOI PMC

Campli E., Delli Pizzi A., Seccia B., Cianci R., d’Annibale M., Antonella C., Cinalli S., Castellan P., Navarra R., Iantorno R., et al. Diagnostic Accuracy of Biparametric vs Multiparametric MRI in Clinically Significant Prostate Cancer: Comparison between Readers with Different Experience. Eur. J. Radiol. 2018;101:17–23. doi: 10.1016/j.ejrad.2018.01.028. PubMed DOI

Xu L., Zhang G., Shi B., Liu Y., Zou T., Yan W., Xiao Y., Xue H., Feng F., Lei J., et al. Comparison of Biparametric and Multiparametric MRI in the Diagnosis of Prostate Cancer. Cancer Imaging. 2019;19:90. doi: 10.1186/s40644-019-0274-9. PubMed DOI PMC

Alabousi M., Salameh J.-P., Gusenbauer K., Samoilov L., Jafri A., Yu H., Alabousi A. Biparametric vs. Multiparametric Prostate Magnetic Resonance Imaging for the Detection of Prostate Cancer in Treatment-Naïve Patients: A Diagnostic Test Accuracy Systematic Review and Meta-Analysis. BJU Int. 2019;124:209–220. doi: 10.1111/bju.14759. PubMed DOI

Pernický J., Tupý R., Cibulková J., Ferda J. Changes in the prostate assessment using classification PI-RADS 2.1. Ceska Radiol. 2020;74:47–54.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...