Global Landscape Review of Serotype-Specific Invasive Pneumococcal Disease Surveillance among Countries Using PCV10/13: The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) Project
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
001
World Health Organization - International
UL1 TR001863
NCATS NIH HHS - United States
INV-010429 / OPP1189065
Bill and Melinda Gates Foundation
PubMed
33918127
PubMed Central
PMC8066045
DOI
10.3390/microorganisms9040742
PII: microorganisms9040742
Knihovny.cz E-zdroje
- Klíčová slova
- global, invasive pneumococcal disease, pneumococcal conjugate vaccines, pneumococcal meningitis, surveillance,
- Publikační typ
- časopisecké články MeSH
Serotype-specific surveillance for invasive pneumococcal disease (IPD) is essential for assessing the impact of 10- and 13-valent pneumococcal conjugate vaccines (PCV10/13). The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project aimed to evaluate the global evidence to estimate the impact of PCV10/13 by age, product, schedule, and syndrome. Here we systematically characterize and summarize the global landscape of routine serotype-specific IPD surveillance in PCV10/13-using countries and describe the subset that are included in PSERENADE. Of 138 countries using PCV10/13 as of 2018, we identified 109 with IPD surveillance systems, 76 of which met PSERENADE data collection eligibility criteria. PSERENADE received data from most (n = 63, 82.9%), yielding 240,639 post-PCV10/13 introduction IPD cases. Pediatric and adult surveillance was represented from all geographic regions but was limited from lower income and high-burden countries. In PSERENADE, 18 sites evaluated PCV10, 42 PCV13, and 17 both; 17 sites used a 3 + 0 schedule, 38 used 2 + 1, 13 used 3 + 1, and 9 used mixed schedules. With such a sizeable and generally representative dataset, PSERENADE will be able to conduct robust analyses to estimate PCV impact and inform policy at national and global levels regarding adult immunization, schedule, and product choice, including for higher valency PCVs on the horizon.
Centre for Disease Control Department of Health and Community Services Darwin City NT 8000 Australia
Centre for Disease Prevention and Control of Latvia 1005 Riga Latvia
Centre for Global Health Research Kenya Medical Research Institute P O Box 1578 40100 Kisumu Kenya
Child Health Research Foundation Dhaka 1207 Bangladesh
CIBER Epidemiología y Salud Pública 28029 Madrid Spain
Communicable Diseases Centre National Institute of Public Health 1000 Ljubljana Slovenia
Department of Health Security Finnish Institute for Health and Welfare 00271 Helsinki Finland
Department of Infection Control and Vaccine Norwegian Institute of Public Health 0456 Oslo Norway
Department of Infectious Diseases Italian National Institute of Health 00161 Rome Italy
Department of Microbiology Immunology and Transplantation KU Leuven 3000 Leuven Belgium
Department of Pediatrics University of Calgary and Alberta Health Services Calgary AB T3B 6A8 Canada
Department of Pediatrics Yale New Haven Children's Hospital New Haven CT 06504 USA
Department of Social and Preventive Medicine Laval University Québec QC G1V 0A6 Canada
Doctoral Studies Department Riga Stradinš University 1007 Riga Latvia
Epidemiology Department Dirección General de Salud Pública 28009 Madrid Spain
Epidemiology Department Epiconcept 75012 Paris France
European Centre for Disease Prevention and Control 169 73 Solna Sweden
Health Sciences Unit Faculty of Social Sciences Tampere University 33100 Tampere Finland
Immunisation and Countermeasures Division Public Health England London NW9 5EQ UK
Independent Consultant 1296 Coppet Switzerland
Infectious Disease Epidemiology and Prevention Statens Serum Institut DK 2300 Copenhagen Denmark
Instituto de Salud Pública de Chile Santiago 7780050 Santiago Metropolitan Chile
Instituto de Salud Pública de Navarra IdiSNA 31003 Pamplona Spain
Johns Hopkins Bloomberg School of Public Health Baltimore MD 21205 USA
Laboratorio Central de Salud Pública Asunción Paraguay Asunción Paraguay
Malawi Liverpool Wellcome Trust Clinical Research Programme P O Box 30096 Chichiri Blantyre Malawi
Ministry of Health and Medical Services Suva Fiji
National Institute for Public Health and the Environment 3721 MA Bilthoven The Netherlands
National Institute of Public Health 100 42 Praha Czech Republic
National Public Health Organisation 15123 Athens Greece
National Reference Centre for Bacterial Meningitis National Medicines Institute 00 725 Warsaw Poland
New Vaccines Group Murdoch Children's Research Institute Parkville Melbourne VIC 3052 Australia
Pan American Health Organization World Health Organization Washington DC 20037 USA
Santé Publique France the French National Public Health Agency FR 94410 Saint Maurice France
Singapore Ministry of Health Communicable Diseases Division Singapore 308442 Singapore
The Faculty of Health Sciences Ben Gurion University of the Negev 8410501 Beer Sheva Israel
Toyama Institute of Health Imizu Toyama 939 0363 Japan
Vaccine Study Center Kaiser Permanente Oakland CA 94612 USA
World Health Organization 1202 Geneva Switzerland
World Health Organization Regional Office for Africa P O Box 06 Brazzaville Congo
Zobrazit více v PubMed
Wahl B., O’Brien K.L., Greenbaum A., Majumder A., Liu L., Chu Y., Lukšić I., Nair H., McAllister D.A., Campbell H., et al. Burden of Streptococcus Pneumoniae and Haemophilus Influenzae Type b Disease in Children in the Era of Conjugate Vaccines: Global, Regional, and National Estimates for 2000–15. Lancet Glob. Health. 2018;6:e744–e757. doi: 10.1016/S2214-109X(18)30247-X. PubMed DOI PMC
World Health Organization Pneumococcal Disease. [(accessed on 4 January 2021)]; Available online: https://www.who.int/ith/diseases/pneumococcal/en/
World Health Organization Pneumococcal Conjugate Vaccine for Childhood Immunization—WHO Position Paper. Wkly. Epidemiol. Rec. 2007;82:93–104. PubMed
World Health Organization Pneumococcal Conjugate Vaccines in Infants and Children under 5 Years of Age: WHO Position Paper. Wkly. Epidemiol. Rec. 2019;94:85–104.
International Vaccine Access Center (IVAC), Johns Hopkins Bloomberg School of Public Health VIEW-Hub. [(accessed on 29 December 2020)]; Available online: https://view-hub.org.
World Health Organization Invasive Bacterial Vaccine Preventable Diseases Laboratory Network. [(accessed on 5 January 2021)]; Available online: http://www.who.int/immunization/monitoring_surveillance/burden/laboratory/IBVPD/en/
Johnson H.L., Deloria-Knoll M., Levine O.S., Stoszek S.K., Hance L.F., Reithinger R., Muenz L.R., O’Brien K.L. Systematic Evaluation of Serotypes Causing Invasive Pneumococcal Disease among Children Under Five: The Pneumococcal Global Serotype Project. PLoS Med. 2010;7:e1000348. doi: 10.1371/journal.pmed.1000348. PubMed DOI PMC
Hausdorff W.P., Bryant J., Paradiso P.R., Siber G.R. Which Pneumococcal Serogroups Cause the Most Invasive Disease: Implications for Conjugate Vaccine Formulation and Use, Part I. Clin. Infect. Dis. 2000;30:100–121. doi: 10.1086/313608. PubMed DOI
Deloria-Knoll M., Nonyane B.A., Garcia C., Levine O.S., O’Brien K.L., Johnson H.L., AGEDD Project Team Global Serotype Distribution of Invasive Pneumococcal Disease (IPD) in Older Children and Adults: AGEDD Study; Proceedings of the 9th International Symposium on Pneumococci and Pneumococcal Diseases (ISPPD); Hyderabad, India. 9–13 March 2014.
World Health Organization Meeting of the Strategic Advisory Group of Experts on Immunization, November 2013—Conclusions and Recommendations. Wkly. Epidemiol. Rep. 2014;89:1–20. PubMed
Feikin D.R., Kagucia E.W., Loo J.D., Link-Gelles R., Puhan M.A., Cherian T., Levine O.S., Whitney C.G., O’Brien K.L., Moore M.R., et al. Serotype-Specific Changes in Invasive Pneumococcal Disease after Pneumococcal Conjugate Vaccine Introduction: A Pooled Analysis of Multiple Surveillance Sites. PLoS Med. 2013;10:e1001517. doi: 10.1371/journal.pmed.1001517. PubMed DOI PMC
Savulescu C., Krizova P., Lepoutre A., Mereckiene J., Vestrheim D.F., Ciruela P., Ordobas M., Guevara M., McDonald E., Morfeldt E., et al. Effect of High-Valency Pneumococcal Conjugate Vaccines on Invasive Pneumococcal Disease in Children in SpIDnet Countries: An Observational Multicentre Study. Lancet Respir. Med. 2017;5:648–656. doi: 10.1016/S2213-2600(17)30110-8. PubMed DOI
Iroh Tam P.-Y., Thielen B.K., Obaro S.K., Brearley A.M., Kaizer A.M., Chu H., Janoff E.N. Childhood Pneumococcal Disease in Africa—A Systematic Review and Meta-Analysis of Incidence, Serotype Distribution, and Antimicrobial Susceptibility. Vaccine. 2017;35:1817–1827. doi: 10.1016/j.vaccine.2017.02.045. PubMed DOI PMC
Cui Y.A., Patel H., O’Neil W.M., Li S., Saddier P. Pneumococcal Serotype Distribution: A Snapshot of Recent Data in Pediatric and Adult Populations around the World. Hum. Vaccines Immunother. 2017;13:1229–1241. doi: 10.1080/21645515.2016.1277300. PubMed DOI PMC
Balsells E., Guillot L., Nair H., Kyaw M.H. Serotype Distribution of Streptococcus Pneumoniae Causing Invasive Disease in Children in the Post-PCV Era: A Systematic Review and Meta-Analysis. PLoS ONE. 2017;12:e0177113. doi: 10.1371/journal.pone.0177113. PubMed DOI PMC
Cherian T., Cohen M., de Oliveira L., Farrar J.L., Goldblatt D., Knoll M., Moisi J.C., O’Brien K.L., Pilishvili T., Ramakrishnan M., et al. Pneumococcal Conjugate Vaccine (PCV) Review of Impact Evidence (PRIME): Summary of Findings from Systematic Review. Volume 1. WHO; Geneva, Switzerland: Oct, 2017. pp. 1–215. Report to Strategic Advisory Group of Experts on Immunization (SAGE) of the World Health Organization.
Morpeth S.C., Deloria Knoll M., Scott J.A.G., Park D.E., Watson N.L., Baggett H.C., Brooks W.A., Feikin D.R., Hammitt L.L., Howie S.R.C., et al. Detection of Pneumococcal DNA in Blood by Polymerase Chain Reaction for Diagnosing Pneumococcal Pneumonia in Young Children From Low- and Middle-Income Countries. Clin. Infect. Dis. 2017;64:S347–S356. doi: 10.1093/cid/cix145. PubMed DOI PMC
Grant L.R., Hammitt L.L., O’Brien S.E., Jacobs M.R., Donaldson C., Weatherholtz R.C., Reid R., Santosham M., O’Brien K.L. Impact of the 13-Valent Pneumococcal Conjugate Vaccine on Pneumococcal Carriage Among American Indians. Pediatr. Infect. Dis. J. 2016;35:907–914. doi: 10.1097/INF.0000000000001207. PubMed DOI PMC
Loughlin A.M., Hsu K., Silverio A.L., Marchant C.D., Pelton S.I. Direct and Indirect Effects of PCV13 on Nasopharyngeal Carriage of PCV13 Unique Pneumococcal Serotypes in Massachusetts’ Children. Pediatr. Infect. Dis. J. 2014;33:504–510. doi: 10.1097/INF.0000000000000279. PubMed DOI
Von Gottberg A., de Gouveia L., Tempia S., Quan V., Meiring S., von Mollendorf C., Madhi S.A., Zell E.R., Verani J.R., O’Brien K.L., et al. Effects of Vaccination on Invasive Pneumococcal Disease in South Africa. N. Engl. J. Med. 2014;371:1889–1899. doi: 10.1056/NEJMoa1401914. PubMed DOI
World Health Organization. UNICEF WHO-UNICEF Estimates of PCV3 Coverage. [(accessed on 30 December 2020)]; Available online: https://apps.who.int/immunization_monitoring/globalsummary/timeseries/tswucoveragepcv3.html.
Pan American Health Organization. World Health Organization Sistema Regional de Vacunas (SIREVA) II. [(accessed on 31 August 2020)]; Available online: https://www.paho.org/es/sireva.
Dirección Redes en Salud Pública. Subdirección Laboratorio Nacional De Referencia. Grupo de Microbiología . Vigilancia por Laboratorio de aislamientos invasores de Streptococcus pneumoniae Colombia 2006-2018: SIREVA II. Instituto Nacional de Salud; Bogotá, Colombia: 2019. pp. 1–16.
Organización Panamericana de la Salud. Instituto Nacional de Salud Colombia . Procedimientos Para El Diagnóstico de Neumonías y Meningitis Bacterianas y La Caracterización de Cepas de Streptococcus Pneumoniae y Haemophilus Influenzae, SIREVA II. Grupo Microbiología, Instituto Nacional de Salud Bogotá—Colombia, Organización Panamericana dela Salud; Colombia: 2012. [(accessed on 29 March 2021)]. pp. 1–121. Available online: http://antimicrobianos.com.ar/ATB/wp-content/uploads/2013/01/PAHO-Manual-Neumo-Haemophilus-SIREVA-2012.pdf.
United Nations Methodology: Geographic Regions. [(accessed on 22 December 2020)]; Available online: https://unstats.un.org/unsd/methodology/m49/#geo-regions.
The World Bank World Bank Country and Lending Groups. [(accessed on 5 November 2020)]; Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups.
United Nations Levels and Trends in Child Mortality: 2020 Report. [(accessed on 30 January 2021)]; Available online: https://www.un.org/development/desa/pd/news/levels-and-trends-child-mortality-2020-report.
Cohen C., Walaza S., Moyes J., Groome M., Tempia S., Pretorius M., Hellferscee O., Dawood H., Haffejee S., Variava E., et al. Epidemiology of Severe Acute Respiratory Illness (SARI) among Adults and Children Aged ≥ 5 Years in a High HIV-Prevalence Setting, 2009–2012. PLoS ONE. 2015;10:e0117716. doi: 10.1371/journal.pone.0117716. PubMed DOI PMC
Park I.H., Pritchard D.G., Cartee R., Brandao A., Brandileone M.C.C., Nahm M.H. Discovery of a New Capsular Serotype (6C) within Serogroup 6 of Streptococcus Pneumoniae. J. Clin. Microbiol. 2007;45:1225–1233. doi: 10.1128/JCM.02199-06. PubMed DOI PMC
Jin P., Kong F., Xiao M., Oftadeh S., Zhou F., Liu C., Russell F., Gilbert G.L. First Report of Putative Streptococcus Pneumoniae Serotype 6D among Nasopharyngeal Isolates from Fijian Children. J. Infect. Dis. 2009;200:1375–1380. doi: 10.1086/606118. PubMed DOI
Swarthout T.D., Gori A., Bar-Zeev N., Kamng’ona A.W., Mwalukomo T.S., Bonomali F., Nyirenda R., Brown C., Msefula J., Everett D., et al. Evaluation of Pneumococcal Serotyping of Nasopharyngeal-Carriage Isolates by Latex Agglutination, Whole-Genome Sequencing (PneumoCaT), and DNA Microarray in a High-Pneumococcal-Carriage-Prevalence Population in Malawi. J. Clin. Microbiol. 2020;59:e02103-20. doi: 10.1128/JCM.02103-20. PubMed DOI PMC
Satzke C., Dunne E.M., Porter B.D., Klugman K.P., Mulholland E.K. The PneuCarriage Project: A Multi-Centre Comparative Study to Identify the Best Serotyping Methods for Examining Pneumococcal Carriage in Vaccine Evaluation Studies. PLoS Med. 2015;12:e1001903. doi: 10.1371/journal.pmed.1001903. PubMed DOI PMC
World Health Organization . Strategic Advisory Group of Experts on Immunization Yellow Book. World Health Organization Department of Immunization, Vaccines and Biologicals (IVB); Geneva, Switzerland: 2020. p. 8.
Moïsi J.C., Makawa M.-S., Tall H., Agbenoko K., Njanpop-Lafourcade B.-M., Tamekloe S., Amidou M., Mueller J.E., Gessner B.D. Burden of Pneumococcal Disease in Northern Togo before the Introduction of Pneumococcal Conjugate Vaccine. PLoS ONE. 2017;12:e0170412. doi: 10.1371/journal.pone.0170412. PubMed DOI PMC
Tornheim J.A., Manya A.S., Oyando N., Kabaka S., Breiman R.F., Feikin D.R. The Epidemiology of Hospitalized Pneumonia in Rural Kenya: The Potential of Surveillance Data in Setting Public Health Priorities. Int. J. Infect. Dis. 2007;11:536–543. doi: 10.1016/j.ijid.2007.03.006. PubMed DOI
Bozio C.H., Abdul-Karim A., Abenyeri J., Abubakari B., Ofosu W., Zoya J., Ouattara M., Srinivasan V., Vuong J.T., Opare D., et al. Continued Occurrence of Serotype 1 Pneumococcal Meningitis in Two Regions Located in the Meningitis Belt in Ghana Five Years after Introduction of 13-Valent Pneumococcal Conjugate Vaccine. PLoS ONE. 2018;13:e0203205. doi: 10.1371/journal.pone.0203205. PubMed DOI PMC
Campagne G., Schuchat A., Djibo S., Ousséini A., Cissé L., Chippaux J.P. Epidemiology of Bacterial Meningitis in Niamey, Niger, 1981-96. Bull. World Health Organ. 1999;77:499–508. PubMed PMC
Aku F.Y. Meningitis Outbreak Caused by Vaccine-Preventable Bacterial Pathogens—Northern Ghana, 2016. MMWR. 2017;66:806–810. doi: 10.15585/mmwr.mm6630a2. PubMed DOI PMC
Soeters H.M., Diallo A.O., Bicaba B.W., Kadadé G., Dembélé A.Y., Acyl M.A., Nikiema C., Sadji A.Y., Poy A.N., Lingani C., et al. Bacterial Meningitis Epidemiology in Five Countries in the Meningitis Belt of Sub-Saharan Africa, 2015–2017. J. Infect. Dis. 2019;220:S165–S174. doi: 10.1093/infdis/jiz358. PubMed DOI PMC
Soeters H.M., Kambiré D., Sawadogo G., Ouédraogo-Traoré R., Bicaba B., Medah I., Sangaré L., Ouédraogo A.-S., Ouangraoua S., Yaméogo I., et al. Impact of 13-Valent Pneumococcal Conjugate Vaccine on Pneumococcal Meningitis, Burkina Faso, 2016–2017. J. Infect. Dis. 2019;220:S253–S262. doi: 10.1093/infdis/jiz301. PubMed DOI PMC
Novak R.T., Ronveaux O., Bita A.F., Aké H.F., Lessa F.C., Wang X., Bwaka A.M., Fox L.M. Future Directions for Meningitis Surveillance and Vaccine Evaluation in the Meningitis Belt of Sub-Saharan Africa. J. Infect. Dis. 2019;220:S279–S285. doi: 10.1093/infdis/jiz421. PubMed DOI PMC
Patel J.C., Soeters H.M., Diallo A.O., Bicaba B.W., Kadadé G., Dembélé A.Y., Acyl M.A., Nikiema C., Lingani C., Hatcher C., et al. MenAfriNet: A Network Supporting Case-Based Meningitis Surveillance and Vaccine Evaluation in the Meningitis Belt of Africa. J. Infect. Dis. 2019;220:S148–S154. doi: 10.1093/infdis/jiz308. PubMed DOI PMC
World Health Organization . Global Vaccine Action Plan: Defeating Meningitis by 2030 Meningitis Prevention and Control. WHO; Geneva, Switzerland: 2020. pp. 1–4. World Health Organization Seventy-third World Health Assembly.