Mesenchymal Stromal Cell Therapy in Novel Porcine Model of Diffuse Liver Damage Induced by Repeated Biliary Obstruction
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PROGRES Q39
Charles University
Research Centre program UNCE/MED/006 University Center of Clinical and Experimental Liver Surgery
Charles University
CZ.02.1.01/0.0/0.0/17_048/0007280 Application of Modern Technologies in Medicine and Industry
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000787 "Fighting INfectious Diseases"
Ministry of Education, Youth and Sports of the Czech Republic, financed from The European Regional Development Fund
PubMed
33919123
PubMed Central
PMC8122325
DOI
10.3390/ijms22094304
PII: ijms22094304
Knihovny.cz E-zdroje
- Klíčová slova
- hepatectomy, mesenchymal stromal cell, pig model, quantitative histology, secondary biliary cirrhosis,
- MeSH
- cholestáza komplikace MeSH
- mezenchymální kmenové buňky MeSH
- modely nemocí na zvířatech * MeSH
- nemoci jater etiologie patologie terapie MeSH
- prasata MeSH
- transplantace mezenchymálních kmenových buněk metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In liver surgery, biliary obstruction can lead to secondary biliary cirrhosis, a life-threatening disease with liver transplantation as the only curative treatment option. Mesenchymal stromal cells (MSC) have been shown to improve liver function in both acute and chronic liver disease models. This study evaluated the effect of allogenic MSC transplantation in a large animal model of repeated biliary obstruction followed by partial hepatectomy. MSC transplantation supported the growth of regenerated liver tissue after 14 days (MSC group, n = 10: from 1087 ± 108 (0 h) to 1243 ± 92 mL (14 days); control group, n = 11: from 1080 ± 95 (0 h) to 1100 ± 105 mL (14 days), p = 0.016), with a lower volume fraction of hepatocytes in regenerated liver tissue compared to resected liver tissue (59.5 ± 10.2% vs. 70.2 ± 5.6%, p < 0.05). Volume fraction of connective tissue, blood vessels and bile vessels in regenerated liver tissue, serum levels of liver enzymes (AST, ALT, ALP and GGT) and liver metabolites (albumin, bilirubin, urea and creatinine), as well as plasma levels of IL-6, IL-8, TNF-α and TGF-β, were not affected by MSC transplantation. In our novel, large animal (pig) model of repeated biliary obstruction followed by partial hepatectomy, MSC transplantation promoted growth of liver tissue without any effect on liver function. This study underscores the importance of translating results between small and large animal models as well as the careful translation of results from animal model into human medicine.
Zobrazit více v PubMed
Johnson S.R., Koehler A., Pennington L.K., Hanto D.W. Long-term results of surgical repair of bile duct injuries following laparoscopic cholecystectomy. Surgery. 2000;128:668–677. doi: 10.1067/msy.2000.108422. PubMed DOI
Ardiles V., McCormack L., Quinonez E., Goldaracena N., Mattera J., Pekolj J., Ciardullo M., de Santibanes E. Experience using liver transplantation for the treatment of severe bile duct injuries over 20 years in Argentina: Results from a National Survey. HPB. 2011;13:544–550. doi: 10.1111/j.1477-2574.2011.00322.x. PubMed DOI PMC
Barbier L., Souche R., Slim K., Ah-Soune P. Long-term consequences of bile duct injury after cholecystectomy. J. Visc. Surg. 2014;151:269–279. doi: 10.1016/j.jviscsurg.2014.05.006. PubMed DOI
De Santibanes E., Ardiles V., Gadano A., Palavecino M., Pekolj J., Ciardullo M. Liver transplantation: The last measure in the treatment of bile duct injuries. World J. Surg. 2008;32:1714–1721. doi: 10.1007/s00268-008-9650-5. PubMed DOI
Lubikowski J., Chmurowicz T., Post M., Jarosz K., Bialek A., Milkiewicz P., Wojcicki M. Liver transplantation as an ultimate step in the management of iatrogenic bile duct injury complicated by secondary biliary cirrhosis. Ann. Transpl. 2012;17:38–44. PubMed
Ruemmele P., Hofstaedter F., Gelbmann C.M. Secondary sclerosing cholangitis. Nat. Rev. Gastroenterol. Hepatol. 2009;6:287–295. doi: 10.1038/nrgastro.2009.46. PubMed DOI
Negi S.S., Sakhuja P., Malhotra V., Chaudhary A. Factors predicting advanced hepatic fibrosis in patients with postcholecystectomy bile duct strictures. Arch. Surg. 2004;139:299–303. doi: 10.1001/archsurg.139.3.299. PubMed DOI
Lazaridis K.N., Gores G.J., Lindor K.D. Ursodeoxycholic acid “mechanisms of action and clinical use in hepatobiliary disorders”. J. Hepatol. 2001;35:134–146. doi: 10.1016/S0168-8278(01)00092-7. PubMed DOI
Nordin A., Halme L., Makisalo H., Isoniemi H., Hockerstedt K. Management and outcome of major bile duct injuries after laparoscopic cholecystectomy: From therapeutic endoscopy to liver transplantation. Liver Transpl. 2002;8:1036–1043. doi: 10.1053/jlts.2002.35557. PubMed DOI
Patkowski W., Skalski M., Zieniewicz K., Nyckowski P., Smoter P., Krawczyk M. Orthotopic liver transplantation for cholestatic diseases. Hepatogastroenterology. 2010;57:605–610. PubMed
Pottakkat B., Vijayahari R., Prakash A., Singh R.K., Behari A., Kumar A., Kapoor V.K., Saxena R. Factors predicting failure following high bilio-enteric anastomosis for post-cholecystectomy benign biliary strictures. J. Gastrointest Surg. 2010;14:1389–1394. doi: 10.1007/s11605-010-1241-8. PubMed DOI
Loinaz C., Gonzalez E.M., Jimenez C., Garcia I., Gomez R., Gonzalez-Pinto I., Colina F., Gimeno A. Long-term biliary complications after liver surgery leading to liver transplantation. World J. Surg. 2001;25:1260–1263. doi: 10.1007/s00268-001-0106-4. PubMed DOI
Schwartz S.I. Biliary tract surgery and cirrhosis: A critical combination. Surgery. 1981;90:577–583. PubMed
Chapman W.C., Halevy A., Blumgart L.H., Benjamin I.S. Postcholecystectomy bile duct strictures. Management and outcome in 130 patients. Arch. Surg. 1995;130:594–597. doi: 10.1001/archsurg.1995.01430060035007. PubMed DOI
Fang B., Shi M., Liao L., Yang S., Liu Y., Zhao R.C. Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation. 2004;78:83–88. doi: 10.1097/01.TP.0000128326.95294.14. PubMed DOI
Li T., Zhu J., Ma K., Liu N., Feng K., Li X., Wang S., Bie P. Autologous bone marrow-derived mesenchymal stem cell transplantation promotes liver regeneration after portal vein embolization in cirrhotic rats. J. Surg. Res. 2013;184:1161–1173. doi: 10.1016/j.jss.2013.04.054. PubMed DOI
Higashiyama R., Inagaki Y., Hong Y.Y., Kushida M., Nakao S., Niioka M., Watanabe T., Okano H., Matsuzaki Y., Shiota G., et al. Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology. 2007;45:213–222. doi: 10.1002/hep.21477. PubMed DOI
Oyagi S., Hirose M., Kojima M., Okuyama M., Kawase M., Nakamura T., Ohgushi H., Yagi K. Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. J. Hepatol. 2006;44:742–748. doi: 10.1016/j.jhep.2005.10.026. PubMed DOI
Amin M.A., Sabry D., Rashed L.A., Aref W.M., el-Ghobary M.A., Farhan M.S., Fouad H.A., Youssef Y.A. Short-term evaluation of autologous transplantation of bone marrow-derived mesenchymal stem cells in patients with cirrhosis: Egyptian study. Clin. Transpl. 2013;27:607–612. doi: 10.1111/ctr.12179. PubMed DOI
Jang Y.O., Kim Y.J., Baik S.K., Kim M.Y., Eom Y.W., Cho M.Y., Park H.J., Park S.Y., Kim B.R., Kim J.W., et al. Histological improvement following administration of autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: A pilot study. Liver Int. 2014;34:33–41. doi: 10.1111/liv.12218. PubMed DOI
Gerling B., Becker M., Waldschmidt J., Rehmann M., Schuppan D. Elevated serum aminoterminal procollagen type-III-peptide parallels collagen accumulation in rats with secondary biliary fibrosis. J. Hepatol. 1996;25:79–84. doi: 10.1016/S0168-8278(96)80331-X. PubMed DOI
Heller J., Trebicka J., Shiozawa T., Schepke M., Neef M., Hennenberg M., Sauerbruch T. Vascular, hemodynamic and renal effects of low-dose losartan in rats with secondary biliary cirrhosis. Liver Int. 2005;25:657–666. doi: 10.1111/j.1478-3231.2005.01053.x. PubMed DOI
Raetsch C., Jia J.D., Boigk G., Bauer M., Hahn E.G., Riecken E.O., Schuppan D. Pentoxifylline downregulates profibrogenic cytokines and procollagen I expression in rat secondary biliary fibrosis. Gut. 2002;50:241–247. doi: 10.1136/gut.50.2.241. PubMed DOI PMC
Chen C.Y., Shiesh S.C., Wu M.C., Lin X.Z. The effects of bile duct obstruction on the biliary secretion of ciprofloxacin in piglets. Am. J. Gastroenterol. 1999;94:2408–2411. doi: 10.1111/j.1572-0241.1999.01365.x. PubMed DOI
Daneze E.R., Terra G.A., Terra J.A., Jr., Campos A.G., Silva A.A., Terra S.A. Comparative study between ligature with thread or metallic clamping by means of laparoscopy with the purpose of experimental biliary obstruction in swines. Acta Cir. Bras. 2011;26(Suppl. S2):31–37. doi: 10.1590/S0102-86502011000800007. PubMed DOI
Shamiyeh A., Vattay P., Tulipan L., Schrenk P., Bogner S., Danis J., Wayand W. Closure of the cystic duct during laparoscopic cholecystectomy with a new feedback-controlled bipolar sealing system in case of biliary obstruction—An experimental study in pigs. Hepatogastroenterology. 2004;51:931–933. PubMed
Adas G., Koc B., Adas M., Duruksu G., Subasi C., Kemik O., Kemik A., Sakiz D., Kalayci M., Purisa S., et al. Effects of mesenchymal stem cells and VEGF on liver regeneration following major resection. Langenbecks Arch. Surg. 2016;401:725–740. doi: 10.1007/s00423-016-1380-9. PubMed DOI
Mohamadnejad M., Alimoghaddam K., Mohyeddin-Bonab M., Bagheri M., Bashtar M., Ghanaati H., Baharvand H., Ghavamzadeh A., Malekzadeh R. Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis. Arch. Iran Med. 2007;10:459–466. PubMed
Carvalho A.B., Quintanilha L.F., Dias J.V., Paredes B.D., Mannheimer E.G., Carvalho F.G., Asensi K.D., Gutfilen B., Fonseca L.M., Resende C.M., et al. Bone marrow multipotent mesenchymal stromal cells do not reduce fibrosis or improve function in a rat model of severe chronic liver injury. Stem. Cells. 2008;26:1307–1314. doi: 10.1634/stemcells.2007-0941. PubMed DOI
Suk K.T., Yoon J.H., Kim M.Y., Kim C.W., Kim J.K., Park H., Hwang S.G., Kim D.J., Lee B.S., Lee S.H., et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial. Hepatology. 2016;64:2185–2197. doi: 10.1002/hep.28693. PubMed DOI
Verstegen M.M.A., Mezzanotte L., Yanto Ridwan R., Wang K., De Haan J., Schurink I.J., Sierra Parraga J.M., Hoogduijn M., Kessler B.M., Huang H., et al. First report on ex vivo delivery of paracrine active human mesenchymal stromal cells to liver grafts during machine perfusion. Transplantation. 2020;104:e5–e7. doi: 10.1097/TP.0000000000002986. PubMed DOI
De Witte S.F.H., Luk F., Sierra Parraga J.M., Gargesha M., Merino A., Korevaar S.S., Shankar A.S., O’Flynn L., Elliman S.J., Roy D., et al. Immunomodulation by Therapeutic Mesenchymal Stromal Cells (MSC) Is Triggered Through Phagocytosis of MSC By Monocytic Cells. Stem. Cells. 2018;36:602–615. doi: 10.1002/stem.2779. PubMed DOI
You Y., Zhang J., Gong J., Chen Y., Li Y., Yang K., Liu Z. Mesenchymal stromal cell-dependent reprogramming of Kupffer cells is mediated by TNF-alpha and PGE2 and is crucial for liver transplant tolerance. Immunol. Res. 2015;62:292–305. doi: 10.1007/s12026-015-8660-2. PubMed DOI
Huang B., Cheng X., Wang H., Huang W., la Ga Hu Z., Wang D., Zhang K., Zhang H., Xue Z., Da Y., et al. Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. J. Transl. Med. 2016;14:45. doi: 10.1186/s12967-016-0792-1. PubMed DOI PMC
Jang Y.O., Kim M.Y., Cho M.Y., Baik S.K., Cho Y.Z., Kwon S.O. Effect of bone marrow-derived mesenchymal stem cells on hepatic fibrosis in a thioacetamide-induced cirrhotic rat model. BMC Gastroenterol. 2014;14:198. doi: 10.1186/s12876-014-0198-6. PubMed DOI PMC
Forbes S.J., Russo F.P., Rey V., Burra P., Rugge M., Wright N.A., Alison M.R. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology. 2004;126:955–963. doi: 10.1053/j.gastro.2004.02.025. PubMed DOI
Russo F.P., Alison M.R., Bigger B.W., Amofah E., Florou A., Amin F., Bou-Gharios G., Jeffery R., Iredale J.P., Forbes S.J. The bone marrow functionally contributes to liver fibrosis. Gastroenterology. 2006;130:1807–1821. doi: 10.1053/j.gastro.2006.01.036. PubMed DOI
Junatas K.L., Tonar Z., Kubikova T., Liska V., Palek R., Mik P., Kralickova M., Witter K. Stereological analysis of size and density of hepatocytes in the porcine liver. J. Anat. 2017;230:575–588. doi: 10.1111/joa.12585. PubMed DOI PMC
Cupertino M.C., Costa K.L., Santos D.C., Novaes R.D., Condessa S.S., Neves A.C., Oliveira J.A., Matta S.L. Long-lasting morphofunctional remodelling of liver parenchyma and stroma after a single exposure to low and moderate doses of cadmium in rats. Int. J. Exp. Pathol. 2013;94:343–351. doi: 10.1111/iep.12046. PubMed DOI PMC
De Freitas K.M., Almeida J.M., Monteiro J.C., Diamante M.A., Vale J.S., Camargo C., Jorge M.H., Dolder H. The effects of cyclosporin A and Heteropterys tomentosa on the rat liver. An. Acad. Bras. Cienc. 2015;87:369–379. doi: 10.1590/0001-3765201520130351. PubMed DOI
Gorla G.R., Malhi H., Gupta S. Polyploidy associated with oxidative injury attenuates proliferative potential of cells. J. Cell Sci. 2001;114:2943–2951. PubMed
Dai L.J., Li H.Y., Guan L.X., Ritchie G., Zhou J.X. The therapeutic potential of bone marrow-derived mesenchymal stem cells on hepatic cirrhosis. Stem Cell Res. 2009;2:16–25. doi: 10.1016/j.scr.2008.07.005. PubMed DOI
Volarevic V., Nurkovic J., Arsenijevic N., Stojkovic M. Concise review: Therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis. Stem Cells. 2014;32:2818–2823. doi: 10.1002/stem.1818. PubMed DOI
Mattfeldt T., Mall G., Gharehbaghi H., Moller P. Estimation of surface area and length with the orientator. J. Microsc. 1990;159:301–317. doi: 10.1111/j.1365-2818.1990.tb03036.x. PubMed DOI
Nyengaard J.R., Gundersen H.J.G. The Isector—A Simple and Direct Method for Generating Isotropic, Uniform Random Sections from Small Specimens. J. Microsc. 1992;165:427–431. doi: 10.1111/j.1365-2818.1992.tb01497.x. DOI
Marcos R., Monteiro R.A., Rocha E. The use of design-based stereology to evaluate volumes and numbers in the liver: A review with practical guidelines. J. Anat. 2012;220:303–317. doi: 10.1111/j.1469-7580.2012.01475.x. PubMed DOI PMC
Mouton P.R. Unbiased Stereology: A Concise Guide. Johns Hopkins University Press; Baltimore, MD, USA: 2011.
Nyengaard J.R., Gundersen H.J.G. Sampling for stereology in lungs. Eur. Respir. Rev. 2006;15:107–114. doi: 10.1183/09059180.00010101. DOI
Bruha J., Vycital O., Tonar Z., Mirka H., Haidingerova L., Benes J., Palek R., Skala M., Treska V., Liska V. Monoclonal antibody against transforming growth factor Beta 1 does not influence liver regeneration after resection in large animal experiments. In Vivo. 2015;29:327–340. PubMed
Gundersen H.J., Jensen E.B. Stereological estimation of the volume-weighted mean volume of arbitrary particles observed on random sections. J. Microsc. 1985;138:127–142. doi: 10.1111/j.1365-2818.1985.tb02607.x. PubMed DOI
Mik P., Tonar Z., Malečková A., Eberlová L., Liška V., Pálek R., Rosendorf J., Jiřík M., Mírka H., Králíčková M., et al. Distribution of Connective Tissue in the Male and Female Porcine Liver: Histological Mapping and Recommendations for Sampling. J. Comp. Pathol. 2018 doi: 10.1016/j.jcpa.2018.05.004. PubMed DOI
Palek R., Rosendorf J., Maleckova A., Vistejnova L., Bajcurova K., Mirka H., Tegl V., Brzon O., Kumar A., Bednar L., et al. Influence of Mesenchymal Stem Cell Administration on the Outcome of Partial Liver Resection in a Porcine Model of Sinusoidal Obstruction Syndrome. Anticancer Res. 2020 doi: 10.21873/anticanres.14704. PubMed DOI