Five Antigen Tests for SARS-CoV-2: Virus Viability Matters
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
33921164
PubMed Central
PMC8071529
DOI
10.3390/v13040684
PII: v13040684
Knihovny.cz E-resources
- Keywords
- COVID-19, RT-PCR, SARS-CoV-2, antigen testing, infectiousness, viability,
- MeSH
- Antigens, Viral analysis MeSH
- COVID-19 diagnosis immunology MeSH
- Adult MeSH
- False Negative Reactions MeSH
- Middle Aged MeSH
- Humans MeSH
- Microbial Viability * MeSH
- Mass Screening MeSH
- SARS-CoV-2 immunology MeSH
- Sensitivity and Specificity MeSH
- Serologic Tests methods MeSH
- COVID-19 Nucleic Acid Testing MeSH
- COVID-19 Testing methods MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antigens, Viral MeSH
Antigen testing for SARS-CoV-2 (AGT) is generally considered inferior to RT-PCR testing in terms of sensitivity. However, little is known about the infectiousness of RT-PCR positive patients who pass undetected by AGT. In a screening setting for mildly symptomatic or asymptomatic patients with high COVID-19 prevalence (30-40%), 1141 patients were tested using one of five AGTs and RT-PCR. Where the results differed, virus viability in the samples was tested on cell culture (CV-1 cells). The test battery included AGTs by JOYSBIO, Assure Tech, SD Biosensor, VivaChek Biotech and NDFOS. Sensitivities of the ATGs compared to RT-PCR ranged from 42% to 76%. The best test yielded a 76% sensitivity, 97% specificity, 92% positive, and 89% negative predictive values, respectively. However, in the best performing ATG tests, almost 90% of samples with "false negative" AGT results contained no viable virus. Corrected on the virus viability, sensitivities grew to 81-97% and, with one exception, the tests yielded high specificities >96%. Performance characteristics of the best test after adjustment were 96% sensitivity, 97% specificity, 92% positive, and 99% negative predictive values (high prevalence population). We, therefore, believe that virus viability should be considered when assessing the AGT performance. Also, our results indicate that a well-performing antigen test could in a high-prevalence setting serve as an excellent tool for identifying patients shedding viable virus. We also propose that the high proportion of RT-PCR-positive samples containing no viable virus in the group of "false negatives" of the antigen test should be further investigated with the aim of possibly preventing needless isolation of such patients.
Faculty of Medicine University of Ostrava Syllabova 19 703 00 Ostrava Czech Republic
Hospital Karvina Raj Vydmuchov 399 734 01 Karvina Czech Republic
Institute of Public Health Ostrava Partyzánské Náměstí 7 702 00 Ostrava Czech Republic
See more in PubMed
ECDC (European Centre for Disease Control) Options for the Use of Rapid Antigen Tests for COVID-19 in the EU/EEA and the UK. ECDC. [(accessed on 30 January 2021)];2020 Available online: https://www.ecdc.europa.eu/en/publications-data/options-use-rapid-antigen-tests-covid-19-eueea-and-uk.
Corman V.M., Haage V.C., Bleicker T., Schmidt M.L., Muhlemann B., Zuchowski M., Lei W.K.J., Tscheak P., Moncke-Buchner E., Muller M.A., et al. Comparison of seven commercial SARS-CoV-2 rapid Point-of-Care Antigen tests. medRxiv. 2020 doi: 10.1101/2020.11.12.20230292. PubMed DOI PMC
Dinnes J., Deeks J.J., Adriano A., Berhane S., Davenport C., Dittrich S., Emperador D., Takwoingi Y., Cunningham J., Beese S., et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2020;8:Cd013705. doi: 10.1002/14651858.CD013705. PubMed DOI PMC
FIND. FIND Evaluation of RapiGEN Inc BIOCREDIT COVID-19 Ag. Geneva: Foundation for Innovative New Diagnostics. [(accessed on 10 February 2021)];2020 Available online: https://www.finddx.org/wp-content/uploads/2020/10/Rapigen_Ag-INTERIM-Public-Report_20201016-v1.pdf.
FIND FIND Evaluation of SD Biosensor, Inc.STANDARD Q COVID-19 Ag TestExternal Report. [(accessed on 30 January 2021)]; Available online: https://www.finddx.org/wp-content/uploads/2020/12/SDQ-Ag-Public-Report_20201210-v2-1.pdf.
Chaimayo C., Kaewnaphan B., Tanlieng N., Athipanyasilp N., Sirijatuphat R., Chayakulkeeree M., Angkasekwinai N., Sutthent R., Puangpunngam N., Tharmviboonsri T., et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol. J. 2020;17:177. doi: 10.1186/s12985-020-01452-5. PubMed DOI PMC
Strömer A., Rose R., Schäfer M., Schön F., Vollersen A., Lorentz T., Fickenscher H., Krumbholz A. Performance of a Point-of-Care Test for the Rapid Detection of SARS-CoV-2 Antigen. Microorganisms. 2021;9:58. doi: 10.3390/microorganisms9010058. PubMed DOI PMC
Kohmer N., Toptan T., Pallas C., Karaca O., Pfeiffer A., Westhaus S., Widera M., Berger A., Hoehl S., Kammel M., et al. The Comparative Clinical Performance of Four SARS-CoV-2 Rapid Antigen Tests and Their Correlation to Infectivity In Vitro. J. Clin. Med. 2021;10:328. doi: 10.3390/jcm10020328. PubMed DOI PMC
Bullard J., Dust K., Funk D., Strong J.E., Alexander D., Garnett L., Boodman C., Bello A., Hedley A., Schiffman Z., et al. Predicting infectious SARS-CoV-2 from diagnostic samples. Clin. Infect. Dis. 2020;71:2663–2666. doi: 10.1093/cid/ciaa638. PubMed DOI PMC
Munster V.J., Feldmann F., Williamson B.N., van Doremalen N., Perez-Perez L., Schulz J., Meade-White K., Okumura A., Callison J., Brumbaugh B., et al. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature. 2020;585:268–272. doi: 10.1038/s41586-020-2324-7. PubMed DOI PMC
Sender R., Bar-On Y.M., Flamholz A., Gleizer S., Bernsthein B., Phillips R., Milo R. The total number and mass of SARS-CoV-2 virions in an infected person. medRxiv. 2020 doi: 10.1101/2020.11.16.20232009. PubMed DOI PMC
Nalumansi A., Lutalo T., Kayiwa J., Watera C., Balinandi S., Kiconco J., Nakaseegu J., Olara D., Odwilo E., Serwanga J., et al. Field Evaluation of the Performance of a SARS-CoV-2 Antigen Rapid Diagnostic Test in Uganda using Nasopharyngeal Samples. Int. J. Infect. Dis. 2020;104:282–286. doi: 10.1016/j.ijid.2020.10.073. PubMed DOI PMC
Wölfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Müller M.A., Niemeyer D., Jones T.C., Vollmar P., Rothe C., et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465–469. doi: 10.1038/s41586-020-2196-x. PubMed DOI
WHO . WHO Information Notice for IVD Users 2020/05: Nucleic Acid Testing (NAT) Technologies That Use Polymerase Chain Reaction (PCR) for Detection of SARS-CoV-2. WHO; Geneva, Switzerland: 2021. Report No.: 2020/05.
La Scola B., Le Bideau M., Andreani J., Hoang V.T., Grimaldier C., Colson P., Gautret P., Raoult D. Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Eur. J. Clin. Microbiol. Infect. Dis. 2020;39:1059–1061. doi: 10.1007/s10096-020-03913-9. PubMed DOI PMC
He X., Lau E.H.Y., Wu P., Deng X., Wang J., Hao X., Lau Y.C., Wong J.Y., Guan Y., Tan X., et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 2020;26:672–675. doi: 10.1038/s41591-020-0869-5. PubMed DOI