Cyclic Fatigue of Dental NiTi Instruments after Plasma Nitriding
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33922722
PubMed Central
PMC8123035
DOI
10.3390/ma14092155
PII: ma14092155
Knihovny.cz E-zdroje
- Klíčová slova
- cyclic fatigue, endodontic, fracture, nickel titanium, plasma nitriding,
- Publikační typ
- časopisecké články MeSH
This study investigated the possibility of nitride NiTi instruments using low-temperature plasma nitriding technology in a standard industrial device. Changes in the properties and fatigue life of used NiTi instruments before and after low-temperature nitriding application were investigated and compared. Nontreated and two series of plasma-nitrided NiTi instruments, designed by Mtwo company with tip sizes of 10/.04 taper, 15/.05 taper, and 20/.06 taper, were experimentally tested in this study. All these instruments were used and discarded from clinical use. The instruments were tested in an artificial canal made of stainless steel with an inner diameter of 1.5 mm, a 60° angle of curvature, and a radius of curvature of 3 mm. A low-temperature plasma nitriding process was used for the surface treatment of dental files using two different processes: 550 °C for 20 h, and 470 °C for 4 h. The results proved that it is possible to nitride dental instruments made of NiTi with a low-temperature plasma nitriding process. Promising results were achieved in trial testing by NiTi instruments nitrided at a higher temperature. Plasma-nitrided files were found to have, in some cases, significantly higher values than nontreated files in terms of fatigue life. The results showed that the nitriding process offers promising possibilities for suitably modified surface properties and quality of surface layer of NiTi instruments. Within the limitations of the present study, the cyclic fatigue life of plasma-nitrided NiTi dental files can be increased using this surface technology.
1st Faculty of Medicine Charles University Prague 12108 Prague Czech Republic
Faculty of Mechanical Engineering Brno University of Technology 61669 Brno Czech Republic
Faculty of Military Technology University of Defence 66210 Brno Czech Republic
Faculty of Special Technology Alexander Dubcek University of Trencin 91101 Trencin Slovakia
Zobrazit více v PubMed
Torrisi L. The NiTi superelastic alloy application to the dentistry field. BioMed. Mater. Eng. 1999;9:39–47. PubMed
Thompson S.A. An overview of nickel-titanium alloys used in dentistry. Int. Endod. J. 2000;33:297–310. doi: 10.1046/j.1365-2591.2000.00339.x. PubMed DOI
Cheung G.S.P., Zhang E.W., Zheng Y.F. A numerical method for predicting the bending fatigue life of NiTi and stain-less steel root canal instruments. Int. Endod. J. 2011;44:357–361. doi: 10.1111/j.1365-2591.2010.01838.x. PubMed DOI
Plotino G., Grande N.M., Cordaro M., Testarelli L., Gambarini G. A Review of Cyclic Fatigue Testing of Nickel-Titanium Rotary Instruments. J. Endod. 2009;35:1469–1476. doi: 10.1016/j.joen.2009.06.015. PubMed DOI
Alrahabi M. Comparative study of root-canal shaping with stainless steel and rotary NiTi files performed by preclinical dental students. Technol. Health Care. 2015;23:257–265. doi: 10.3233/THC-150895. PubMed DOI
Parashos P., Gordon I., Messer H.H. Factors Influencing Defects of Rotary Nickel-Titanium Endodontic Instruments after Clinical Use. J. Endod. 2004;30:722–725. doi: 10.1097/01.DON.0000129963.42882.C9. PubMed DOI
Schirrmeister J.F., Strohl C., Altenburger M.J., Wrbas K.T., Hellwig E. Shaping ability and safety of five different rotary nick-el-titanium instruments compared with stainless steel hand instrumentation in simulated curved root canals. Oral Surg. Oral Med. Oral Pathol. Oral Radio Endod. 2006;101:807–813. doi: 10.1016/j.tripleo.2005.06.014. PubMed DOI
Spili P., Parashos P., Messer H.H. The Impact of Instrument Fracture on Outcome of Endodontic Treatment. J. Endod. 2005;31:845–850. doi: 10.1097/01.don.0000164127.62864.7c. PubMed DOI
Li U.M., Lee B.S., Shih C.T., Lan W.H., Lin C.P. Cyclic fatigue of endodontic nickel titanium rotary instruments: Static and dy-namic tests. J. Endod. 2002;28:448–451. doi: 10.1097/00004770-200206000-00007. PubMed DOI
Tripi T.R., Bonaccorso A., Condorelli G.G. Cyclic fatigue of different nickel-titanium endodontic rotary instruments. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006;102:e106–e114. doi: 10.1016/j.tripleo.2005.12.012. PubMed DOI
Berutti E., Chiandussi G., Gaviglio I., Ibba A. Comparative Analysis of Torsional and Bending Stresses in Two Mathematical Models of Nickel-Titanium Rotary Instruments: ProTaper versus ProFile. J. Endod. 2003;29:15–19. doi: 10.1097/00004770-200301000-00005. PubMed DOI
Turpin Y.L., Chagneau F., Vulcain J.M. Impact of two theoretical cross-sections on torsional and bending stresses of nickelti-tanium root canal instrument models. J. Endod. 2000;26:414–417. doi: 10.1097/00004770-200007000-00009. PubMed DOI
Hornbogen E. Some effects of martensitic transformation on fatigue resistance. Fatigue Fract. Eng. Mater. Struct. 2002;25:785–790. doi: 10.1046/j.1460-2695.2002.00579.x. DOI
Gavini G., Dos Santos M., Caldeira C.L., Machado M.E.D.L., Freire L.G., Iglecias E.F., Peters O.A., Candeiro G.T.D.M. Nickel–titanium instruments in endodontics: A concise review of the state of the art. Braz. Oral Res. 2018;32:67. doi: 10.1590/1807-3107bor-2018.vol32.0067. PubMed DOI
Loska S., Basiaga M., Pochrząst M., Łukomska-Szymańska M., Walke W., Tyrlik-Held J. Comparative characteristics of endodon-tic drills. Acta Bioeng. Biomech. 2015;17:75–83. PubMed
Hamdy T.M., Galal M., Ismail A.G., Abdelraouf R.M. Evaluation of Flexibility, Microstructure and Elemental Analysis of Some Contemporary Nickel-Titanium Rotary Instruments. Open Access Maced. J. Med. Sci. 2019;7:3647–3654. doi: 10.3889/oamjms.2019.811. PubMed DOI PMC
Bastos M.M.B., Hanan A.R.A., Marques A.A.F., Garcia L.D.F.R., Júnior E.C.S. Topographic and Chemical Analysis of Reciprocating and Rotary Instruments Surface after Continuous Use. Braz. Dent. J. 2017;28:461–466. doi: 10.1590/0103-6440201701528. PubMed DOI
Anderson M.E., Price J.W., Parashos P. Fracture Resistance of Electropolished Rotary Nickel–Titanium Endodontic Instruments. J. Endod. 2007;33:1212–1216. doi: 10.1016/j.joen.2007.07.007. PubMed DOI
Sharma S., Kumar Tewari R., Kharade P., Kharade P. Comparative Evaluation of the Effect of Manufacturing Process on Dis-tortion of Rotary ProFile and Twisted File: An in Vitro SEM Study. J. Dent. Res. Dent. Clin. Dent. Prospect. 2015;9:216–220. doi: 10.15171/joddd.2015.039. PubMed DOI PMC
Gavini G., Pessoa O.F., Barletta F.B., Vasconcellos M.A., Caldeira C.L. Cyclic fatigue resistance of rotary nickel titanium instru-ments submitted to nitrogen ion implantation. J. Endod. 2010;36:1183–1186. doi: 10.1016/j.joen.2010.03.032. PubMed DOI
Zhao N., Man H., Cui Z., Yang X. Structure and wear properties of laser gas nitrided NiTi surface. Surf. Coat. Technol. 2006;200:4879–4884. doi: 10.1016/j.surfcoat.2005.04.043. DOI
Dos Santos M., Gavini G., Siqueira E.L., Da Costa C. Effect of Nitrogen Ion Implantation on the Flexibility of Rotary Nickel-Titanium Instruments. J. Endod. 2012;38:673–675. doi: 10.1016/j.joen.2012.01.012. PubMed DOI
Shevchenko N., Pham M.-T., Maitz M. Studies of surface modified NiTi alloy. Appl. Surf. Sci. 2004;235:126–131. doi: 10.1016/j.apsusc.2004.05.273. DOI
Wolle C.F., Vasconcellos M.A., Hinrichs R., Becker A.N., Barletta F.B. The effect of argon and nitrogen ion implantation on nickeletitanium rotary instruments. J. Endod. 2009;35:1558–1562. doi: 10.1016/j.joen.2009.07.023. PubMed DOI
Al Jabbari Y.S., Fehrman J., Barnes A., Zapf A., Zinelis S., Berzins D. Titanium nitride and nitrogen ion implanted coated dental materials. Coatings. 2012;2:160–178. doi: 10.3390/coatings2030160. DOI
Firstov G., Vitchev R., Kumar H., Blanpain B., Van Humbeeck J. Surface oxidation of NiTi shape memory alloy. Biomaterials. 2002;23:4863–4871. doi: 10.1016/S0142-9612(02)00244-2. PubMed DOI
Aun D.P., Peixoto I.F.D.C., Houmard M., Buono V.T.L. Enhancement of NiTi superelastic endodontic instruments by TiO2 coat-ing. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;68:675–680. doi: 10.1016/j.msec.2016.06.031. PubMed DOI
Gil F.J., Solano E., Campos A., Boccio F., Sáez I., Alfonso M.V., Planell J.A. Improvement of the friction behaviour of NiTi ortho-dontic archwires by nitrogen diffusion. Biomed. Mater Eng. 1998;8:335–342. PubMed
Vojtech D., Fojt J., Joska L., Novak P. Surface treatment of NiTi shape memory alloy and its influence on corrosion behavior. Surf. Coat. Technol. 2010;204:3895–3901. doi: 10.1016/j.surfcoat.2010.05.010. DOI
Lutz J., Lindner J., Mändl S. Marker experiments to determine diffusing species and diffusion path in medical Nitinol alloys. Appl. Surf. Sci. 2008;255:1107–1109. doi: 10.1016/j.apsusc.2008.05.191. DOI
Rodrigo P.C., Marcio M., Silvio F.B. Low-Temperature Thermochemical Treatments of Stainless Steels—An Introduction. In: Mieno T., editor. Plasma Science and Technology—Progress in Physical States and Chemical Reactions. IntechOpen; London, UK: Apr 20, 2016. DOI
Lelątko J., Goryczka T., Wierzchoń T., Ossowski M., Łosiewicz B., Rówiński E., Morawiec H. Structure of Low Temperature Nitrided/Oxidized Layer Formed on NiTi Shape Memory Alloy. Solid State Phenom. 2010;163:127–130. doi: 10.4028/www.scientific.net/SSP.163.127. DOI
Prochazka J., Pokorny Z., Dobrocky D. Service Behavior of Nitride Layers of Steels for Military Applications. Coatings. 2020;10:975. doi: 10.3390/coatings10100975. DOI
Fišerová E., Chvosteková M., Bělašková S., Bumbálek M., Joska Z. Survival Analysis of Factors Influencing Cyclic Fatigue of Nickel-Titanium Endodontic Instruments. Adv. Mater. Sci. Eng. 2015;2015:189703. doi: 10.1155/2015/189703. DOI
Analysis of Tribological Properties of Powdered Tool Steels M390 and M398 in Contact with Al2O3