Effect of Supercritical Bending on the Mechanical & Tribological Properties of Inconel 625 Welded Using the Cold Metal Transfer Method on a 16Mo3 Steel Pipe

. 2023 Jul 15 ; 16 (14) : . [epub] 20230715

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37512287

Grantová podpora
SK-PL-21-0057 Slovak Research and Development Agency

The presented work deals with the investigation of mechanical tribological properties on Inconel 625 superalloy, which is welded on a 16Mo3 steel pipe. The wall thickness of the basic steel pipe was 7 mm, while the average thickness of the welded layer was 3.5 mm. The coating was made by the cold metal transfer (CMT) method. A supercritical bending of 180° was performed on the material welded in this way while cold. The mechanical properties evaluated were hardness, wear resistance, coefficient of friction (COF) and change in surface roughness for both materials. The UMT Tribolab laboratory equipment was used to measure COF and wear resistance by the Ball-on-flat method, which used a G40 steel pressure ball. The entire process took place at an elevated temperature of 500 °C. The measured results show that the materials after bending are reinforced by plastic deformation, which leads to an increase in hardness and also resistance to wear. Superalloy Inconel 625 shows approximately seven times higher rate of wear compared to steel 16Mo3 due to the creation of local oxidation areas that support the formation of abrasive wear and do not create a solid lubricant, as in the case of steel 16Mo3. Strain hardening leads to a reduction of possible wear on Inconel 625 superalloy as well as on 16Mo3 steel. In the case of the friction process, the places of supercritical bending of the structure showed the greatest resistance to wear compared to the non-deformed structure.

Erratum v

PubMed

Zobrazit více v PubMed

Persson B.N., Tosatti E., editors. Physics of Sliding Friction. Volume 311. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2013. DOI

Hutchings I., Shipway P. Tribology: Friction and Wear of Engineering Materials. Butterworth-Heinemann; Waltham, MA, USA: 2017.

Martínez-Nogués V., Medel F.J., Mariscal M.D., Endrino J.L., Krzanowski J., Yubero F., Puértolas J.A. Tribological performance of DLC coatings on UHMWPE. J. Phys. Conf. Ser. 2010;252:012006. doi: 10.1088/1742-6596/252/1/012006. DOI

Votava J. Using Welding for Renovations of Machine Parts Made of Aluminium Alloy. Acta Technol. Agric. 2014;17:91–95. doi: 10.2478/ata-2014-0021. DOI

Meng Y., Xu J., Jin Z., Prakash B., Hu Y. A review of recent advances in tribology. Friction. 2020;8:221–300. doi: 10.1007/s40544-020-0367-2. DOI

Barényi I., Majerík J. Výskum Materiálových Vlastností Návaru Vrstvy Zliatiny Inconel 625 na Rúrku s Ocele 16Mo3 Po Jej Ohybe. Research Report; FŠT TnUAD in Trenčín; Trenčín-Záblatie, Slovakia: 2020.

Metals Special . Inconel Alloy 625. Special Metals PCC Company; Huntington, WV, USA: 2013.

Haynes International, Inc . Haynes 25 Alloy. Haynes International, Inc.; Kokomo, IN, USA: 2022. [(accessed on 14 April 2023)]. Available online: https://www.haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/high-temperature-alloys/brochures/25-brochure.pdf?sfvrsn=ba7229d4_42.

VDM Metals GmbH . VDM® Alloy 625Nicrofer 6020 hMo. VDM Metals GmbH; Werdohl, Germany: 2014. [(accessed on 14 April 2023)]. Available online: http://www.vdm-metals.com/de/downloads/data-sheets.

ATI 625™ Nickel-Base Superalloy. Allegheny Technologies Incorporated; Pittsburgh, PA, USA: 2013. ATI 625 Technical Datasheet.

Lemos G.V.B., Farina A.B., Piaggio H., Bergmann L., Ferreira J.Z., Dos Santos J.F., Voort G.V., Reguly A. Mitigating the susceptibility to intergranular corrosion of alloy 625 by friction-stir welding. Sci. Rep. 2022;12:3482. doi: 10.1038/s41598-022-07473-0. PubMed DOI PMC

AZO Materials . Super Alloy Altemp 625™ (UNS N06625) AZO Materials; London, UK: 2012.

EOS GmbH—Electro Optical Systems . EOS Nickel Alloy IN625, Material Data Sheet. EOS GmbH; Krailling, Germany: 2010.

Renishaw . In625-0402 Powder for Additive Manufacturing. Renishaw; Wotton-under-Edge, UK: 2017. Data Sheet.

Lass E.A., Stoudt M.R., Williams M.E., Katz M.B., Levine L.E., Phan T.Q., Gnaeupel-Herold T.H., Ng D.S. Formation of the Ni3Nb δ-Phase in Stress-Relieved Inconel 625 Produced via Laser Powder-Bed Fusion Additive Manufacturing. Met. Mater. Trans. A. 2017;48:5547–5558. doi: 10.1007/s11661-017-4304-6. DOI

Marchese G., Colera X.G., Calignano F., Lorusso M., Biamino S., Minetola P., Manfredi D. Characterization and Comparison of Inconel 625 Processed by Selective Laser Melting and Laser Metal Deposition. Adv. Eng. Mater. 2016;19:1600635. doi: 10.1002/adem.201600635. DOI

Koutiri I., Pessard E., Peyre P., Amlou O., De Terris T. Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J. Mater. Process. Technol. 2018;255:536–546. doi: 10.1016/j.jmatprotec.2017.12.043. DOI

Pleass C., Jothi S. Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by Selective Laser Melting. Addit. Manuf. 2018;24:419–431. doi: 10.1016/j.addma.2018.09.023. DOI

Leary M., Mazur M., Williams H., Yang E., Alghamdi A., Lozanovski B., Zhang X., Shidid D., Farahbod-Sternahl L., Witt G., et al. Inconel 625 lattice structures manufactured by selective laser melting (SLM): Mechanical properties, deformation and failure modes. Mater. Des. 2018;157:179–199. doi: 10.1016/j.matdes.2018.06.010. DOI

Marchese G., Lorusso M., Parizia S., Bassini E., Lee J.-W., Calignano F., Manfredi D., Terner M., Hong H.-U., Ugues D., et al. Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion. Mater. Sci. Eng. A. 2018;729:64–75. doi: 10.1016/j.msea.2018.05.044. DOI

Hu Y., Lin X., Zhang S., Jiang Y., Lu X., Yang H., Huang W. Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming. J. Alloys Compd. 2018;767:330–344. doi: 10.1016/j.jallcom.2018.07.087. DOI

Gonzalez J., Mireles J., Stafford S., Perez M., Terrazas C., Wicker R. Characterization of Inconel 625 fabricated using powder-bed-based additive manufacturing technologies. J. Mater. Process. Technol. 2018;264:200–210. doi: 10.1016/j.jmatprotec.2018.08.031. DOI

Zhong C., Kittel J., Gasser A., Schleifenbaum J.H. Study of nickel-based super-alloys Inconel 718 and Inconel 625 in high-deposition-rate laser metal deposition. Opt. Laser Technol. 2019;109:352–360. doi: 10.1016/j.optlastec.2018.08.003. DOI

Solecka M., Kopia A., Radziszewska A., Rutkowski B. Microstructure, microsegregation and nanohardness of CMT clad layers of Ni-base alloy on 16Mo3 steel. J. Alloys Compd. 2018;751:86–95. doi: 10.1016/j.jallcom.2018.04.102. DOI

Czupryński A. Research on 16Mo3 steel pipe overlaid with superalloys Inconel 625 using robotized PPTAW. Weld. Technol. Rev. 2019;91:9–16. doi: 10.26628/wtr.v91i11.1064. DOI

Thellaputta G.R., Chandra P.S., Rao C. Machinability of Nickel Based Superalloys: A Review. Mater. Today Proc. 2017;4:3712–3721. doi: 10.1016/j.matpr.2017.02.266. DOI

Parida A.K., Maity K. Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation. Eng. Sci. Technol. Int. J. 2018;21:364–370. doi: 10.1016/j.jestch.2018.03.018. DOI

Zhao L., Xin A., Liu F., Zhang J., Hu N. Secondary bending effects in progressively damaged single-lap, single-bolt composite joints. Results Phys. 2016;6:704–711. doi: 10.1016/j.rinp.2016.08.021. DOI

Wu D., Zhang Q., Ma G., Guo Y., Guo D. Laser bending of brittle materials. Opt. Lasers Eng. 2010;48:405–410. doi: 10.1016/j.optlaseng.2009.09.009. DOI

Wang Y., Chen X., Su C. Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing. Surf. Coat. Technol. 2019;374:116–123. doi: 10.1016/j.surfcoat.2019.05.079. DOI

Klučiar P., Barenyi I., Majerík J. Nanoindentation Analysis of Inconel 625 Alloy Weld Overlay on 16Mo3 Steel. Manuf. Technol. 2022;22:26–33. doi: 10.21062/mft.2022.013. DOI

Dubiel B., Sieniawski J. Precipitates in additively manufactured Inconel 625 superalloy. Materials. 2019;12:1144. doi: 10.3390/ma12071144. PubMed DOI PMC

Abioye T., McCartney D., Clare A. Laser cladding of Inconel 625 wire for corrosion protection. J. Mater. Process. Technol. 2015;217:232–240. doi: 10.1016/j.jmatprotec.2014.10.024. DOI

Malej S., Medved J., Batič B.Š., Tehovnik F., Godec M. Microstructural evolution of inconel 625 during thermal aging. Metalurgija. 2017;56:319–322.

Li C., White R., Fang X.Y., Weaver M., Guo Y.B. Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment. Mater. Sci. Eng. A. 2017;705:20–31. doi: 10.1016/j.msea.2017.08.058. DOI

Safarzade A., Sharifitabar M., Afarani M.S. Effects of heat treatment on microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process. Trans. Nonferrous Met. Soc. China. 2020;30:3016–3030. doi: 10.1016/S1003-6326(20)65439-5. DOI

Amato K., Hernandez J., Murr L.E., Martinez E., Gaytan S.M., Shindo P.W., Collins S. Comparison of Microstructures and Properties for a Ni-Base Superalloy (Alloy 625) Fabricated by Electron Beam Melting. J. Mater. Sci. Res. 2012;1:1–41. doi: 10.5539/jmsr.v1n2p3. DOI

Zhang F., Levine L.E., Allen A.J., Campbell C.E., Lass E.A., Cheruvathur S., Stoudt M.R., Williams M.E., Idell Y. Homogenization kinetics of a nickel-based superalloy produced by powder bed fusion laser sintering. Scr. Mater. 2017;131:98–102. doi: 10.1016/j.scriptamat.2016.12.037. PubMed DOI PMC

Lass E.A., Stoudt M.R., Katz M.B., Williams M.E. Precipitation and dissolution of δ and γ″ during heat treatment of a laser powder-bed fusion produced Ni-based superalloy. Scr. Mater. 2018;154:83–86. doi: 10.1016/j.scriptamat.2018.05.025. DOI

Dinda G., Dasgupta A., Mazumder J. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability. Mater. Sci. Eng. A. 2009;509:98–104. doi: 10.1016/j.msea.2009.01.009. DOI

Golański G., Lachowicz M., Słania J., Jasak J., Marszałek P.L. Research on 16Mo3 (16M) steel pipes overlaid with haynes nicro625 alloy using MIG Method. Arch. Metall. Mater. 2015;60:2521–2524. doi: 10.1515/amm-2015-0408. DOI

Kurgan N., Varol R. Mechanical properties of P/M 316L stainless steel materials. Powder Technol. 2010;201:242–247. doi: 10.1016/j.powtec.2010.03.041. DOI

Chu Q., Zhang M., Li J., Yan C. Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding. Mater. Sci. Eng. A. 2017;689:323–331. doi: 10.1016/j.msea.2017.02.075. DOI

Ishimaru E., Hamasaki H., Yoshida F. Deformation-induced martensitic transformation behavior of type 304 stainless steel sheet in draw-bending process. J. Mater. Process. Technol. 2015;223:34–38. doi: 10.1016/j.jmatprotec.2015.03.048. DOI

Yin M., Thibaut C., Wang L., Nélias D., Zhu M., Cai Z. Impact-sliding wear response of 2.25Cr1Mo steel tubes: Experimental and semi-analytical method. Friction. 2021;10:473–490. doi: 10.1007/s40544-021-0538-9. DOI

Krbata M., Eckert M., Bartosova L., Barenyi I., Majerik J., Mikuš P., Rendkova P. Dry Sliding Friction of Tool Steels and Their Comparison of Wear in Contact with ZrO2 and X46Cr13. Materials. 2020;13:2359. doi: 10.3390/ma13102359. PubMed DOI PMC

Günen A. Properties and high temperature dry sliding wear behavior of boronized Inconel 718. Metall. Mater. Trans. A. 2020;51:927–939. doi: 10.1007/s11661-019-05577-3. DOI

Khader I., Renz A., Kailer A. A wear model for silicon nitride in dry sliding contact against a nickel-base alloy. Wear. 2017;376:352–362. doi: 10.1016/j.wear.2016.12.019. DOI

Vo T.D., Tran B., Tieu A.K., Wexler D., Deng G., Nguyen C. Effects of oxidation on friction and wear properties of eutectic high-entropy alloy AlCoCrFeNi2. 1. Tribol. Int. 2021;160:107017. doi: 10.1016/j.triboint.2021.107017. DOI

Cheng X., Jiang Z., Kosasih B., Wu H., Luo S., Jiang L. Influence of Cr-Rich oxide scale on sliding wear mechanism of ferritic stainless steel at high temperature. Tribol. Lett. 2016;63:1–13. doi: 10.1007/s11249-016-0714-7. DOI

Mengis L., Grimme C., Galetz M.C. High-temperature sliding wear behavior of an intermetallic γ-based TiAl alloy. Wear. 2019;426:341–347. doi: 10.1016/j.wear.2018.11.025. DOI

Mishra A. Reduction of sliding wear of alloys by using oxides. Int. J. Mech. Eng. Robot. Res. 2014;3:598–602.

Velkavrh I., Ausserer F., Klien S., Voyer J., Ristow A., Brenner J., Forêt P., Diem A. The influence of temperature on friction and wear of unlubricated steel/steel contacts in different gaseous atmospheres. Tribol. Int. 2016;98:155–171. doi: 10.1016/j.triboint.2016.02.022. DOI

Wang M., Wang Y., Liu H., Wang J., Yan F. Interrelated effects of temperature and load on fretting behavior of SAF 2507 super duplex stainless steel. Tribol. Int. 2019;136:140–147. doi: 10.1016/j.triboint.2019.03.042. DOI

Lavella M., Botto D. Fretting wear of alloy steels at the blade tip of steam turbines. Wear. 2019;426–427:735–740. doi: 10.1016/j.wear.2019.01.039. DOI

Jin X., Shipway P.H., Sun W. The Role of Temperature and Frequency on Fretting Wear of a Like-on-Like Stainless Steel Contact. Tribol. Lett. 2017;65:77. doi: 10.1007/s11249-017-0858-0. DOI

Feng K., Shao T. The evolution mechanism of tribo-oxide layer during high temperature dry sliding wear for nickel-based superalloy. Wear. 2021;476:203747. doi: 10.1016/j.wear.2021.203747. DOI

Krbaťa M., Majerík J., Barényi I., Mikušová I., Kusmič D. Mechanical and Tribological Features of the 90MnCrV8 Steel after Plasma Nitriding. Manuf. Technol. 2019;19:238–242. doi: 10.21062/ujep/276.2019/a/1213-2489/MT/19/2/238. DOI

Vashishtha N., Sapate S., Bagde P., Rathod A. Effect of heat treatment on friction and abrasive wear behaviour of WC-12Co and Cr3C2-25NiCr coatings. Tribol. Int. 2018;118:381–399. doi: 10.1016/j.triboint.2017.10.017. DOI

Krbata M., Eckert M., Majerik J., Barenyi I. Wear Behaviour of High Strength Tool Steel 90MnCrV8 in Contact with Si3N4. Metals. 2020;10:756. doi: 10.3390/met10060756. DOI

Marques F., da Silva W., Pardal J., Tavares S., Scandian C. Influence of heat treatments on the micro-abrasion wear resistance of a superduplex stainless steel. Wear. 2011;271:1288–1294. doi: 10.1016/j.wear.2010.12.087. DOI

Hardell J., Hernandez S., Mozgovoy S., Pelcastre L., Courbon C., Prakash B. Effect of oxide layers and near surface transformations on friction and wear during tool steel and boron steel interaction at high temperatures. Wear. 2015;330–331:223–229. doi: 10.1016/j.wear.2015.02.040. DOI

Kumar S., Nagaraj M., Khedkar N.K., Bongale A. Influence of deep cryogenic treatment on dry sliding wear behaviour of AISI D3 die steel. Mater. Res. Express. 2018;5:116525. doi: 10.1088/2053-1591/aadeba. DOI

Terwey J.T., Fourati M.A., Pape F., Poll G. Energy-Based Modelling of Adhesive Wear in the Mixed Lubrication Regime. Lubricants. 2020;8:16. doi: 10.3390/lubricants8020016. DOI

Goh K.-L., Thomas S., De Silva R.-T., Aswathi M., editors. Interfaces in Particle and Fibre Reinforced Composites: Current Perspectives on Polymer, Ceramic, Metal and Extracellular Matrices. Elsevier; London, UK: 2019.

Bumbalek M., Joska Z., Pokorny Z., Sedlak J., Majerik J., Neumann V., Klima K. Cyclic Fatigue of Dental NiTi Instruments after Plasma Nitriding. Materials. 2021;14:2155. doi: 10.3390/ma14092155. PubMed DOI PMC

Studeny Z., Krbata M., Dobrocky D., Eckert M., Ciger R., Kohutiar M., Mikus P. Analysis of Tribological Properties of Powdered Tool Steels M390 and M398 in Contact with Al2O3. Materials. 2022;15:7562. doi: 10.3390/ma15217562. PubMed DOI PMC

Wang J., Zafar M.Q., Chen Y., Pan P., Zuo L., Zhao H., Zhang X. Tribological Properties of Brake Disc Material for a High-Speed Train and the Evolution of Debris. Lubricants. 2022;10:168. doi: 10.3390/lubricants10080168. DOI

Wang L., Zeng Q., Xie Z., Zhang Y., Gao H. High Temperature Oxidation Behavior of an Equimolar Cr-Mn-Fe-Co High-Entropy Alloy. Materials. 2021;14:4259. doi: 10.3390/ma14154259. PubMed DOI PMC

Xu L., Shao C., Tian L., Zhang J., Han Y., Zhao L., Jing H. Intergranular corrosion behavior of Inconel 625 deposited by CMT/GTAW. Corros. Sci. 2022;201:110295. doi: 10.1016/j.corsci.2022.110295. DOI

Evangeline A., Sathiya P. Cold metal arc transfer (CMT) metal deposition of Inconel 625 superalloy on 316L austenitic stainless steel: Microstructural evaluation, corrosion and wear resistance properties. Mater. Res. Express. 2019;6:066516. doi: 10.1088/2053-1591/ab0a10. DOI

Li Y., Lu Z., Li T., Li D., Lu J., Liaw P.K., Zou Y. Effects of Surface Severe Plastic Deformation on the Mechanical Behavior of 304 Stainless Steel. Metals. 2020;10:831. doi: 10.3390/met10060831. DOI

Köhnen P., Haase C., Bültmann J., Ziegler S., Schleifenbaum J.H., Bleck W. Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel. Mater. Des. 2018;145:205–217. doi: 10.1016/j.matdes.2018.02.062. DOI

KKosbe P.E., Patil P.A., Manickam M., Ramamurthy G. Experimental Investigation of Physical and Mechanical Properties of Steel Powder Filled Disc Brake Friction Materials. J. Phys. Sci. 2019;30:81–97. doi: 10.21315/jps2019.30.2.6. DOI

Zhang C., Fujii M. Tribological Behavior of Thermally Sprayed WC Coatings under Water Lubrication. Mater. Sci. Appl. 2016;7:527–541. doi: 10.4236/msa.2016.79045. DOI

Yue T., Wahab M.A. Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes. Tribol. Int. 2017;107:274–282. doi: 10.1016/j.triboint.2016.11.044. DOI

Straffelini G. Friction and Wear. Springer Tracts in Mechanical Engineering; Springer; Cham, Switzerland: 2015. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...