Effect of Supercritical Bending on the Mechanical & Tribological Properties of Inconel 625 Welded Using the Cold Metal Transfer Method on a 16Mo3 Steel Pipe
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SK-PL-21-0057
Slovak Research and Development Agency
PubMed
37512287
PubMed Central
PMC10385067
DOI
10.3390/ma16145014
PII: ma16145014
Knihovny.cz E-zdroje
- Klíčová slova
- hardness, material, steel, superalloy, temperature, tribology, wear, welding,
- Publikační typ
- časopisecké články MeSH
The presented work deals with the investigation of mechanical tribological properties on Inconel 625 superalloy, which is welded on a 16Mo3 steel pipe. The wall thickness of the basic steel pipe was 7 mm, while the average thickness of the welded layer was 3.5 mm. The coating was made by the cold metal transfer (CMT) method. A supercritical bending of 180° was performed on the material welded in this way while cold. The mechanical properties evaluated were hardness, wear resistance, coefficient of friction (COF) and change in surface roughness for both materials. The UMT Tribolab laboratory equipment was used to measure COF and wear resistance by the Ball-on-flat method, which used a G40 steel pressure ball. The entire process took place at an elevated temperature of 500 °C. The measured results show that the materials after bending are reinforced by plastic deformation, which leads to an increase in hardness and also resistance to wear. Superalloy Inconel 625 shows approximately seven times higher rate of wear compared to steel 16Mo3 due to the creation of local oxidation areas that support the formation of abrasive wear and do not create a solid lubricant, as in the case of steel 16Mo3. Strain hardening leads to a reduction of possible wear on Inconel 625 superalloy as well as on 16Mo3 steel. In the case of the friction process, the places of supercritical bending of the structure showed the greatest resistance to wear compared to the non-deformed structure.
Faculty of Special Technology Alexander Dubcek University of Trenčín 911 06 Trenčín Slovakia
Institute of Materials and Machine Mechanics SAS Dúbravská cesta 9 6319 845 13 Bratislava Slovakia
Zobrazit více v PubMed
Persson B.N., Tosatti E., editors. Physics of Sliding Friction. Volume 311. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2013. DOI
Hutchings I., Shipway P. Tribology: Friction and Wear of Engineering Materials. Butterworth-Heinemann; Waltham, MA, USA: 2017.
Martínez-Nogués V., Medel F.J., Mariscal M.D., Endrino J.L., Krzanowski J., Yubero F., Puértolas J.A. Tribological performance of DLC coatings on UHMWPE. J. Phys. Conf. Ser. 2010;252:012006. doi: 10.1088/1742-6596/252/1/012006. DOI
Votava J. Using Welding for Renovations of Machine Parts Made of Aluminium Alloy. Acta Technol. Agric. 2014;17:91–95. doi: 10.2478/ata-2014-0021. DOI
Meng Y., Xu J., Jin Z., Prakash B., Hu Y. A review of recent advances in tribology. Friction. 2020;8:221–300. doi: 10.1007/s40544-020-0367-2. DOI
Barényi I., Majerík J. Výskum Materiálových Vlastností Návaru Vrstvy Zliatiny Inconel 625 na Rúrku s Ocele 16Mo3 Po Jej Ohybe. Research Report; FŠT TnUAD in Trenčín; Trenčín-Záblatie, Slovakia: 2020.
Metals Special . Inconel Alloy 625. Special Metals PCC Company; Huntington, WV, USA: 2013.
Haynes International, Inc . Haynes 25 Alloy. Haynes International, Inc.; Kokomo, IN, USA: 2022. [(accessed on 14 April 2023)]. Available online: https://www.haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/high-temperature-alloys/brochures/25-brochure.pdf?sfvrsn=ba7229d4_42.
VDM Metals GmbH . VDM® Alloy 625Nicrofer 6020 hMo. VDM Metals GmbH; Werdohl, Germany: 2014. [(accessed on 14 April 2023)]. Available online: http://www.vdm-metals.com/de/downloads/data-sheets.
ATI 625™ Nickel-Base Superalloy. Allegheny Technologies Incorporated; Pittsburgh, PA, USA: 2013. ATI 625 Technical Datasheet.
Lemos G.V.B., Farina A.B., Piaggio H., Bergmann L., Ferreira J.Z., Dos Santos J.F., Voort G.V., Reguly A. Mitigating the susceptibility to intergranular corrosion of alloy 625 by friction-stir welding. Sci. Rep. 2022;12:3482. doi: 10.1038/s41598-022-07473-0. PubMed DOI PMC
AZO Materials . Super Alloy Altemp 625™ (UNS N06625) AZO Materials; London, UK: 2012.
EOS GmbH—Electro Optical Systems . EOS Nickel Alloy IN625, Material Data Sheet. EOS GmbH; Krailling, Germany: 2010.
Renishaw . In625-0402 Powder for Additive Manufacturing. Renishaw; Wotton-under-Edge, UK: 2017. Data Sheet.
Lass E.A., Stoudt M.R., Williams M.E., Katz M.B., Levine L.E., Phan T.Q., Gnaeupel-Herold T.H., Ng D.S. Formation of the Ni3Nb δ-Phase in Stress-Relieved Inconel 625 Produced via Laser Powder-Bed Fusion Additive Manufacturing. Met. Mater. Trans. A. 2017;48:5547–5558. doi: 10.1007/s11661-017-4304-6. DOI
Marchese G., Colera X.G., Calignano F., Lorusso M., Biamino S., Minetola P., Manfredi D. Characterization and Comparison of Inconel 625 Processed by Selective Laser Melting and Laser Metal Deposition. Adv. Eng. Mater. 2016;19:1600635. doi: 10.1002/adem.201600635. DOI
Koutiri I., Pessard E., Peyre P., Amlou O., De Terris T. Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J. Mater. Process. Technol. 2018;255:536–546. doi: 10.1016/j.jmatprotec.2017.12.043. DOI
Pleass C., Jothi S. Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by Selective Laser Melting. Addit. Manuf. 2018;24:419–431. doi: 10.1016/j.addma.2018.09.023. DOI
Leary M., Mazur M., Williams H., Yang E., Alghamdi A., Lozanovski B., Zhang X., Shidid D., Farahbod-Sternahl L., Witt G., et al. Inconel 625 lattice structures manufactured by selective laser melting (SLM): Mechanical properties, deformation and failure modes. Mater. Des. 2018;157:179–199. doi: 10.1016/j.matdes.2018.06.010. DOI
Marchese G., Lorusso M., Parizia S., Bassini E., Lee J.-W., Calignano F., Manfredi D., Terner M., Hong H.-U., Ugues D., et al. Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion. Mater. Sci. Eng. A. 2018;729:64–75. doi: 10.1016/j.msea.2018.05.044. DOI
Hu Y., Lin X., Zhang S., Jiang Y., Lu X., Yang H., Huang W. Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming. J. Alloys Compd. 2018;767:330–344. doi: 10.1016/j.jallcom.2018.07.087. DOI
Gonzalez J., Mireles J., Stafford S., Perez M., Terrazas C., Wicker R. Characterization of Inconel 625 fabricated using powder-bed-based additive manufacturing technologies. J. Mater. Process. Technol. 2018;264:200–210. doi: 10.1016/j.jmatprotec.2018.08.031. DOI
Zhong C., Kittel J., Gasser A., Schleifenbaum J.H. Study of nickel-based super-alloys Inconel 718 and Inconel 625 in high-deposition-rate laser metal deposition. Opt. Laser Technol. 2019;109:352–360. doi: 10.1016/j.optlastec.2018.08.003. DOI
Solecka M., Kopia A., Radziszewska A., Rutkowski B. Microstructure, microsegregation and nanohardness of CMT clad layers of Ni-base alloy on 16Mo3 steel. J. Alloys Compd. 2018;751:86–95. doi: 10.1016/j.jallcom.2018.04.102. DOI
Czupryński A. Research on 16Mo3 steel pipe overlaid with superalloys Inconel 625 using robotized PPTAW. Weld. Technol. Rev. 2019;91:9–16. doi: 10.26628/wtr.v91i11.1064. DOI
Thellaputta G.R., Chandra P.S., Rao C. Machinability of Nickel Based Superalloys: A Review. Mater. Today Proc. 2017;4:3712–3721. doi: 10.1016/j.matpr.2017.02.266. DOI
Parida A.K., Maity K. Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation. Eng. Sci. Technol. Int. J. 2018;21:364–370. doi: 10.1016/j.jestch.2018.03.018. DOI
Zhao L., Xin A., Liu F., Zhang J., Hu N. Secondary bending effects in progressively damaged single-lap, single-bolt composite joints. Results Phys. 2016;6:704–711. doi: 10.1016/j.rinp.2016.08.021. DOI
Wu D., Zhang Q., Ma G., Guo Y., Guo D. Laser bending of brittle materials. Opt. Lasers Eng. 2010;48:405–410. doi: 10.1016/j.optlaseng.2009.09.009. DOI
Wang Y., Chen X., Su C. Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing. Surf. Coat. Technol. 2019;374:116–123. doi: 10.1016/j.surfcoat.2019.05.079. DOI
Klučiar P., Barenyi I., Majerík J. Nanoindentation Analysis of Inconel 625 Alloy Weld Overlay on 16Mo3 Steel. Manuf. Technol. 2022;22:26–33. doi: 10.21062/mft.2022.013. DOI
Dubiel B., Sieniawski J. Precipitates in additively manufactured Inconel 625 superalloy. Materials. 2019;12:1144. doi: 10.3390/ma12071144. PubMed DOI PMC
Abioye T., McCartney D., Clare A. Laser cladding of Inconel 625 wire for corrosion protection. J. Mater. Process. Technol. 2015;217:232–240. doi: 10.1016/j.jmatprotec.2014.10.024. DOI
Malej S., Medved J., Batič B.Š., Tehovnik F., Godec M. Microstructural evolution of inconel 625 during thermal aging. Metalurgija. 2017;56:319–322.
Li C., White R., Fang X.Y., Weaver M., Guo Y.B. Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment. Mater. Sci. Eng. A. 2017;705:20–31. doi: 10.1016/j.msea.2017.08.058. DOI
Safarzade A., Sharifitabar M., Afarani M.S. Effects of heat treatment on microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process. Trans. Nonferrous Met. Soc. China. 2020;30:3016–3030. doi: 10.1016/S1003-6326(20)65439-5. DOI
Amato K., Hernandez J., Murr L.E., Martinez E., Gaytan S.M., Shindo P.W., Collins S. Comparison of Microstructures and Properties for a Ni-Base Superalloy (Alloy 625) Fabricated by Electron Beam Melting. J. Mater. Sci. Res. 2012;1:1–41. doi: 10.5539/jmsr.v1n2p3. DOI
Zhang F., Levine L.E., Allen A.J., Campbell C.E., Lass E.A., Cheruvathur S., Stoudt M.R., Williams M.E., Idell Y. Homogenization kinetics of a nickel-based superalloy produced by powder bed fusion laser sintering. Scr. Mater. 2017;131:98–102. doi: 10.1016/j.scriptamat.2016.12.037. PubMed DOI PMC
Lass E.A., Stoudt M.R., Katz M.B., Williams M.E. Precipitation and dissolution of δ and γ″ during heat treatment of a laser powder-bed fusion produced Ni-based superalloy. Scr. Mater. 2018;154:83–86. doi: 10.1016/j.scriptamat.2018.05.025. DOI
Dinda G., Dasgupta A., Mazumder J. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability. Mater. Sci. Eng. A. 2009;509:98–104. doi: 10.1016/j.msea.2009.01.009. DOI
Golański G., Lachowicz M., Słania J., Jasak J., Marszałek P.L. Research on 16Mo3 (16M) steel pipes overlaid with haynes nicro625 alloy using MIG Method. Arch. Metall. Mater. 2015;60:2521–2524. doi: 10.1515/amm-2015-0408. DOI
Kurgan N., Varol R. Mechanical properties of P/M 316L stainless steel materials. Powder Technol. 2010;201:242–247. doi: 10.1016/j.powtec.2010.03.041. DOI
Chu Q., Zhang M., Li J., Yan C. Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding. Mater. Sci. Eng. A. 2017;689:323–331. doi: 10.1016/j.msea.2017.02.075. DOI
Ishimaru E., Hamasaki H., Yoshida F. Deformation-induced martensitic transformation behavior of type 304 stainless steel sheet in draw-bending process. J. Mater. Process. Technol. 2015;223:34–38. doi: 10.1016/j.jmatprotec.2015.03.048. DOI
Yin M., Thibaut C., Wang L., Nélias D., Zhu M., Cai Z. Impact-sliding wear response of 2.25Cr1Mo steel tubes: Experimental and semi-analytical method. Friction. 2021;10:473–490. doi: 10.1007/s40544-021-0538-9. DOI
Krbata M., Eckert M., Bartosova L., Barenyi I., Majerik J., Mikuš P., Rendkova P. Dry Sliding Friction of Tool Steels and Their Comparison of Wear in Contact with ZrO2 and X46Cr13. Materials. 2020;13:2359. doi: 10.3390/ma13102359. PubMed DOI PMC
Günen A. Properties and high temperature dry sliding wear behavior of boronized Inconel 718. Metall. Mater. Trans. A. 2020;51:927–939. doi: 10.1007/s11661-019-05577-3. DOI
Khader I., Renz A., Kailer A. A wear model for silicon nitride in dry sliding contact against a nickel-base alloy. Wear. 2017;376:352–362. doi: 10.1016/j.wear.2016.12.019. DOI
Vo T.D., Tran B., Tieu A.K., Wexler D., Deng G., Nguyen C. Effects of oxidation on friction and wear properties of eutectic high-entropy alloy AlCoCrFeNi2. 1. Tribol. Int. 2021;160:107017. doi: 10.1016/j.triboint.2021.107017. DOI
Cheng X., Jiang Z., Kosasih B., Wu H., Luo S., Jiang L. Influence of Cr-Rich oxide scale on sliding wear mechanism of ferritic stainless steel at high temperature. Tribol. Lett. 2016;63:1–13. doi: 10.1007/s11249-016-0714-7. DOI
Mengis L., Grimme C., Galetz M.C. High-temperature sliding wear behavior of an intermetallic γ-based TiAl alloy. Wear. 2019;426:341–347. doi: 10.1016/j.wear.2018.11.025. DOI
Mishra A. Reduction of sliding wear of alloys by using oxides. Int. J. Mech. Eng. Robot. Res. 2014;3:598–602.
Velkavrh I., Ausserer F., Klien S., Voyer J., Ristow A., Brenner J., Forêt P., Diem A. The influence of temperature on friction and wear of unlubricated steel/steel contacts in different gaseous atmospheres. Tribol. Int. 2016;98:155–171. doi: 10.1016/j.triboint.2016.02.022. DOI
Wang M., Wang Y., Liu H., Wang J., Yan F. Interrelated effects of temperature and load on fretting behavior of SAF 2507 super duplex stainless steel. Tribol. Int. 2019;136:140–147. doi: 10.1016/j.triboint.2019.03.042. DOI
Lavella M., Botto D. Fretting wear of alloy steels at the blade tip of steam turbines. Wear. 2019;426–427:735–740. doi: 10.1016/j.wear.2019.01.039. DOI
Jin X., Shipway P.H., Sun W. The Role of Temperature and Frequency on Fretting Wear of a Like-on-Like Stainless Steel Contact. Tribol. Lett. 2017;65:77. doi: 10.1007/s11249-017-0858-0. DOI
Feng K., Shao T. The evolution mechanism of tribo-oxide layer during high temperature dry sliding wear for nickel-based superalloy. Wear. 2021;476:203747. doi: 10.1016/j.wear.2021.203747. DOI
Krbaťa M., Majerík J., Barényi I., Mikušová I., Kusmič D. Mechanical and Tribological Features of the 90MnCrV8 Steel after Plasma Nitriding. Manuf. Technol. 2019;19:238–242. doi: 10.21062/ujep/276.2019/a/1213-2489/MT/19/2/238. DOI
Vashishtha N., Sapate S., Bagde P., Rathod A. Effect of heat treatment on friction and abrasive wear behaviour of WC-12Co and Cr3C2-25NiCr coatings. Tribol. Int. 2018;118:381–399. doi: 10.1016/j.triboint.2017.10.017. DOI
Krbata M., Eckert M., Majerik J., Barenyi I. Wear Behaviour of High Strength Tool Steel 90MnCrV8 in Contact with Si3N4. Metals. 2020;10:756. doi: 10.3390/met10060756. DOI
Marques F., da Silva W., Pardal J., Tavares S., Scandian C. Influence of heat treatments on the micro-abrasion wear resistance of a superduplex stainless steel. Wear. 2011;271:1288–1294. doi: 10.1016/j.wear.2010.12.087. DOI
Hardell J., Hernandez S., Mozgovoy S., Pelcastre L., Courbon C., Prakash B. Effect of oxide layers and near surface transformations on friction and wear during tool steel and boron steel interaction at high temperatures. Wear. 2015;330–331:223–229. doi: 10.1016/j.wear.2015.02.040. DOI
Kumar S., Nagaraj M., Khedkar N.K., Bongale A. Influence of deep cryogenic treatment on dry sliding wear behaviour of AISI D3 die steel. Mater. Res. Express. 2018;5:116525. doi: 10.1088/2053-1591/aadeba. DOI
Terwey J.T., Fourati M.A., Pape F., Poll G. Energy-Based Modelling of Adhesive Wear in the Mixed Lubrication Regime. Lubricants. 2020;8:16. doi: 10.3390/lubricants8020016. DOI
Goh K.-L., Thomas S., De Silva R.-T., Aswathi M., editors. Interfaces in Particle and Fibre Reinforced Composites: Current Perspectives on Polymer, Ceramic, Metal and Extracellular Matrices. Elsevier; London, UK: 2019.
Bumbalek M., Joska Z., Pokorny Z., Sedlak J., Majerik J., Neumann V., Klima K. Cyclic Fatigue of Dental NiTi Instruments after Plasma Nitriding. Materials. 2021;14:2155. doi: 10.3390/ma14092155. PubMed DOI PMC
Studeny Z., Krbata M., Dobrocky D., Eckert M., Ciger R., Kohutiar M., Mikus P. Analysis of Tribological Properties of Powdered Tool Steels M390 and M398 in Contact with Al2O3. Materials. 2022;15:7562. doi: 10.3390/ma15217562. PubMed DOI PMC
Wang J., Zafar M.Q., Chen Y., Pan P., Zuo L., Zhao H., Zhang X. Tribological Properties of Brake Disc Material for a High-Speed Train and the Evolution of Debris. Lubricants. 2022;10:168. doi: 10.3390/lubricants10080168. DOI
Wang L., Zeng Q., Xie Z., Zhang Y., Gao H. High Temperature Oxidation Behavior of an Equimolar Cr-Mn-Fe-Co High-Entropy Alloy. Materials. 2021;14:4259. doi: 10.3390/ma14154259. PubMed DOI PMC
Xu L., Shao C., Tian L., Zhang J., Han Y., Zhao L., Jing H. Intergranular corrosion behavior of Inconel 625 deposited by CMT/GTAW. Corros. Sci. 2022;201:110295. doi: 10.1016/j.corsci.2022.110295. DOI
Evangeline A., Sathiya P. Cold metal arc transfer (CMT) metal deposition of Inconel 625 superalloy on 316L austenitic stainless steel: Microstructural evaluation, corrosion and wear resistance properties. Mater. Res. Express. 2019;6:066516. doi: 10.1088/2053-1591/ab0a10. DOI
Li Y., Lu Z., Li T., Li D., Lu J., Liaw P.K., Zou Y. Effects of Surface Severe Plastic Deformation on the Mechanical Behavior of 304 Stainless Steel. Metals. 2020;10:831. doi: 10.3390/met10060831. DOI
Köhnen P., Haase C., Bültmann J., Ziegler S., Schleifenbaum J.H., Bleck W. Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel. Mater. Des. 2018;145:205–217. doi: 10.1016/j.matdes.2018.02.062. DOI
KKosbe P.E., Patil P.A., Manickam M., Ramamurthy G. Experimental Investigation of Physical and Mechanical Properties of Steel Powder Filled Disc Brake Friction Materials. J. Phys. Sci. 2019;30:81–97. doi: 10.21315/jps2019.30.2.6. DOI
Zhang C., Fujii M. Tribological Behavior of Thermally Sprayed WC Coatings under Water Lubrication. Mater. Sci. Appl. 2016;7:527–541. doi: 10.4236/msa.2016.79045. DOI
Yue T., Wahab M.A. Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes. Tribol. Int. 2017;107:274–282. doi: 10.1016/j.triboint.2016.11.044. DOI
Straffelini G. Friction and Wear. Springer Tracts in Mechanical Engineering; Springer; Cham, Switzerland: 2015. DOI