Prebiotic Route to Thymine from Formamide-A Combined Experimental-Theoretical Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-03314S
Grantová Agentura České Republiky
PubMed
33924594
PubMed Central
PMC8069957
DOI
10.3390/molecules26082248
PII: molecules26082248
Knihovny.cz E-zdroje
- Klíčová slova
- formamide, origin of life, prebiotic chemistry, thymine, uracil,
- MeSH
- formamidy chemie MeSH
- původ života MeSH
- thymin chemie MeSH
- uracil chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- formamide MeSH Prohlížeč
- formamidy MeSH
- thymin MeSH
- uracil MeSH
Synthesis of RNA nucleobases from formamide is one of the recurring topics of prebiotic chemistry research. Earlier reports suggest that thymine, the substitute for uracil in DNA, may also be synthesized from formamide in the presence of catalysts enabling conversion of formamide to formaldehyde. In the current paper, we show that to a lesser extent conversion of uracil to thymine may occur even in the absence of catalysts. This is enabled by the presence of formic acid in the reaction mixture that forms as the hydrolysis product of formamide. Under the reaction conditions of our study, the disproportionation of formic acid may produce formaldehyde that hydroxymethylates uracil in the first step of the conversion process. The experiments are supplemented by quantum chemical modeling of the reaction pathway, supporting the plausibility of the mechanism suggested by Saladino and coworkers.
Zobrazit více v PubMed
Gilbert W. Origin of life: The RNA world. Nat. Cell Biol. 1986;319:618. doi: 10.1038/319618a0. DOI
Rich A. On the problems of evolution and biochemical information transfer. In: Kasha M., Pullman B., editors. Horizons in Biochemistry. Academic Press; New York, NY, USA: 1962. pp. 103–126.
Kruse F.M., Teichert J.S., Trapp O. Prebiotic nucleoside synthesis: The selectivity of simplicity. Chem. Eur. J. 2020;26:14776–14790. doi: 10.1002/chem.202001513. PubMed DOI PMC
Xu J., Chmela V., Green N.J., Russell D.A., Janicki M.J., Góra R.W., Szabla R., Bond A.D., Sutherland J.D. Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nat. Cell Biol. 2020;582:60–66. doi: 10.1038/s41586-020-2330-9. PubMed DOI PMC
Xu J., Green N.J., Gibard C., Krishnamurthy R., Sutherland J.D. Prebiotic phosphorylation of 2-thiouridine provides either nucleotides or DNA building blocks via photoreduction. Nat. Chem. 2019;11:457–462. doi: 10.1038/s41557-019-0225-x. PubMed DOI PMC
Teichert J.S., Kruse F.M., Trapp O. Direct Prebiotic Pathway to DNA Nucleosides. Angew. Chem. Int. Ed. 2019;58:9944–9947. doi: 10.1002/anie.201903400. PubMed DOI
Inostroza-Rivera R., Herrera B., Toro-Labbé A. Using the reaction force and the reaction electronic flux on the proton transfer of formamide derived systems. Phys. Chem. Chem. Phys. 2014;16:14489–14495. doi: 10.1039/c3cp55159h. PubMed DOI
Yamada H., Hirobe M., Higashiyama K., Takahashi H., Suzuki K.T. Detection of carbon-13-nitrogen-15 coupled units in adenine derived from doubly labeled hydrogen cyanide or formamide. J. Am. Chem. Soc. 1978;100:4617–4618. doi: 10.1021/ja00482a061. DOI
Yamada H., Hirobe M., Okamoto T. Formamide Reaction. III. Studies on the Reaction Mechanism of Purine Ring Formation and the Reaction of Formamide with Hydrogen Cyanide. Yakugaku Zasshi. 1980;100:489–492. doi: 10.1248/yakushi1947.100.5_489. DOI
Saladino R., Crestini C., Costanzo G., Negri R., Mauro E. A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidone from formamide: Implications for the origin of life. Bioorg. Med. Chem. 2001;9:1249–1253. doi: 10.1016/S0968-0896(00)00340-0. PubMed DOI
Saladino R., Ciambecchini U., Crestini C., Costanzo G., Negri R., Di Mauro E. One-Pot TiO2-Catalyzed Synthesis of Nucleic Bases and Acyclonucleosides from Formamide: Implications for the Origin of Life. ChemBioChem. 2003;4:514–521. doi: 10.1002/cbic.200300567. PubMed DOI
Saladino R., Crestini C., Ciciriello F., Costanzo G., Di Mauro E. Formamide Chemistry and the Origin of Informational Polymers. Chem. Biodivers. 2007;4:694–720. doi: 10.1002/cbdv.200790059. PubMed DOI
Saladino R., Botta G., Pino S., Costanzo G., Di Mauro E. Genetics first or metabolism first? The formamide clue. Chem. Soc. Rev. 2012;41:5526–5565. doi: 10.1039/c2cs35066a. PubMed DOI
Ferus M., Nesvorný D., Šponer J., Kubelík P., Michalčíková R., Shestivská V., Šponer J.E., Civiš S. High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. USA. 2015;112:657–662. doi: 10.1073/pnas.1412072111. PubMed DOI PMC
Saladino R., Carota E., Botta G., Kapralov M., Timoshenko G.N., Rozanov A.Y., Krasavin E., Di Mauro E. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc. Natl. Acad. Sci. USA. 2015;112:E2746–E2755. doi: 10.1073/pnas.1422225112. PubMed DOI PMC
Pastorek A., Hrnčířová J., Jankovič L., Nejdl L., Civiš S., Ivanek O., Shestivska V., Knížek A., Kubelík P., Šponer J., et al. Prebiotic synthesis at impact craters: The role of Fe-clays and iron meteorites. Chem. Comm. 2019;55:10563–10566. doi: 10.1039/C9CC04627E. PubMed DOI
Saladino R., Botta G., Delfino M., Di Mauro E. Meteorites as Catalysts for Prebiotic Chemistry. Chem. A Eur. J. 2013;19:16916–16922. doi: 10.1002/chem.201303690. PubMed DOI
Signorile M., Pantaleone S., Balucani N., Bonino F., Martra G., Ugliengo P. Monitoring the Reactivity of Formamide on Amorphous SiO2 by In-Situ UV-Raman Spectroscopy and DFT Modeling. Molecules. 2020;25:2274. doi: 10.3390/molecules25102274. PubMed DOI PMC
Ferus M., Michalčíková R., Shestivská V., Šponer J., Šponer J.E., Civiš S. High-Energy Chemistry of Formamide: A Simpler Way for Nucleobase Formation. J. Phys. Chem. A. 2014;118:719–736. doi: 10.1021/jp411415p. PubMed DOI
Robertson M., Miller S. Prebiotic synthesis of 5-substituted uracils: A bridge between the RNA world and the DNA-protein world. Science. 1995;268:702–705. doi: 10.1126/science.7732378. PubMed DOI
Enchev V., Angelov I., Dincheva I., Stoyanova N., Slavova S., Rangelov M., Markova N. Chemical evolution: From formamide to nucleobases and amino acids without the presence of catalyst. J. Biomol. Struct. Dyn. 2020:1–16. doi: 10.1080/07391102.2020.1792986. PubMed DOI
Šebesta F., Brela M.Z., Diaz S., Miranda S., Murray J.S., Gutiérrez-Oliva S., Toro-Labbé A., Michalak A., Burda J.V. The influence of the metal cations and microhydration on the reaction trajectory of the N3 ↔ O2 thymine proton transfer: Quantum mechanical study. J. Comput. Chem. 2017;38:2680–2692. doi: 10.1002/jcc.24911. PubMed DOI
Powner M.W., Gerland B., Sutherland J.D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nat. Cell Biol. 2009;459:239–242. doi: 10.1038/nature08013. PubMed DOI
Sponer J.E., Sponer J., Fuentes-Cabrera M. Prebiotic routes to nucleosides: A quantum chemical insight into the energetics of the multistep reaction pathways. Chem. Eur. J. 2011;17:847–854. doi: 10.1002/chem.201002057. PubMed DOI
Cataldo F., Patanè G., Compagnini G. Synthesis of HCN Polymer from Thermal Decomposition of Formamide. J. Macromol. Sci. Part. A. 2009;46:1039–1048. doi: 10.1080/10601320903245342. DOI
Gibson H.W. Chemistry of formic acid and its simple derivatives. Chem. Rev. 1969;69:673–692. doi: 10.1021/cr60261a005. DOI
Czaun M., Goeppert A., Kothandaraman J., May R.B., Haiges R., Prakash G.K.S., Olah G.A. Formic Acid As a Hydrogen Storage Medium: Ruthenium-Catalyzed Generation of Hydrogen from Formic Acid in Emulsions. ACS Catal. 2013;4:311–320. doi: 10.1021/cs4007974. DOI
Chauvier C., Imberdis A., Thuéry P., Cantat T. Catalytic disproportionation of formic acid to methanol by using recyclable silylformates. Angew. Chem. Int. Edit. 2020;59:14019–14023. doi: 10.1002/anie.202002062. PubMed DOI
Zemankova K., Nejdl L., Bezdekova J., Vodova M., Petera L., Pastorek A., Civis S., Kubelik P., Ferus M., Adam V., et al. Micellar electrokinetic chromatography as a powerful analytical tool for research on prebiotic chemistry. Microchem. J. 2021:106022. doi: 10.1016/j.microc.2021.106022. DOI
Jmol: An Open-Source Java Viewer for Chemical Structures in 3D. [(accessed on 8 April 2021)]; Available online: http://www.jmol.org/
Frisch M.J.T., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09, Revision, A.1. Gaussian, Inc.; Wallingford, CT, USA: 2009.
Becke A.D. Density—Functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI
Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980;58:1200–1211. doi: 10.1139/p80-159. DOI
Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994;98:11623–11627. doi: 10.1021/j100096a001. DOI
Klamt A., Schüürmann G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2. 1993:799–805. doi: 10.1039/P29930000799. DOI