Structural Analysis of Strigolactone-Related Gene Products
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- Crystallization, Ligand binding, Macromolecular crystallography, Strigolactone, Strigolactone receptors,
- MeSH
- Heterocyclic Compounds, 3-Ring metabolism MeSH
- Protein Conformation MeSH
- Crystallography, X-Ray MeSH
- Lactones metabolism MeSH
- Ligands MeSH
- Models, Molecular MeSH
- Receptors, Cell Surface genetics metabolism MeSH
- Gene Expression Regulation, Plant MeSH
- Plant Proteins genetics metabolism MeSH
- Signal Transduction MeSH
- Protein Binding MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- GR24 strigolactone MeSH Browser
- Heterocyclic Compounds, 3-Ring MeSH
- Lactones MeSH
- Ligands MeSH
- Receptors, Cell Surface MeSH
- Plant Proteins MeSH
Structural knowledge of biological macromolecules is essential for understanding their function and for modifying that function by engineering. Protein crystallography is a powerful method for elucidating molecular structures of proteins, but it is essential that the investigator has a basic knowledge of good practices and of the major pitfalls in the technique. Here we describe issues specific for the case of structural studies of strigolactone (SL) receptor structure and function, and in particular the difficulties associated with capturing complexes of SL receptors with the SL hormone ligand in the crystal.
Arctic University of Norway Tromsø Norway
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
See more in PubMed
Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200 PubMed DOI
Gomez-Roídan Pagès V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot J-P et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194
Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68:291–322 PubMed DOI
Bennett T, Leyser O (2014) Strigolactone signalling: standing on the shoulders of DWARFs. Curr Opin Plant Biol 22:7–13 PubMed DOI
Bythell-Douglas R, Waters MT, Scaffidi A, Flematti GR, Smith SM, Bond CS (2013) The structure of the karrikin-insensitive protein (KAI2) in Arabidopsis thaliana. PLoS One 8:e54758 PubMed DOI PMC
de Saint Germain A, Clavé G, Badet-Denisot M-A, Pillot J-P, Cornu D, Le Caer J-P et al (2016) An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat Chem Biol 12:787–794 PubMed DOI PMC
de Saint Germain A, Bonhomme S, Boyer F-D, Rameau C (2013) Novel insights into strigolactone distribution and signalling. Curr Opin Plant Biol 16:583–589 PubMed DOI
Adams PD, Aertgeerts K, Bauer C, Bell JA, Berman HM, Bhat TN et al (2016) Outcome of the first wwPDB/CCDC/D3R ligand validation workshop. Structure 24:502–508 PubMed DOI PMC
Pozharski E, Weichenberger CX, Rupp B (2013) Techniques, tools and best practices for ligand electron-density analysis and results from their application to deposited crystal structures. Acta Crystallogr Sect D: Biol Crystallogr 69:150–167 DOI
Weichenberger CX, Pozharski E, Rupp B (2013) Visualizing ligand molecules in Twilight electron density. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:195–200 PubMed DOI PMC
Smart OS, Horský V, Gore S, Svobodová Vareková R, Bendová V, Kleywegt GJ, Velankar S (2017) Validation of ligands in macromolecular structures determined by X-ray crystallography. Acta Crystallogr Sect D: Biol Crystallogr 74:226–236
Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275:1–21 PubMed DOI
Blundell TL, Johnson LN (1976) Protein crystallography. Academic Press, New York
Stout GH, Jensen LH (1989) X-ray structure determination. A practical guide. Wiley, New York
Drenth J (1999) Principles of protein X-ray crystallography. Springer, New York DOI
Kabsch W (2010a) XDS. Acta Crystallogr Sect D: Biol Crystallogr 66:125–132 DOI
Kabsch W (2010b) Integration, scaling, space group assignment and post-refinement. Acta Crystallogr Sect D: Biol Crystallogr 66:133–144 DOI
Evans PR (2011) An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr Sect D: Biol Crystallogr 67:282–292 DOI
Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr Sect D: Biol Crystallogr 69:1204–1214 DOI
Karplus PA, Diederichs K (2012) Linking crystallographic model and data quality. Science 336:1030–1033 PubMed DOI PMC
Weiss MS (2001) Global indicators of X-ray data quality. J Appl Crystallogr 34:130–135 DOI
Brändén C-I, Jones TA (1990) Between objectivity and subjectivity. Nature 343:687–689 DOI
Kleywegt GJ, Jones TA (1995) Where freedom is given, liberties are taken. Structure 3:535–540 PubMed DOI
Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr Sect D: Biol Crystallogr 67:355–367 DOI
Bricogne G, Blanc E, Brandl M, Flensburg C, Keller P, Paciorek W et al (2017) BUSTER. Global Phasing Ltd, Cambridge
Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI et al (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr Sect D: Biol Crystallogr 75:861–877 DOI
Brünger AT (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–475 PubMed DOI
Diederichs K, Karplus PA (1997) Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat Struct Biol 4:269–275 PubMed DOI
Engh R, Huber R (1991) Accurate bond and angle parameters for X-ray protein-structure refinement. Acta Crystallogr Sect D: Biol Crystallogr 47:392–400 DOI
Ramakrishnan C, Ramachandran GN (1995) Stereo-chemical criteria for polypeptide and protein chain conformations. II. Allowed conformation for a pair of peptide units. Biophys J 5:909–933 DOI
Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497 PubMed DOI
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242 PubMed DOI PMC
Harding MM (2006) Small revisions to predicted distances around metal sites in proteins. Acta Crystallogr Sect D: Biol Crystallogr 62:678–682 DOI
Zheng H, Chordia MD, Cooper DR, Chruszcz M, Müller P, Sheldrick GM, Minor W (2014) Validating metal binding sites in macromolecule structures using the CheckMyMetal web server. Nat Protoc 9:156–170 PubMed DOI
Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:2032–2036 PubMed DOI
Kagiyama M, Hirano Y, Mori T, Kim SY, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T (2013) Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 18:147–160 PubMed DOI
Zhao LH, Zhou XE, Wu ZS, Yi W, Xu Y, Li S et al (2013) Crystal structures of two phytohormone signal- transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res 23:436–439 PubMed DOI PMC
Stogios PJ, Onopriyenko O, Yim V, Savchenko A (2015) Crystal structure of the strigolactone receptor ShHTL5 from Striga hermonthica. Science 350:203–207 PubMed DOI
Carlsson GH, Hasse D, Cardinale F, Prandi C, Andersson I (2018) The elusive ligand complexes of the DWARF14 strigolactone receptor. J Exp Bot 69:2345–2354 PubMed DOI PMC
Hamiaux C, Larsen L, Lee HW, Luo Z, Sharma P, Hawkins BC, Perry NB, Snowden KC (2019) Chemical synthesis and characterization of a new quinazolinedione competitive antagonist for strigolactone receptors with an unexpected binding mode. Biochem J 476:1843–1856 PubMed DOI
Rupp B (2010) Scientific inquiry, inference and critical reasoning in the macromolecular crystallography curriculum. J Appl Crystallogr 43:1242–1249 DOI
Prandi C, Occhiato EG, Tabasso S, Bonfante P, Novero M, Scarpi D, Bova ME, Miletto I (2011) New potent fluorescent analogues of strigolactones: synthesis and biological activity in parasitic weed germination and fungal branching. Eur J Org Chem 2011:3781–3793 DOI
Zhao LH, Zhou XE, Yi W, Wu Z, Liu Y, Kang Y et al (2015) Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res 25:1219–1236 PubMed DOI PMC
Yao R, Ming Z, Yan L, Li S, Wang F, Ma S et al (2016) DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536:469–473 PubMed DOI
Zwanenburg B, Mwakaboko AS, Kannan C (2016) Suicidal germination for parasitic weed control. Pest Manag Sci 72:2016–2025 PubMed DOI
Waters MT (2019) Spoilt for choice: new options for inhibitors of strigolactone signaling. Mol Plant 12:21–23 PubMed DOI
Hamiaux C, Drummond RS, Luo Z, Lee HW, Sharma P, Janssen BJ, Perry NB, Denny WA, Snowden KC (2018) Inhibition of strigolactone receptors by N-phenylanthranilic acid derivatives: structural and functional insights. J Biol Chem 293:6530–6543 PubMed DOI PMC
Hameed US, Haider I, Jamil M, Kountche BA, Guo X, Zarban RA, Kim D, Al-Babili S, Arold ST (2018) Structural basis for specific inhibition of the highly sensitive ShHTL7 receptor. EMBO Rep 19:e45619
Takeuchi J, Jiang K, Hirabayashi K, Imamura Y, Wu Y, Xu Y et al (2019) Rationally designed strigolactone analogs as antagonists of the D14 receptor. Plant Cell Physiol 59:1545–1554 DOI
Nakamura H, Hirabayashi K, Miyakawa T, Kikuzato K, Hu W, Xu Y et al (2019) Triazole ureas covalently bind to strigolactone receptor and antagonize strigolactone responses. Mol Plant 12:44–58 PubMed DOI
Xu Y, Miyakawa T, Nosaki S, Nakamura A, Lyu Y, Nakamura H et al (2018) Structural analysis of HTL and D14 proteins reveals the basis for ligand selectivity in Striga. Nat Commun 9:3947–3947 PubMed DOI PMC