Enhanced Antitumor Efficacy through an "AND gate" Reactive Oxygen-Species-Dependent pH-Responsive Nanomedicine Approach
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- cancer therapy, drug delivery, functional materials, multiresponsive polymers, nanomedicine,
- MeSH
- Doxorubicin pharmacology MeSH
- Hydrogen-Ion Concentration MeSH
- Oxygen MeSH
- Drug Delivery Systems MeSH
- Micelles MeSH
- Mice MeSH
- Nanoparticles * MeSH
- Nanomedicine * MeSH
- Drug Carriers MeSH
- Reactive Oxygen Species MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Doxorubicin MeSH
- Oxygen MeSH
- Micelles MeSH
- Drug Carriers MeSH
- Reactive Oxygen Species MeSH
Anticancer drug delivery strategies are designed to take advantage of the differential chemical environment in solid tumors independently, or to high levels of reactive oxygen species (ROS) or to low pH, compared to healthy tissue. Here, the design and thorough characterization of two functionalizable "AND gate" multiresponsive (MR) block amphiphilic copolymers are reported, aimed to take full advantage of the coexistence of two chemical cues-ROS and low pH-present in the tumor microenvironment. The hydrophobic blocks contain masked pH-responsive side chains, which are exposed exclusively in response to ROS. Hence, the hydrophobic polymer side chains will undergo a charge shift in a very relevant pH window present in the extracellular milieu in most solid tumors (pH 5.6-7.2) after demasking by ROS. Doxorubicin (DOX)-loaded nanosized "AND gate" MR polymersomes (MRPs) are fabricated via microfluidic self-assembly. Chemical characterization reveals ROS-dependent pH sensitivity and accelerated DOX release under influence of both ROS and low pH. Treatment of tumor-bearing mice with DOX-loaded nonresponsive and "AND gate" MRPs dramatically decreases cardiac toxicity. The most optimal "AND gate" MRPs outperform free DOX in terms of tumor growth inhibition and survival, shedding light on chemical requirements for successful cancer nanomedicine.
Institute for Chemical Immunology Geert Grooteplein Zuid 26 Nijmegen 6525 GA The Netherlands
Oncode Institute Geert Grooteplein Zuid 26 Nijmegen 6525 GA The Netherlands
See more in PubMed
S. H. Shin, A. M. Bode, Z. Dong, npj Precis. Oncol. 2017, 1, 12.
M. S. Goldberg, Nat. Rev. Cancer 2019, 19, 587.
a) D. Rosenblum, N. Joshi, W. Tao, J. M. Karp, D. Peer, Nat. Commun. 2018, 9, 1410;
b) J. Liu, Q. Chen, L. Feng, Z. Liu, Nano Today 2018, 21, 55;
c) D. Huo, X. Jiang, Y. Hu, Adv. Mater. 2020, 32, 1904337.
a) B. M. Discher, Y.-Y. Won, D. S. Ege, J. C.-M. Lee, F. S. Bates, D. E. Discher, D. A. Hammer, Science 1999, 284, 1143;
b) D. E. Discher, A. Eisenberg, Science 2002, 297, 967;
c) H.-A. Klok, S. Lecommandoux, Adv. Mater. 2001, 13, 1217;
d) M. Antonietti, S. Foster, Adv. Mater. 2003, 15, 1323.
a) J. S. Lee, J. Feijen, J. Controlled Release 2012, 161, 473;
b) F. Ahmed, R. I. Pakunlu, A. Brannan, F. Bates, T. Minko, D. E. Discher, J. Controlled Release 2006, 116, 150;
c) C. Sanson, C. Schatz, J.-F. L. e. Meins, A. Soum, J. Thévenot, E. Garanger, S. Lecommandoux, J. Controlled Release 2010, 147, 428;
a) P. J. Photos, L. Bacakova, B. Discher, F. S. Bates, D. E. Discher, J. Controlled Release 2003, 90, 323;
b) C. G. Palivan, R. Goers, A. Najer, X. Zhang, A. Car, W. Meier, Chem. Soc. Rev. 2016, 45, 377;
c) S. Qin, Y. Geng, D. E. Discher, S. Yang, Adv. Mater. 2006, 18, 2905;
d) K. T. Kim, J. J. L. M. Cornelissen, R. J. M. Nolte, J. C. M. van Hest, Adv. Mater. 2009, 21, 2787.
a) I. F. Tannock, D. Rotin, Cancer Res. 1989, 49, 7343;
b) E. Boedkjer, S. Pedersen, Annu. Rev. Physiol. 2020, 82, 21.1;
c) J. R. Griffiths, Br. J. Cancer 1991, 64, 425.
a) K. Zhou, Y. Wang, X. Huang, K. K. Luby-Phelps, B. D. Sumer, J. Gao, Angew. Chem., Int. Ed. Engl. 2011, 50, 6109;
b) H. Che, J. C. M. van Hest, ChemNanoMat 2019, 5, 1092;
c) A. Jäger, E. Jäger, F. Surman, A. Höcherl, B. Angelov, K. Ulbrich, M. Dreschler, V. M. Garamus, C. Rodriguez-Emmenegger, F. Nallet, P. Štěpánek, Polym. Chem. 2015, 6, 4946;
d) N. Fomina, C. L. McFearin, A. Almutairi, Chem. Commun. 2012, 48, 9138;
e) K. E. Broaders, S. Grandhe, J. M. Frechet, J. Am. Chem. Soc. 2011, 133, 756;
f) F. C. Giacomelli, P. Stepanek, C. Giacomelli, V. Schmidt, E. Jäger, A. Jäger, K. Ulbrich, Soft Matter 2011, 7, 9316.
a) A. Napoli, M. Valentini, N. Tirelli, M. Müller, J. A. Hubbel, Nat. Mater. 2004, 3, 183;
b) E. Jäger, A. Höcherl, O. Janoušková, A. Jäger, M. Hrubý, R. Konefał, M. Netopilik, J. Pánek, M. Šlouf, K. Ulbrich, P. Štěpánek, Nanoscale 2016, 8, 6958;
c) M. Zheng, Y. Liu, Y. Wang, D. Zhang, Y. Zou, W. Ruan, J. Yin, W. Tao, J. B. Park, B. Shi, Adv. Mater. 2019, 31, 1903277;
d) E. Jäger, V. Sincari, L. J. C. Albuquerque, A. Jäger, J. Humajová, J. Kučka, J. Pankrác, P. Paral, T. Heizer, O. Janouskova, R. Konefał, E. Pavlova, O. Sedlacek, F. C. Giacomelli, P. Pouckova, L. Šefc, P. Stepanek, M. Hruby, Biomacromolecules 2020, 21, 1437;
e) X. Xu, P. E. Saw, W. Tao, Y. Li, X. Ji, S. Bhasin, Y. Liu, D. Ayyash, J. Rasmussen, M. Huo, J. Shi, O. C. Farokhzad, Adv. Mater. 2017, 29, 1700141.
a) J. Leong, W. Chin, X. Ke, S. Gao, H. Kong, J. L. Hedrick, Y. Y. Yang, Nanomedicine 2018, 14, 2666;
b) X. Liu, J. Xiang, D. Zhu, L. Jiang, Z. Zhou, J. Tang, X. Liu, Y. Huang, Y. Shen, Adv. Mater. 2016, 28, 1743;
c) Y. Zhang, Y. Xu, C. Wei, C. Sun, B. Yan, J. Hu, W. Lu, Polym. Chem. 2019, 10, 2143;
d) M. Su, S. Xiao, M. Shu, Y. Lu, Q. Zeng, J. Xie, Z. Jaing, J. Liu, Colloids Surf., B 2020, 193, 111067;
e) Q. Hao, Y. Kang, J.-F. Xu, X. Zhang, Langmuir 2020, 36, 4080;
f) Y. Li, M. Chen, B. Yao, Y. Lu, B. Song, S. N. Vasilatos, X. Zhang, X. Ren, C. Yao, W. Bian, L. Sun, Small 2020, 16, 2002188;
g) L. Dai, X. Li, X. Duan, M. Li, P. Niu, H. Xu, K. Cai, H. Yang, Adv. Sci. 2019, 6, 1801807.
a) J. Kopeček, P. Kopečková, Adv. Drug Delivery Rev. 2010, 62, 122;
b) K. R. Whiteman, V. Subr, K. Ulbrich, V. P. Torchilin, J. Liposome Res. 2001, 11, 153;
c) K. Ulbrich, K. Holá, V. Šubr, A. Bakandritos, J. Tuček, R. Zbořil, Chem. Rev. 2016, 116, 5338;
d) I. Alberg, S. Kramer, M. Schinnerer, Q. Hu, C. Seidl, C. Leps, N. Drude, D. Möckel, C. Rijcken, T. Lammers, M. Diken, M. Maskos, S. Morsbach, K. Landfester, S. Tenzer, M. Barz, R. Zentel, Small 2020, 16, 1907574.
a) K. Temming, R. M. Schiffelers, G. Molema, R. J. Kok, Drug Resist. Updates 2005, 8, 381;
b) Y. Miura, T. Takenaka, K. Toh, S. Wu, H. Nishihara, M. R. Kano, Y. Ino, T. Nomoto, Y. Matsumoto, H. Koyama, H. Cabral, N. Nishiyama, K. Kataoka, ACS Nano 2013, 7, 8583;
G. Bianchi, N. C. Munshi, Blood 2015, 125, 3049.
a) A. Joseph, C. Contini, D. Cecchin, S. Nyberg, L. Ruiz-Perez, J. Gaitzsch, G. Fullstone, X. Tian, J. Azizi, J. Preston, G. Volpe, G. Battaglia, Sci. Adv. 2017, 3, e1700362;
b) X. Wang, C. Yao, G. Zhang, S. Liu, Nat. Commun. 2020, 11, 1524;
c) Y. Men, F. Peng, Y. Tu, J. C. M. van Hest, D. Wilson, Polym. Chem. 2016, 7, 3977.
a) X. Liang, J. Duan, X. Li, X. Zhu, Y. Chen, X. Wang, H. Sun, D. Kong, C. Li, J. Yang, Nanoscale 2018, 10, 9489;
b) S.-M. Jo, F. R. Wurm, K. Landfester, Nano Lett. 2020, 20, 526.
a) C. Wang, J. Wang, X. Zhang, S. Yu, D. Wen, Q. Hu, Y. Ye, H. Bomba, X. Hu, Z. Liu, G. Dotti, Z. Gu, Sci. Transl. Med. 2018, 10, eaan3682;
b) C.de Gracia Lux, S. Joshi-Barr, T. Nguyen, E. Mahmoud, E. Schopf, N. Fomina, A. Almutairi, J. Am. Chem. Soc. 2012, 134, 15758.
a) L. J. C. Albuquerque, V. Sincari, A. Jäger, R. Konefał, J. Pánek, P. Černoch, E. Pavlova, P. Štěpánek, F. C. Giacomelli, E. Jäger, Langmuir 2019, 35, 8363;
b) H. C. Shum, J.-W. Kim, D. A. Weitz, J. Am. Chem. Soc. 2018, 130, 9543;
c) J. Xu, S. Zhang, A. Machado, S. Lecommandoux, O. Sandre, F. Gu, A. Colin, Sci. Rep. 2017, 7, 4794.
a) R. K. Jain, T. Stylianopoulos, Nat. Rev. Clin. Oncol. 2010, 7, 653;
b) H. Cabral, Y. Matsumoto, K. Mizuno, Q. Chen, M. Murakami, M. Kimura, Y. Terada, M. R. Kano, K. Miyazono, M. Uesaka, N. Nishiyama, K. Kataoka, Nat. Nanotechnol. 2011, 6, 815;
c) J. Shi, P. W. Kantoff, R. Wooster, O. C. Farokhzad, Nat. Rev. Cancer 2017, 17, 20.
Z. Deng, Y. Qian, Y. Yu, G. Liu, J. Hu, G. Zhang, S. Liu, J. Am. Chem. Soc. 2016, 138, 10452.
a) P. Foroozandeh, A. A. Aziz, Nanoscale Res. Lett. 2018, 13, 339;
b) D. Zhang, L. Wei, M. Zhong, L. Xiao, H.-W. Li, J. Wang, Chem. Sci. 2018, 9, 5260;
c) S. Salatin, S. M. Dizaj, A. Y. Khosroushahi, Cell Biol. Int. 2015, 39, 881.
a) E. Jäger, A. Jäger, P. Chytil, T. Etrych, B. Říhová, F. C. Giacomelli, P. Štěpánek, K. Ulbrich, J. Controlled Release 2013, 165, 153;
b) L. Zhang, J. M. Chan, F. X. Gu, J.-W. Rhee, A. Z. Wang, A. F. Radovic-Moreno, F. Alexis, R. Langer, O. C. Farokhzad, ACS Nano 2008, 2, 1696;
c) F. A.de Oliveira, L. J. C. Albuquerque, K. A. Riske, E. Jäger, C. Giacomelli, J. Colloid Interface Sci. 2020, 574, 260.
a) M. E. R. O'Brien, N. Wigler, M. Inbar, R. Rosso, E. Grischke, A. Santoro, R. Catane, D. G. Kieback, P. Tomczack, S. P. Ackland, F. Orlandi, L. Mellars, L. Alland, C. Tendler, Ann. Oncol. 2004, 15, 440;
b) Y. Octavia, C. G. Tocchetti, K. L. Gabrielson, S. Janssens, H. J. Crijns, A. L. Moens, J. Mol. Cell. Cardiol. 2012, 52, 1213.
a) K. K. Upadhyay, A. N. Bhat, A. K. Mishra, B. S. Dwarakanath, S. Jain, C. Schatz, J.-F. L. e. Meins, A. Farooque, G. Chandraiah, A. K. Jain, A. Misra, S. Lecommandoux, Biomaterials 2010, 31, 2882;
b) A. K. Jain, N. K. Swarnakar, M. Das, C. Godugu, R. P. Singh, P. R. Rao, S. Jain, Mol. Pharmaceutics 2011, 8, 1140.