Serotonin-Its Synthesis and Roles in the Healthy and the Critically Ill

. 2021 May 03 ; 22 (9) : . [epub] 20210503

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34063611

Serotonin (5-hydroxytryptamine, 5-HT) plays two important roles in humans-one central and the other peripheral-depending on the location of the 5-HT pools of on either side of the blood-brain barrier. In the central nervous system it acts as a neurotransmitter, controlling such brain functions as autonomic neural activity, stress response, body temperature, sleep, mood and appetite. This role is very important in intensive care, as in critically ill patients multiple serotoninergic agents like opioids, antiemetics and antidepressants are frequently used. High serotonin levels lead to altered mental status, deliria, rigidity and myoclonus, together recognized as serotonin syndrome. In its role as a peripheral hormone, serotonin is unique in controlling the functions of several organs. In the gastrointestinal tract it is important for regulating motor and secretory functions. Apart from intestinal motility, energy metabolism is regulated by both central and peripheral serotonin signaling. It also has fundamental effects on hemostasis, vascular tone, heart rate, respiratory drive, cell growth and immunity. Serotonin regulates almost all immune cells in response to inflammation, following the activation of platelets.

Zobrazit více v PubMed

Wu H., Denna T.H., Storkersen J.N., Gerriets V.A. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol. Res. 2019;140:100–114. doi: 10.1016/j.phrs.2018.06.015. PubMed DOI

Shajib M.S., Khan I. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol. 2014;213:561–574. doi: 10.1111/apha.12430. PubMed DOI

Herr N., Bode C., Duerschmied D. The effects of serotonin in immune cells. Front. Cardiovasc. Med. 2017;4:48. doi: 10.3389/fcvm.2017.00048. PubMed DOI PMC

Berger M., Gray J.A., Roth B.L. The Expanded Biology of Serotonin. Annu. Rev. Med. 2009;60:355–366. doi: 10.1146/annurev.med.60.042307.110802. PubMed DOI PMC

Duerschmied D., Suidan G.L., Demers M., Herr N., Carbo C., Brill A., Cifuni S.M., Mauler M., Cicko S., Bader M., et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood. 2013;121:1008–1015. doi: 10.1182/blood-2012-06-437392. PubMed DOI PMC

Nakamura K., Kariyazono H., Moriyama Y., Toyohira H., Kubo H., Yotsumoto G., Taira A., Yamada K. Effects of sarpogrelate hydrochloride on platelet aggregation, and its relation to the release of serotonin and P-selectin. Blood Coagul. Fibrinolysis. 1999;10:513–520. doi: 10.1097/00001721-199912000-00009. PubMed DOI

Ahern G.P. 5-HT and the immune system. Curr. Opin. Pharmacol. 2011;11:29–33. doi: 10.1016/j.coph.2011.02.004. PubMed DOI PMC

Baganz N.L., Blakely R.D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem. Neurosci. 2012;4:48–63. doi: 10.1021/cn300186b. PubMed DOI PMC

Regmi S.C., Park S., Ku S.K., Kim J. Serotonin regulates innate immune responses of colonic epithelia cells through Nox-2-derived reactive oxygen species. Free Radic. Biol. Med. 2014;69:377–389. doi: 10.1016/j.freeradbiomed.2014.02.003. PubMed DOI

Le Beyec J., Pelletier A.L., Arapis K., Hourseau M., Cluzeaud F., Descatoire V., Ducroc R., Aparicio T., Joly F., Couvelard A., et al. Overxepression of gastric leptin preceds adipocyte leptin during high-fat diet and is linked to 5HT-containing enterochromaffin cells. Int. J. Obes. 2014;38:1357–1364. doi: 10.1038/ijo.2014.14. PubMed DOI

Williams B.B., Van Benschoten A.H., Cimermancic P., Donia M.S., Zimmermann M., Taketani M., Ishihara A., Kashyap P.C., Fraser J.S., Fischbach M.A. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe. 2014;16:495–503. doi: 10.1016/j.chom.2014.09.001. PubMed DOI PMC

Yano J.M., Yu K., Donaldson G.P., Shastri G.G., Ann P., Ma L., Nagler C.R., Ismagilov R.F., Mazmanian S.K., Hisao Y.E. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–276. doi: 10.1016/j.cell.2015.02.047. PubMed DOI PMC

O’Mahony S., Clarke G., Borre Y., Dinan T., Cryan J. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015;277:32–48. doi: 10.1016/j.bbr.2014.07.027. PubMed DOI

Sochocka M., Donskow-Łysoniewska K., Diniz B.S., Kurpas D., Brzozowska E., Leszek J. The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease—A Critical Review. Mol. Neurobiol. 2019;56:1841–1851. doi: 10.1007/s12035-018-1188-4. PubMed DOI PMC

Gobin V., Van Steendam K., Denys D., Deforce D. Selective serotonin reuptake inhibitors as a novel class of immunosuppressants. Int. Immunopharmacol. 2014;20:148–156. doi: 10.1016/j.intimp.2014.02.030. PubMed DOI

Walker F.R. A critical review of the mechanism of action for the selective serotonin reuptake inhibitors: Do these drugs possess anti-inflammatory properties and how relevant is this in the treatment of depression? Neuropharmacology. 2013;67:304–317. doi: 10.1016/j.neuropharm.2012.10.002. PubMed DOI

Weaver C.T., Elson C.O., Fouser L.A., Kolls J.K. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Ann. Rev. Pathol. 2013;8:477–512. doi: 10.1146/annurev-pathol-011110-130318. PubMed DOI PMC

Ghia J.E., Li N., Wang H., Collins M., Deng Y., El–Sharkawy R.T., Côté F., Mallet J., Khan W.I. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology. 2009;137:1649–1660. doi: 10.1053/j.gastro.2009.08.041. PubMed DOI

Bonaz B., Sinniger V., Pellissier S. The vagus nerve in the neuro-immune axis: Implications in the pathology of the gastrointestinal tract. Front. Immunol. 2017;8:1452. doi: 10.3389/fimmu.2017.01452. PubMed DOI PMC

Donovan M.H., Tecott L.H. Serotonin and the regulation of mammalian energy balance. Front. Neurosci. 2013;7:36. doi: 10.3389/fnins.2013.00036. PubMed DOI PMC

Goldstone A.P. Prader-Willi syndrome: Advances in genetics, pathophysiology, and treatment. Trends Endocrinol. Metab. 2004;15:12–20. doi: 10.1016/j.tem.2003.11.003. PubMed DOI

Tecott L.H. Serotonin and the orchestration of energy balance. Cell Metab. 2007;6:352–361. doi: 10.1016/j.cmet.2007.09.012. PubMed DOI

Lam D.D., Heisler L.K. Serotonin and energy balance: Molecular mechanisms and implications for type 2 diabetes. Expert Rev. Mol. Med. 2007;9:1. doi: 10.1017/S1462399407000245. PubMed DOI

Gershon M.D. Serotonin receptors and transporters- roles in normal and abnormal gastrointestinal motility. Aliment. Pharmacol. Ther. 2004;20:3–14. doi: 10.1111/j.1365-2036.2004.02180.x. PubMed DOI

Molina-Cerrillo J., Alonso-Gordoa T., Martínez-Sáez O., Grande E. Inhibition of peripheral synthesis of serotonin as a new target in neuroendocrine tumors. Oncologist. 2016;21:701–707. doi: 10.1634/theoncologist.2015-0455. PubMed DOI PMC

Gershon M.D., Tack J. The serotonin signalling system: From basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132:397–414. doi: 10.1053/j.gastro.2006.11.002. PubMed DOI

Patel J., Rosenthal M.D., Heyland D.K. Intermittent versus continuous feeding in critically ill adults. Curr. Opin. Clin. Nutr. Metab. Care. 2018;21:116–120. doi: 10.1097/MCO.0000000000000447. PubMed DOI

Marik P.E. Feeding critically ill patients the right “whey“: Thinking outside of the box, personal view. Ann. Intensive Care. 2015;5:11. doi: 10.1186/s13613-015-0051-2. PubMed DOI PMC

Camilleri M. Serotonin in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 2009;16:53–59. doi: 10.1097/MED.0b013e32831e9c8e. PubMed DOI PMC

Damen R., Haugen M., Svejda B., Alaimo D., Brenna O., Pfragner R., Gustafsson B.I., Kidd M. The stimulatory adenosine receptors ADOR2AB regulates serotonin (5-HT) synthesis and release in oxygen-depleted EC cells in inflammatory bowel disease. PLoS ONE. 2013;8:e62607. doi: 10.1371/journal.pone.0062607. PubMed DOI PMC

Mukaida K., Shichino T., Koyanagi S., Himukashi S., Fukuda K. Activity of the serotoninergic system during isoflurane anesthesia. Anesth. Analg. 2007;104:836–839. doi: 10.1213/01.ane.0000255200.42574.22. PubMed DOI

Jann M.W., Slade J.H. Antidepressant agents for the treatment of chronic pain and depression. Pharmacotherapy. 2007;27:1571–1587. doi: 10.1592/phco.27.11.1571. PubMed DOI

Brazz J.M., Basbaum A.I. Genetically expressed transneuronal tracer reveals direct and indirect serotoninergic descending control circuits. J. Comp. Neurol. 2008;507:1990–2003. doi: 10.1002/cne.21665. PubMed DOI PMC

Boyer E.W., Shannon M. The serotonin syndrome. N. Engl. J. Med. 2005;352:112–1112. doi: 10.1056/NEJMra041867. PubMed DOI

Sternbach H. The serotonin syndrome. Am. J. Psychiatry. 1991;148:705–713. PubMed

Cooper B.E., Sejnowski C.A. Serotonin syndrome: Recognition and treatment. AACN Adv. Crit. Care. 2013;24:15–20. doi: 10.4037/NCI.0b013e31827eecc6. PubMed DOI

Dunkley E.J.C., Isbister G.K., Sibbritt D., Dawson A.H., Whyte I.M. The Hunter Serotonin Toxicity Criteria: Simple and accurate diagnostic decision rules for serotonin toxicity. QJM. 2003;96:635–642. doi: 10.1093/qjmed/hcg109. PubMed DOI

Ables A.Z., Nagubili R. Prevention, diagnosis and management of serotonin syndrome. Am. Fam. Physician. 2010;81:1139–1142. PubMed

Pedavally S., Fugate J.F., Rabinstein A.A. Serotonin syndrome in the Intensive Care unit: Clinical presentations and precipitating medications. Neuro Crit. Care. 2014;21:108–113. doi: 10.1007/s12028-013-9914-2. PubMed DOI

Arora B., Kannikeswaran N. The serotonin syndrome- the need for physician’s awareness. Int. J. Emerg. Med. 2010;3:373–377. doi: 10.1007/s12245-010-0195-7. PubMed DOI PMC

Riker R.R., Shehabi Y., Bokesch P.M., Ceraso D., Wisemandle W., Koura F., Whitten P., Margolis B.D., Byrne D.W., Ely E.W., et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: A randomized trial. JAMA. 2009;301:489–499. doi: 10.1001/jama.2009.56. PubMed DOI

Pasin L., Landoni G., Nardelli P., Belletti A., Di Prima A.L., Taddeo D., Isella F., Zangrillo A. Dexmedetomidine reduces the risk of delirium, agitation and confusion in critically ill patients: A meta-analysis of randomized controlled trials. J. Cardiothorac. Vasc. Anesth. 2014;28:1459–1466. doi: 10.1053/j.jvca.2014.03.010. PubMed DOI

Reade M.C., Eastwood G.M., Bellomo R., Bailey M., Bersten A., Cheung B., Davies A., Delaney A., Ghosh A., Van Haren F., et al. Effect of dexmedetomidine added to standard care on ventilator-free time in patients with agitated delirium, A randomized critical trial. JAMA. 2016;315:1460–1468. doi: 10.1001/jama.2016.2707. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Tryptophan: A Unique Role in the Critically Ill

. 2021 Oct 28 ; 22 (21) : . [epub] 20211028

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...