Serotonin-Its Synthesis and Roles in the Healthy and the Critically Ill
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34063611
PubMed Central
PMC8124334
DOI
10.3390/ijms22094837
PII: ijms22094837
Knihovny.cz E-zdroje
- Klíčová slova
- critically ill, energy metabolism, immunoregulatory functions, intestinal motility, neurotransmitter, peripheral hormone, serotonin, serotonin syndrome,
- MeSH
- centrální nervový systém metabolismus patologie MeSH
- delirium metabolismus patologie MeSH
- gastrointestinální motilita fyziologie MeSH
- gastrointestinální trakt metabolismus patologie MeSH
- hematoencefalická bariéra metabolismus patologie MeSH
- kritický stav * MeSH
- lidé MeSH
- myoklonus metabolismus patologie MeSH
- serotonin biosyntéza metabolismus MeSH
- serotoninový syndrom metabolismus patologie MeSH
- zánět metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- serotonin MeSH
Serotonin (5-hydroxytryptamine, 5-HT) plays two important roles in humans-one central and the other peripheral-depending on the location of the 5-HT pools of on either side of the blood-brain barrier. In the central nervous system it acts as a neurotransmitter, controlling such brain functions as autonomic neural activity, stress response, body temperature, sleep, mood and appetite. This role is very important in intensive care, as in critically ill patients multiple serotoninergic agents like opioids, antiemetics and antidepressants are frequently used. High serotonin levels lead to altered mental status, deliria, rigidity and myoclonus, together recognized as serotonin syndrome. In its role as a peripheral hormone, serotonin is unique in controlling the functions of several organs. In the gastrointestinal tract it is important for regulating motor and secretory functions. Apart from intestinal motility, energy metabolism is regulated by both central and peripheral serotonin signaling. It also has fundamental effects on hemostasis, vascular tone, heart rate, respiratory drive, cell growth and immunity. Serotonin regulates almost all immune cells in response to inflammation, following the activation of platelets.
Zobrazit více v PubMed
Wu H., Denna T.H., Storkersen J.N., Gerriets V.A. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacol. Res. 2019;140:100–114. doi: 10.1016/j.phrs.2018.06.015. PubMed DOI
Shajib M.S., Khan I. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol. 2014;213:561–574. doi: 10.1111/apha.12430. PubMed DOI
Herr N., Bode C., Duerschmied D. The effects of serotonin in immune cells. Front. Cardiovasc. Med. 2017;4:48. doi: 10.3389/fcvm.2017.00048. PubMed DOI PMC
Berger M., Gray J.A., Roth B.L. The Expanded Biology of Serotonin. Annu. Rev. Med. 2009;60:355–366. doi: 10.1146/annurev.med.60.042307.110802. PubMed DOI PMC
Duerschmied D., Suidan G.L., Demers M., Herr N., Carbo C., Brill A., Cifuni S.M., Mauler M., Cicko S., Bader M., et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood. 2013;121:1008–1015. doi: 10.1182/blood-2012-06-437392. PubMed DOI PMC
Nakamura K., Kariyazono H., Moriyama Y., Toyohira H., Kubo H., Yotsumoto G., Taira A., Yamada K. Effects of sarpogrelate hydrochloride on platelet aggregation, and its relation to the release of serotonin and P-selectin. Blood Coagul. Fibrinolysis. 1999;10:513–520. doi: 10.1097/00001721-199912000-00009. PubMed DOI
Ahern G.P. 5-HT and the immune system. Curr. Opin. Pharmacol. 2011;11:29–33. doi: 10.1016/j.coph.2011.02.004. PubMed DOI PMC
Baganz N.L., Blakely R.D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem. Neurosci. 2012;4:48–63. doi: 10.1021/cn300186b. PubMed DOI PMC
Regmi S.C., Park S., Ku S.K., Kim J. Serotonin regulates innate immune responses of colonic epithelia cells through Nox-2-derived reactive oxygen species. Free Radic. Biol. Med. 2014;69:377–389. doi: 10.1016/j.freeradbiomed.2014.02.003. PubMed DOI
Le Beyec J., Pelletier A.L., Arapis K., Hourseau M., Cluzeaud F., Descatoire V., Ducroc R., Aparicio T., Joly F., Couvelard A., et al. Overxepression of gastric leptin preceds adipocyte leptin during high-fat diet and is linked to 5HT-containing enterochromaffin cells. Int. J. Obes. 2014;38:1357–1364. doi: 10.1038/ijo.2014.14. PubMed DOI
Williams B.B., Van Benschoten A.H., Cimermancic P., Donia M.S., Zimmermann M., Taketani M., Ishihara A., Kashyap P.C., Fraser J.S., Fischbach M.A. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe. 2014;16:495–503. doi: 10.1016/j.chom.2014.09.001. PubMed DOI PMC
Yano J.M., Yu K., Donaldson G.P., Shastri G.G., Ann P., Ma L., Nagler C.R., Ismagilov R.F., Mazmanian S.K., Hisao Y.E. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–276. doi: 10.1016/j.cell.2015.02.047. PubMed DOI PMC
O’Mahony S., Clarke G., Borre Y., Dinan T., Cryan J. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015;277:32–48. doi: 10.1016/j.bbr.2014.07.027. PubMed DOI
Sochocka M., Donskow-Łysoniewska K., Diniz B.S., Kurpas D., Brzozowska E., Leszek J. The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease—A Critical Review. Mol. Neurobiol. 2019;56:1841–1851. doi: 10.1007/s12035-018-1188-4. PubMed DOI PMC
Gobin V., Van Steendam K., Denys D., Deforce D. Selective serotonin reuptake inhibitors as a novel class of immunosuppressants. Int. Immunopharmacol. 2014;20:148–156. doi: 10.1016/j.intimp.2014.02.030. PubMed DOI
Walker F.R. A critical review of the mechanism of action for the selective serotonin reuptake inhibitors: Do these drugs possess anti-inflammatory properties and how relevant is this in the treatment of depression? Neuropharmacology. 2013;67:304–317. doi: 10.1016/j.neuropharm.2012.10.002. PubMed DOI
Weaver C.T., Elson C.O., Fouser L.A., Kolls J.K. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Ann. Rev. Pathol. 2013;8:477–512. doi: 10.1146/annurev-pathol-011110-130318. PubMed DOI PMC
Ghia J.E., Li N., Wang H., Collins M., Deng Y., El–Sharkawy R.T., Côté F., Mallet J., Khan W.I. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology. 2009;137:1649–1660. doi: 10.1053/j.gastro.2009.08.041. PubMed DOI
Bonaz B., Sinniger V., Pellissier S. The vagus nerve in the neuro-immune axis: Implications in the pathology of the gastrointestinal tract. Front. Immunol. 2017;8:1452. doi: 10.3389/fimmu.2017.01452. PubMed DOI PMC
Donovan M.H., Tecott L.H. Serotonin and the regulation of mammalian energy balance. Front. Neurosci. 2013;7:36. doi: 10.3389/fnins.2013.00036. PubMed DOI PMC
Goldstone A.P. Prader-Willi syndrome: Advances in genetics, pathophysiology, and treatment. Trends Endocrinol. Metab. 2004;15:12–20. doi: 10.1016/j.tem.2003.11.003. PubMed DOI
Tecott L.H. Serotonin and the orchestration of energy balance. Cell Metab. 2007;6:352–361. doi: 10.1016/j.cmet.2007.09.012. PubMed DOI
Lam D.D., Heisler L.K. Serotonin and energy balance: Molecular mechanisms and implications for type 2 diabetes. Expert Rev. Mol. Med. 2007;9:1. doi: 10.1017/S1462399407000245. PubMed DOI
Gershon M.D. Serotonin receptors and transporters- roles in normal and abnormal gastrointestinal motility. Aliment. Pharmacol. Ther. 2004;20:3–14. doi: 10.1111/j.1365-2036.2004.02180.x. PubMed DOI
Molina-Cerrillo J., Alonso-Gordoa T., Martínez-Sáez O., Grande E. Inhibition of peripheral synthesis of serotonin as a new target in neuroendocrine tumors. Oncologist. 2016;21:701–707. doi: 10.1634/theoncologist.2015-0455. PubMed DOI PMC
Gershon M.D., Tack J. The serotonin signalling system: From basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132:397–414. doi: 10.1053/j.gastro.2006.11.002. PubMed DOI
Patel J., Rosenthal M.D., Heyland D.K. Intermittent versus continuous feeding in critically ill adults. Curr. Opin. Clin. Nutr. Metab. Care. 2018;21:116–120. doi: 10.1097/MCO.0000000000000447. PubMed DOI
Marik P.E. Feeding critically ill patients the right “whey“: Thinking outside of the box, personal view. Ann. Intensive Care. 2015;5:11. doi: 10.1186/s13613-015-0051-2. PubMed DOI PMC
Camilleri M. Serotonin in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 2009;16:53–59. doi: 10.1097/MED.0b013e32831e9c8e. PubMed DOI PMC
Damen R., Haugen M., Svejda B., Alaimo D., Brenna O., Pfragner R., Gustafsson B.I., Kidd M. The stimulatory adenosine receptors ADOR2AB regulates serotonin (5-HT) synthesis and release in oxygen-depleted EC cells in inflammatory bowel disease. PLoS ONE. 2013;8:e62607. doi: 10.1371/journal.pone.0062607. PubMed DOI PMC
Mukaida K., Shichino T., Koyanagi S., Himukashi S., Fukuda K. Activity of the serotoninergic system during isoflurane anesthesia. Anesth. Analg. 2007;104:836–839. doi: 10.1213/01.ane.0000255200.42574.22. PubMed DOI
Jann M.W., Slade J.H. Antidepressant agents for the treatment of chronic pain and depression. Pharmacotherapy. 2007;27:1571–1587. doi: 10.1592/phco.27.11.1571. PubMed DOI
Brazz J.M., Basbaum A.I. Genetically expressed transneuronal tracer reveals direct and indirect serotoninergic descending control circuits. J. Comp. Neurol. 2008;507:1990–2003. doi: 10.1002/cne.21665. PubMed DOI PMC
Boyer E.W., Shannon M. The serotonin syndrome. N. Engl. J. Med. 2005;352:112–1112. doi: 10.1056/NEJMra041867. PubMed DOI
Sternbach H. The serotonin syndrome. Am. J. Psychiatry. 1991;148:705–713. PubMed
Cooper B.E., Sejnowski C.A. Serotonin syndrome: Recognition and treatment. AACN Adv. Crit. Care. 2013;24:15–20. doi: 10.4037/NCI.0b013e31827eecc6. PubMed DOI
Dunkley E.J.C., Isbister G.K., Sibbritt D., Dawson A.H., Whyte I.M. The Hunter Serotonin Toxicity Criteria: Simple and accurate diagnostic decision rules for serotonin toxicity. QJM. 2003;96:635–642. doi: 10.1093/qjmed/hcg109. PubMed DOI
Ables A.Z., Nagubili R. Prevention, diagnosis and management of serotonin syndrome. Am. Fam. Physician. 2010;81:1139–1142. PubMed
Pedavally S., Fugate J.F., Rabinstein A.A. Serotonin syndrome in the Intensive Care unit: Clinical presentations and precipitating medications. Neuro Crit. Care. 2014;21:108–113. doi: 10.1007/s12028-013-9914-2. PubMed DOI
Arora B., Kannikeswaran N. The serotonin syndrome- the need for physician’s awareness. Int. J. Emerg. Med. 2010;3:373–377. doi: 10.1007/s12245-010-0195-7. PubMed DOI PMC
Riker R.R., Shehabi Y., Bokesch P.M., Ceraso D., Wisemandle W., Koura F., Whitten P., Margolis B.D., Byrne D.W., Ely E.W., et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: A randomized trial. JAMA. 2009;301:489–499. doi: 10.1001/jama.2009.56. PubMed DOI
Pasin L., Landoni G., Nardelli P., Belletti A., Di Prima A.L., Taddeo D., Isella F., Zangrillo A. Dexmedetomidine reduces the risk of delirium, agitation and confusion in critically ill patients: A meta-analysis of randomized controlled trials. J. Cardiothorac. Vasc. Anesth. 2014;28:1459–1466. doi: 10.1053/j.jvca.2014.03.010. PubMed DOI
Reade M.C., Eastwood G.M., Bellomo R., Bailey M., Bersten A., Cheung B., Davies A., Delaney A., Ghosh A., Van Haren F., et al. Effect of dexmedetomidine added to standard care on ventilator-free time in patients with agitated delirium, A randomized critical trial. JAMA. 2016;315:1460–1468. doi: 10.1001/jama.2016.2707. PubMed DOI
Tryptophan: A Unique Role in the Critically Ill