Tryptophan: A Unique Role in the Critically Ill
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34769144
PubMed Central
PMC8583765
DOI
10.3390/ijms222111714
PII: ijms222111714
Knihovny.cz E-zdroje
- Klíčová slova
- delirium, inflammation, kynurenine pathway, polyneuromyopathy, post intensive care syndrome, rapamycin, sepsis, serotonin pathway, tryptophan metabolism,
- MeSH
- delirium etiologie MeSH
- deprese etiologie MeSH
- indolamin-2,3,-dioxygenasa metabolismus MeSH
- kosterní svaly metabolismus MeSH
- kritický stav * MeSH
- kynurenin metabolismus MeSH
- lidé MeSH
- melatonin biosyntéza MeSH
- sepse metabolismus MeSH
- serotonin biosyntéza MeSH
- tryptofan nedostatek MeSH
- zánět metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- indolamin-2,3,-dioxygenasa MeSH
- kynurenin MeSH
- melatonin MeSH
- serotonin MeSH
- tryptofan MeSH
Tryptophan is an essential amino acid whose metabolites play key roles in diverse physiological processes. Due to low reserves in the body, especially under various catabolic conditions, tryptophan deficiency manifests itself rapidly, and both the serotonin and kynurenine pathways of metabolism are clinically significant in critically ill patients. In this review, we highlight these pathways as sources of serotonin and melatonin, which then regulate neurotransmission, influence circadian rhythm, cognitive functions, and the development of delirium. Kynurenines serve important signaling functions in inter-organ communication and modulate endogenous inflammation. Increased plasma kynurenine levels and kynurenine-tryptophan ratios are early indicators for the development of sepsis. They also influence the regulation of skeletal muscle mass and thereby the development of polyneuromyopathy in critically ill patients. The modulation of tryptophan metabolism could help prevent and treat age-related disease with low grade chronic inflammation as well as post intensive care syndrome in all its varied manifestations: cognitive decline (including delirium or dementia), physical impairment (catabolism, protein breakdown, loss of muscle mass and tone), and mental impairment (depression, anxiety or post-traumatic stress disorder).
Zobrazit více v PubMed
Barik S. The uniqueness of tryptophan in biology: Properties, metabolism, interactions and localizations in proteins. Int. J. Mol. Sci. 2020;21:8776. doi: 10.3390/ijms21228776. PubMed DOI PMC
LeFloćh N., Otten W., Merlot E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids. 2011;41:1195–1205. doi: 10.1007/s00726-010-0752-7. PubMed DOI
Cervenka I., Agudelo L.Z., Ruas J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017;357:eaaf9794. doi: 10.1126/science.aaf9794. PubMed DOI
Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., et al. The third international consensus definitions for sespis and septic shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC
Sorgdrager F.J.H., Naudé P.J.W., Kema I.P., Nollen E.A., Deyn P.P.D. Tryptophan metabolism in inflammaging: From biomarker to therapeutic target. Front. Immunol. 2019;10:2565. doi: 10.3389/fimmu.2019.02565. PubMed DOI PMC
Munn D.H., Mellor A.L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34:137–143. doi: 10.1016/j.it.2012.10.001. PubMed DOI PMC
Munn D.H., Sharma M.D., Baban B., Hardin H.P., Zhang Y., Ron D., Mellor A.L. GCN2 kinase in T cells mediated proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22:633–642. doi: 10.1016/j.immuni.2005.03.013. PubMed DOI
Weichhart T., Hengstschläger M., Linke M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 2015;15:599–614. doi: 10.1038/nri3901. PubMed DOI PMC
Schröcksnadel K., Wirleitner B., Winkler C., Fuchs D. Monitoring tryptophan metabolism in chronic immune activation. Clin. Chim. Acta. 2006;364:82–90. doi: 10.1016/j.cca.2005.06.013. PubMed DOI
Schmidt S.V., Schultze J.L. New insight into IDO biology in bacterial and viral infections. Front. Immunol. 2014;5:384. doi: 10.3389/fimmu.2014.00384. PubMed DOI PMC
Keshavarz M., Solaymani-Mohammadi F., Namdari H., Arjeini Y., Mousavi M.J., Rezaei F. Metabolic host response and therapeutic approaches to influenza infection. Cell. Mol. Biol. Lett. 2020;25:15. doi: 10.1186/s11658-020-00211-2. PubMed DOI PMC
Planes R., Bahraoui E. HIV-1 Tat protein induces the production of IDO in human monocyte derived-dendritic cells through a direct mechanism: Effect on T cells proliferations. PLoS ONE. 2013;8:e74551. doi: 10.1371/journal.pone.0074551. PubMed DOI PMC
Cecchinato V., Tryniszewska E., Ma Z.M., Vaccari M., Boasso A., Tsai W.P., Petrovas C., Fuchs D., Heraud J.M., Venzon D., et al. Immune activation driven by CTLA-4 blokade augments viral replication at mucosal sites in simian immunodeficiency virus infection. J. Immunol. 2008;180:5439–5447. doi: 10.4049/jimmunol.180.8.5439. PubMed DOI PMC
Fox J.M., Sage L.K., Huang L., Barber J., Klonowski K.D., Mellor A.L., Tompkins S.M., Tripp R.A. Inhibition of indoleamine 2,3-dioxygenase enhances the T–cell response to influenza virus infection. J. Gen. Virol. 2013;94:1451–1461. doi: 10.1099/vir.0.053124-0. PubMed DOI PMC
Larrea E., Riezu-Boj J.I., Gil-Guerrero L., Casares N., Aldabe R., Sarobe P., Civeira M.P., Heeney J.L., Rollier C., Verstrepen B., et al. Upregulation of indoleamine 2,3-dioxygenase in hepatitis C virus infection. J. Virol. 2007;81:3662–3666. doi: 10.1128/JVI.02248-06. PubMed DOI PMC
Van der Sluijs K.F., Nijhuis M., Levels J.H.M., Florquin S., Mellor A.L., Jansen H.M., van der Poll T., Lutter R. Influenza–induced expression of indoleamine2,3-dioxygenase enhances interleukin-10 production and bacterial outgrowth during secondary pneumococcal pneumonia. J. Infect. Dis. 2006;193:214–222. doi: 10.1086/498911. PubMed DOI
Lansbury L., Lim B., Baskaran V., Lim W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020;81:266–275. doi: 10.1016/j.jinf.2020.05.046. PubMed DOI PMC
Lai C.C., Yu W.L. COVID-19 associated with pulmonary aspergillosis: A literature review. J. Microbiol. Immunol. Infect. 2021;54:46–53. doi: 10.1016/j.jmii.2020.09.004. PubMed DOI PMC
Zanoni I., Granucci F. Role of CD14 in host protection against infections and in metabolism regulation. Front. Cell. Infect. Microbiol. 2013;3:32. doi: 10.3389/fcimb.2013.00032. PubMed DOI PMC
Tattevin P., Monnier D., Tribut O., Dulong J., Bescher N., Mourcin F., Uhel F., Tulzo Y.L., Tarte K. Enhanced indoleamine 2,3-dioxygenase activity in patients with severe sepsis and septic shock. J. Infect. Dis. 2010;201:956–966. doi: 10.1086/650996. PubMed DOI
Lögters T.T., Laryea M.D., Altrichter J., Sokolowski J., Cinatl J., Reipen J., Linhart W., Windolf J., Scholz M., Wild M. Increased plasma kynurenine values and kynurenine-tryptophan ratios after major trauma are early indicators for the development of sepsis. Shock. 2009;32:29–34. doi: 10.1097/SHK.0b013e31819714fa. PubMed DOI
Zeden J.P., Fuchs G., Holtfreter B., Schefold J.C., Reinke P., Domanska G., Haas J.P., Gruendling M., Westerholt A., Schuett C. Excessive tryptophan catabolism along the kynurenine pathway precedes ongoing sepsis in critically ill patients. Anaesth. Intensive Care. 2010;38:307–316. doi: 10.1177/0310057X1003800213. PubMed DOI
Jung I.D., Lee M.G., Chang J.H., Lee J.S., Jeong Y.I., Lee C.M., Park W.S., Han J., Seo S.K., Lee S.Y., et al. Blockade of indoleamine 2,3-dioxygenase protects mice against lipopolysaccharide-induced endotoxin shock. J. Immunol. 2009;5:3146–3154. doi: 10.4049/jimmunol.0803104. PubMed DOI
Hu B., Huang S., Yin L. The cytokine storm and Covid-19. J. Med. Virol. 2021;93:250–256. doi: 10.1002/jmv.26232. PubMed DOI PMC
Schefold J.C., von Haehling S., Corsepius M., Pohle C., Kruschke P., Zuckermann H., Volk H.D., Reinke P. A novel selective extracorporeal intervention in sepsis: Immunoadsorption of endotoxin, interleukin 6, and complement-activating product 5a. Shock. 2007;28:418–425. doi: 10.1097/shk.0b013e31804f5921. PubMed DOI
Zaher S.S., Germain C., Fu H., Larkin D.F.P., George A.J.T. 3-hydroxykynurenine suppresses CD4+ T-cell proliferation, induces T-regulatory-cell development, and prolongs corneal allograft survival. Investig. Opthalmol. Vis. Sci. 2011;52:2640–2648. doi: 10.1167/iovs.10-5793. PubMed DOI PMC
Romani L., Zelante T., De Luca A., Fallarino F., Puccetti P. IL-17 and therapeutic kynurenines in pathogenic inflammation to fungi. J. Immunol. 2008;180:5157–5162. doi: 10.4049/jimmunol.180.8.5157. PubMed DOI
Salazar F., Awuah D., Negm O.H., Shakib F., Ghaemmaghami A.M. The role of indoleamine 2,3-dioxygenase-aryl hydrocarbon receptor pathway in the TLR4-induces tolerogenic phenotype in human DCs. Sci. Rep. 2017;7:43337. doi: 10.1038/srep43337. PubMed DOI PMC
Jiang H.Y., Wek S.A., McGrath B.C., Scheuner D., Kaufman R.J., Cavener D.R., Wek R.C. Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol. Cell. Biol. 2003;23:5651–5663. doi: 10.1128/MCB.23.16.5651-5663.2003. PubMed DOI PMC
Liu H., Huang L., Bradley J., Liu K., Bardhan K., Ron D., Mellor A.L., Munn D.H., McGaha T.L. GCN2-dependent metabolic stress is essential for endotoxemic cytokine induction and pathology. Mol. Cell. Biol. 2014;34:428–438. doi: 10.1128/MCB.00946-13. PubMed DOI PMC
Ninomiya S., Nakamura N., Nakamura H., Mizutani T., Kaneda Y., Yamaguchi K., Matsumoto T., Kitagawa J., Kanemura N., Shiraki M., et al. Low levels of serum tryptophan underlie skeletal muscle atrophy. Nutrients. 2020;12:978. doi: 10.3390/nu12040978. PubMed DOI PMC
Preiser J.C., Ichai C., Orban J.C., Groeneveld A.B.J. Metabolic response to the stress of critical illness. Br. J. Anaesth. 2014;113:945–954. doi: 10.1093/bja/aeu187. PubMed DOI
Zorowitz R.D. ICU-acquired weakness: A rehabilitation perspective of diagnosis, treatment, and functional management. Chest. 2016;150:966–971. doi: 10.1016/j.chest.2016.06.006. PubMed DOI
Bar-Peled L., Sabatini D.M. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014;24:400–406. doi: 10.1016/j.tcb.2014.03.003. PubMed DOI PMC
Ham D.J., Caldow M.K., Lynch G.S., Koopman R. Leucine as a treatment for muscle wasting: A critical review. Clin. Nutr. 2014;33:937–945. doi: 10.1016/j.clnu.2014.09.016. PubMed DOI
Supinski G.S., Callahan L.A. Hydroxymethylbutyrate and eicosapentaenoic acid: Preclinical studies to improve muscle function in critical care medicine. In: Rajendram R., Preedy V.R., Patel V.B., editors. Diet and Nutrition in Critical Care. Springer; New York, NY, USA: 2015. pp. 1135–1148.
Martin K.S., Azzolini M., Ruas J.L. The kynurenine connection: How exercise shifts muscle tryptophan metabolism and affects energy homeostasis, the immune system, and the brain. Am. J. Physiol. Cell Physiol. 2020;318:C818–C830. doi: 10.1152/ajpcell.00580.2019. PubMed DOI
Jackman S.R., Witard O.C., Philp A., Wallis G.A., Barr K., Tipton K.D. Branched-chain amino acid ingestion stimulates muscle myofibrillar protein synthesis following resistance exercise in humans. Front. Physiol. 2017;8:390. doi: 10.3389/fphys.2017.00390. PubMed DOI PMC
Dukes A., Davis C., El Refaey M., Upadhyay S., Mork S., Arounleut P., Johnson M.H., Hill W.D., Isales C.M., Hamrick M.W. The aromatic amino acid tryptophan stimulates skeletal muscle IGF1/p70s6k/mTOR signaling in vivo and the expression of myogenic genes in vitro. Nutrition. 2015;31:1018–1024. doi: 10.1016/j.nut.2015.02.011. PubMed DOI PMC
Lee M.N., Ha S.H., Kim J., Koh A., Lee C.S., Kim J.H., Jeon H., Kim D.H., Suh P.G., Ryu S.H. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol. Cell. Biol. 2009;29:3991–4001. doi: 10.1128/MCB.00165-09. PubMed DOI PMC
Johannesson E., Simrén M., Strid H., Bajor A., Sadik R. Physical activity improves symptoms in irritable bowel syndrome: A randomized controlled trial. Am. J. Gastroenterol. 2011;106:915–922. doi: 10.1038/ajg.2010.480. PubMed DOI
Cavallazzi R., Saad M., Marik P.E. Delirium in the ICU: An overview. Ann. Intensive Care. 2012;2:49. doi: 10.1186/2110-5820-2-49. PubMed DOI PMC
Girard T.D., Pandharipande P.P., Ely E.W. Delirium in the intensive care unit. Crit. Care. 2008;12:S3. doi: 10.1186/cc6149. PubMed DOI PMC
Stone T.W., Darlington L.G. The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. Br. J. Pharmacol. 2013;169:1211–1227. doi: 10.1111/bph.12230. PubMed DOI PMC
Hafstad Solvang S.E., Nordrehaug J.E., Tell G.S., Nygard O., McCann A., Ueland P.M., Midttun O., Meyer K., Vedeler C.A., Aarsland D., et al. The kynurenine pathway and cognitive performance in community-dwelling older adults. The Hordaland Health Study. Brain Behav. Immun. 2019;75:155–162. doi: 10.1016/j.bbi.2018.10.003. PubMed DOI
Anderson G., Carbone A., Mazzoccoli G. Tryptophan metabolites and aryl hydrocarbon receptor in severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) Pathophysiology. Int. J. Mol. Sci. 2021;22:1597. doi: 10.3390/ijms22041597. PubMed DOI PMC
Káňová M., Kohout P. Serotonin-its synthesis and roles in the healthy and the critically ill. Int. J. Mol. Sci. 2021;22:4837. doi: 10.3390/ijms22094837. PubMed DOI PMC
Haspel J.A., Anafi R., Brown M.K., Cermakian N., Depner C., Desplats P., Gelman A.E., Haack M., Jelic S., Kim B.S., et al. Perfect timing: Circadian rhythms, sleep, and immunity- an NIH workshop summary. JCI Insight. 2020;5:e131487. doi: 10.1172/jci.insight.131487. PubMed DOI PMC
Calvo J.R., Gonzáles-Yanes C., Maldonado M.D. The role of melatonin in the cells of the innate immunity: A review. J. Pineal Res. 2013;55:103–120. doi: 10.1111/jpi.12075. PubMed DOI
Juybari K.B., Pourhanifeh M.H., Hosseinzadeh A., Hemati K., Mehrzadi S. Melatonin potentials against viral infections including COVID-19: Current evidence and new findings. Virus Res. 2020;287:198108. doi: 10.1016/j.virusres.2020.198108. PubMed DOI PMC
Lewis M.C., Barnett S.R. Postoperative delirium: The tryptophan dyregulation model. Med. Hypotheses. 2004;63:402–406. doi: 10.1016/j.mehy.2004.01.033. PubMed DOI
Dunne S.S., Coffey J.C., Konje S., Gasior S., Clancy C.C., Gulati G., Meagher D., Dunne C.P. Biomarkers in delirium: A systematic review. J. Psychosom. Res. 2021;147:110530. doi: 10.1016/j.jpsychores.2021.110530. PubMed DOI
Roager H.M., Licht T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018;9:3294. doi: 10.1038/s41467-018-05470-4. PubMed DOI PMC
Comai S., Bertazzo A., Brughera M., Crotti S. Tryptophan in health and disease. Adv. Clin. Chem. 2020;95:165–218. PubMed
Inoue S., Hatakeyma J., Kondo Y., Hifumi T., Sakuramoto H., Kawasaki T., Taito S., Nakamura K., Unoki T., Kawai Y., et al. Post-intensive care syndrome: Its pathophysiology, prevention, and future directions. Acute Med. Surg. 2019;6:233–246. doi: 10.1002/ams2.415. PubMed DOI PMC
Káňová M., Máca J. Post-Intensive Care Syndrome. Am. J. Biomed. Sci. Res. 2020;10:572–573. doi: 10.34297/AJBSR.2020.10.001577. DOI