Epigenetic Distribution of Recombinant Plant Chromosome Fragments in a Human-Arabidopsis Hybrid Cell Line
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827
ERDF project
JSPS-18-07
Mobility Plus Project
JPJSBP120203507
Mobility Plus Project
Innovative Asia
JICA
Kobe University Visiting Researcher project
Kobe University
PubMed
34063996
PubMed Central
PMC8196797
DOI
10.3390/ijms22115426
PII: ijms22115426
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis genome, DNA methylation, epigenome, gene expression, human–plant hybrid cell line, whole-genome bisulfite sequencing (WGBS),
- MeSH
- Arabidopsis genetika MeSH
- buněčné linie MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná genetika MeSH
- epigeneze genetická genetika MeSH
- epigenom genetika MeSH
- epigenomika metody MeSH
- genom rostlinný genetika MeSH
- hybridní buňky fyziologie MeSH
- lidé MeSH
- methyltransferasy genetika MeSH
- metylace DNA genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA rostlinná MeSH
- methyltransferasy MeSH
Methylation systems have been conserved during the divergence of plants and animals, although they are regulated by different pathways and enzymes. However, studies on the interactions of the epigenomes among evolutionarily distant organisms are lacking. To address this, we studied the epigenetic modification and gene expression of plant chromosome fragments (~30 Mb) in a human-Arabidopsis hybrid cell line. The whole-genome bisulfite sequencing results demonstrated that recombinant Arabidopsis DNA could retain its plant CG methylation levels even without functional plant methyltransferases, indicating that plant DNA methylation states can be maintained even in a different genomic background. The differential methylation analysis showed that the Arabidopsis DNA was undermethylated in the centromeric region and repetitive elements. Several Arabidopsis genes were still expressed, whereas the expression patterns were not related to the gene function. We concluded that the plant DNA did not maintain the original plant epigenomic landscapes and was under the control of the human genome. This study showed how two diverging genomes can coexist and provided insights into epigenetic modifications and their impact on the regulation of gene expressions between plant and animal genomes.
Graduate School of Human Development and Environment Kobe University Kobe Hyogo 657 8501 Japan
Graduate School of Pharmaceutical Sciences Osaka University Suita Osaka 565 0871 Japan
Zobrazit více v PubMed
Blomen V.A., Boonstra J. Stable Transmission of Reversible Modifications: Maintenance of Epigenetic Information through the Cell Cycle. Cell. Mol. Life Sci. 2011;68:27–44. doi: 10.1007/s00018-010-0505-5. PubMed DOI PMC
Feng J.X., Riddle N.C. Epigenetics and Genome Stability. Mamm. Genome. 2020;31:181–195. doi: 10.1007/s00335-020-09836-2. PubMed DOI
Ehrlich M., Gama-Sosa M.A., Huang L.-H., Midgett R.M., Kuo K.C., McCune R.A., Gehrke C. Amount and Distribution of 5-Methylcytosine in Human DNA from Different Types of Tissues or Cells. Nucleic Acids Res. 1982;10:2709–2721. doi: 10.1093/nar/10.8.2709. PubMed DOI PMC
Law J.A., Jacobsen S.E. Establishing, Maintaining and Modifying DNA Methylation Patterns in Plants and Animals. Nat. Rev. Genet. 2010;11:204–220. doi: 10.1038/nrg2719. PubMed DOI PMC
Zhang X., Yazaki J., Sundaresan A., Cokus S., Chan S.W.-L., Chen H., Henderson I.R., Shinn P., Pellegrini M., Jacobsen S.E., et al. Genome-Wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis. Cell. 2006;126:1189–1201. doi: 10.1016/j.cell.2006.08.003. PubMed DOI
Feinberg A.P., Vogelstein B. Hypomethylation Distinguishes Genes of Some Human Cancers from Their Normal Counterparts. Nature. 1983;301:89–92. doi: 10.1038/301089a0. PubMed DOI
Feinberg A.P., Gehrke C.W., Kuo K.C., Ehrlich M. Reduced Genomic 5-Methylcytosine Content in Human Colonic Neoplasia. Cancer Res. 1988;48:1159–1161. PubMed
Jin Z., Liu Y. DNA Methylation in Human Diseases. Genes Dis. 2018;5:1–8. doi: 10.1016/j.gendis.2018.01.002. PubMed DOI PMC
Li E., Zhang Y. DNA Methylation in Mammals. Cold Spring Harb. Perspect. Biol. 2014;6 doi: 10.1101/cshperspect.a019133. PubMed DOI PMC
Chan S.W.-L., Henderson I.R., Jacobsen S.E. Gardening the Genome: DNA Methylation in Arabidopsis Thaliana. Nat. Rev. Genet. 2005;6:351–360. doi: 10.1038/nrg1601. PubMed DOI
Pikaard C.S., Mittelsten Scheid O. Epigenetic Regulation in Plants. Cold Spring Harb. Perspect. Biol. 2014;6 doi: 10.1101/cshperspect.a019315. PubMed DOI PMC
Finnegan E.J., Dennis E.S. Isolation and Identification by Sequence Homology of a Putative Cytosine Methyltransferase from Arabidopsis Thaliana. Nucleic Acids Res. 1993;21:2383–2388. doi: 10.1093/nar/21.10.2383. PubMed DOI PMC
Cao X., Springer N.M., Muszynski M.G., Phillips R.L., Kaeppler S., Jacobsen S.E. Conserved Plant Genes with Similarity to Mammalian de Novo DNA Methyltransferases. Proc. Natl. Acad. Sci. USA. 2000;97:4979–4984. doi: 10.1073/pnas.97.9.4979. PubMed DOI PMC
Goll M.G., Bestor T.H. Eukaryotic Cytosine Methyltransferases. Annu. Rev. Biochem. 2005;74:481–514. doi: 10.1146/annurev.biochem.74.010904.153721. PubMed DOI
Colot V., Rossignol J.-L. Eukaryotic DNA Methylation as an Evolutionary Device. BioEssays. 1999;21:402–411. doi: 10.1002/(SICI)1521-1878(199905)21:5<402::AID-BIES7>3.0.CO;2-B. PubMed DOI
Baulcombe D.C., Dean C. Epigenetic Regulation in Plant Responses to the Environment. Cold Spring Harb. Perspect. Biol. 2014;6:a019471. doi: 10.1101/cshperspect.a019471. PubMed DOI PMC
Greaves I.K., Gonzalez-Bayon R., Wang L., Zhu A., Liu P.-C., Groszmann M., Peacock W.J., Dennis E.S. Epigenetic Changes in Hybrids. Plant Physiol. 2015;168:1197–1205. doi: 10.1104/pp.15.00231. PubMed DOI PMC
Laporte M., Luyer J.L., Rougeux C., Dion-Côté A.-M., Krick M., Bernatchez L. DNA Methylation Reprogramming, TE Derepression, and Postzygotic Isolation of Nascent Animal Species. Sci. Adv. 2019;5:eaaw1644. doi: 10.1126/sciadv.aaw1644. PubMed DOI PMC
Hochstein N., Muiznieks I., Mangel L., Brondke H., Doerfler W. Epigenetic Status of an Adenovirus Type 12 Transgenome upon Long-Term Cultivation in Hamster Cells. J. Virol. 2007;81:5349–5361. doi: 10.1128/JVI.02624-06. PubMed DOI PMC
O’Neill R.J.W., O’Neill M.J., Graves J.A.M. Undermethylation Associated with Retroelement Activation and Chromosome Remodelling in an Interspecific Mammalian Hybrid. Nature. 1998;393:68–72. doi: 10.1038/29985. PubMed DOI
Remus R., Kämmer C., Heller H., Schmitz B., Schell G., Doerfler W. Insertion of Foreign DNA into an Established Mammalian Genome Can Alter the Methylation of Cellular DNA Sequences. J. Virol. 1999;73:1010–1022. doi: 10.1128/JVI.73.2.1010-1022.1999. PubMed DOI PMC
Doerfler W. Epigenetic Consequences of Foreign DNA Insertions: De Novo Methylation and Global Alterations of Methylation Patterns in Recipient Genomes. Rev. Med. Virol. 2011;21:336–346. doi: 10.1002/rmv.698. PubMed DOI
Weber S., Hofmann A., Herms S., Hoffmann P., Doerfler W. Destabilization of the Human Epigenome: Consequences of Foreign DNA Insertions. Epigenomics. 2015;7:745–755. doi: 10.2217/epi.15.40. PubMed DOI
Fitz-James M.H., Tong P., Pidoux A.L., Ozadam H., Yang L., White S.A., Dekker J., Allshire R.C. Large Domains of Heterochromatin Direct the Formation of Short Mitotic Chromosome Loops. eLife. 2020;9:e57212. doi: 10.7554/eLife.57212. PubMed DOI PMC
Wada N., Kazuki Y., Kazuki K., Inoue T., Fukui K., Oshimura M. Maintenance and Function of a Plant Chromosome in Human Cells. ACS Synth. Biol. 2017;6:301–310. doi: 10.1021/acssynbio.6b00180. PubMed DOI
Liu Y., Liaw Y.M., Teo C.H., Cápal P., Wada N., Fukui K., Doležel J., Ohmido N. Molecular Organization of Recombinant Human-Arabidopsis Chromosomes in Hybrid Cell Lines. Sci. Rep. 2021 doi: 10.1038/s41598-021-86130-4. PubMed DOI PMC
Xi Y., Li W. BSMAP: Whole Genome Bisulfite Sequence MAPping Program. BMC Bioinform. 2009;10:232. doi: 10.1186/1471-2105-10-232. PubMed DOI PMC
Krueger F., Andrews S.R. Bismark: A Flexible Aligner and Methylation Caller for Bisulfite-Seq Applications. Bioinformatics. 2011;27:1571–1572. doi: 10.1093/bioinformatics/btr167. PubMed DOI PMC
Cokus S.J., Feng S., Zhang X., Chen Z., Merriman B., Haudenschild C.D., Pradhan S., Nelson S.F., Pellegrini M., Jacobsen S.E. Shotgun Bisulphite Sequencing of the Arabidopsis Genome Reveals DNA Methylation Patterning. Nature. 2008;452:215–219. doi: 10.1038/nature06745. PubMed DOI PMC
Wong N.C., Pope B.J., Candiloro I.L., Korbie D., Trau M., Wong S.Q., Mikeska T., Zhang X., Pitman M., Eggers S., et al. MethPat: A Tool for the Analysis and Visualisation of Complex Methylation Patterns Obtained by Massively Parallel Sequencing. BMC Bioinform. 2016;17:98. doi: 10.1186/s12859-016-0950-8. PubMed DOI PMC
Akalin A., Kormaksson M., Li S., Garrett-Bakelman F.E., Figueroa M.E., Melnick A., Mason C.E. MethylKit: A Comprehensive R Package for the Analysis of Genome-Wide DNA Methylation Profiles. Genome Biol. 2012;13:R87. doi: 10.1186/gb-2012-13-10-r87. PubMed DOI PMC
Chèneby J., Ménétrier Z., Mestdagh M., Rosnet T., Douida A., Rhalloussi W., Bergon A., Lopez F., Ballester B. ReMap 2020: A Database of Regulatory Regions from an Integrative Analysis of Human and Arabidopsis DNA-Binding Sequencing Experiments. Nucleic Acids Res. 2020;48:D180–D188. doi: 10.1093/nar/gkz945. PubMed DOI PMC
Klimopoulos A., Sellis D., Almirantis Y. Widespread Occurrence of Power-Law Distributions in Inter-Repeat Distances Shaped by Genome Dynamics. Gene. 2012;499:88–98. doi: 10.1016/j.gene.2012.02.005. PubMed DOI
Feng S., Cokus S.J., Zhang X., Chen P.-Y., Bostick M., Goll M.G., Hetzel J., Jain J., Strauss S.H., Halpern M.E., et al. Conservation and Divergence of Methylation Patterning in Plants and Animals. Proc. Natl. Acad. Sci. USA. 2010;107:8689–8694. doi: 10.1073/pnas.1002720107. PubMed DOI PMC
Su Z., Han L., Zhao Z. Conservation and Divergence of DNA Methylation in Eukaryotes. Epigenetics. 2011;6:134–140. doi: 10.4161/epi.6.2.13875. PubMed DOI PMC
Long H.K., King H.W., Patient R.K., Odom D.T., Klose R.J. Protection of CpG Islands from DNA Methylation Is DNA-Encoded and Evolutionarily Conserved. Nucleic Acids Res. 2016;44:6693–6706. doi: 10.1093/nar/gkw258. PubMed DOI PMC
Yi S.V. Insights into Epigenome Evolution from Animal and Plant Methylomes. Genome Biol. Evol. 2017;9:3189–3201. doi: 10.1093/gbe/evx203. PubMed DOI PMC
Lienert F., Wirbelauer C., Som I., Dean A., Mohn F., Schübeler D. Identification of genetic elements that autonomously determine DNA methylation states. Nat. Genet. 2011;43:1091–1097. doi: 10.1038/ng.946. PubMed DOI
Krebs A.R., Dessus-Babus S., Burger L., Schübeler D. High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions. Elife. 2014;3:e04094. doi: 10.7554/eLife.04094. PubMed DOI PMC
Kohli R.M., Zhang Y. TET Enzymes, TDG and the Dynamics of DNA Demethylation. Nature. 2013;502:472–479. doi: 10.1038/nature12750. PubMed DOI PMC
Gallego-Bartolomé J., Gardiner J., Liu W., Papikian A., Ghoshal B., Kuo H.Y., Zhao J.M.-C., Segal D.J., Jacobsen S.E. Targeted DNA Demethylation of the Arabidopsis Genome Using the Human TET1 Catalytic Domain. Proc. Natl. Acad. Sci. USA. 2018;115:E2125–E2134. doi: 10.1073/pnas.1716945115. PubMed DOI PMC
He Y., Ecker J.R. Non-CG Methylation in the Human Genome. Annu. Rev. Genom. Hum. Genet. 2015;16:55–77. doi: 10.1146/annurev-genom-090413-025437. PubMed DOI PMC
Erdmann R.M., Picard C.L. RNA-Directed DNA Methylation. PLoS Genet. 2020;16:e1009034. doi: 10.1371/journal.pgen.1009034. PubMed DOI PMC
Kenchanmane Raju S.K., Ritter E.J., Niederhuth C.E. Establishment, Maintenance, and Biological Roles of Non-CG Methylation in Plants. Essays Biochem. 2019;63:743–755. doi: 10.1042/EBC20190032. PubMed DOI PMC
Matzke M.A., Mosher R.A. RNA-Directed DNA Methylation: An Epigenetic Pathway of Increasing Complexity. Nat. Rev. Genet. 2014;15:394–408. doi: 10.1038/nrg3683. PubMed DOI
Ichikawa K., Tomioka S., Suzuki Y., Nakamura R., Doi K., Yoshimura J., Kumagai M., Inoue Y., Uchida Y., Irie N., et al. Centromere Evolution and CpG Methylation during Vertebrate Speciation. Nat. Commun. 2017;8:1833. doi: 10.1038/s41467-017-01982-7. PubMed DOI PMC
McKinley K.L., Cheeseman I.M. The Molecular Basis for Centromere Identity and Function. Nat. Rev. Mol. Cell Biol. 2016;17:16–29. doi: 10.1038/nrm.2015.5. PubMed DOI PMC
Barra V., Fachinetti D. The Dark Side of Centromeres: Types, Causes and Consequences of Structural Abnormalities Implicating Centromeric DNA. Nat. Commun. 2018;9:4340. doi: 10.1038/s41467-018-06545-y. PubMed DOI PMC
Secco D., Wang C., Shou H., Schultz M.D., Chiarenza S., Nussaume L., Ecker J.R., Whelan J., Lister R. Stress Induced Gene Expression Drives Transient DNA Methylation Changes at Adjacent Repetitive Elements. eLife. 2015;4:e09343. doi: 10.7554/eLife.09343. PubMed DOI PMC
Wan Z.Y., Xia J.H., Lin G., Wang L., Lin V.C.L., Yue G.H. Genome-Wide Methylation Analysis Identified Sexually Dimorphic Methylated Regions in Hybrid Tilapia. Sci. Rep. 2016;6:35903. doi: 10.1038/srep35903. PubMed DOI PMC
Zhao T., Schranz M.E. Network-Based Microsynteny Analysis Identifies Major Differences and Genomic Outliers in Mammalian and Angiosperm Genomes. Proc. Natl. Acad. Sci. USA. 2019;116:2165–2174. doi: 10.1073/pnas.1801757116. PubMed DOI PMC
Li Y., Dai X., Cheng Y., Zhao Y. NPY Genes Play an Essential Role in Root Gravitropic Responses in Arabidopsis. Mol. Plant. 2011;4:171–179. doi: 10.1093/mp/ssq052. PubMed DOI PMC
Tripp B.C., Smith K., Ferry J.G. Carbonic Anhydrase: New Insights for an Ancient Enzyme. J. Biol. Chem. 2001;276:48615–48618. doi: 10.1074/jbc.R100045200. PubMed DOI
Miller S.A., Dykes D.D., Polesky H.F. A Simple Salting out Procedure for Extracting DNA from Human Nucleated Cells. Nucleic Acids Res. 1988;16:1215. doi: 10.1093/nar/16.3.1215. PubMed DOI PMC
Krueger F. Trim Galore. A Wrapper Tool around Cutadapt and FastQC to Consistently Apply Quality and Adapter Trimming to FastQ Files. Babraham Institute; Cambridge, UK: 2015. pp. 516–517.
Tarasov A., Vilella A.J., Cuppen E., Nijman I.J., Prins P. Sambamba: Fast Processing of NGS Alignment Formats. Bioinformatics. 2015;31:2032–2034. doi: 10.1093/bioinformatics/btv098. PubMed DOI PMC
Okonechnikov K., Conesa A., García-Alcalde F. Qualimap 2: Advanced Multi-Sample Quality Control for High-Throughput Sequencing Data. Bioinformatics. 2016;32:292–294. doi: 10.1093/bioinformatics/btv566. PubMed DOI PMC
Ramírez F., Dündar F., Diehl S., Grüning B.A., Manke T. DeepTools: A Flexible Platform for Exploring Deep-Sequencing Data. Nucleic Acids Res. 2014;42:W187–W191. doi: 10.1093/nar/gku365. PubMed DOI PMC
Simon A., Pierre L., Brian H., Phil E. Babraham Bioinformatics-FastQC A Quality Control Tool for High Throughput Sequence Data. [(accessed on 15 January 2021)]; Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Quinlan A.R., Hall I.M. BEDTools: A Flexible Suite of Utilities for Comparing Genomic Features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Han S., Kim D. AtRTPrimer: Database for Arabidopsis Genome-Wide Homogeneous and Specific RT-PCR Primer-Pairs. BMC Bioinform. 2006;7:179. doi: 10.1186/1471-2105-7-179. PubMed DOI PMC