• This record comes from PubMed

Benefits and Pitfalls of HPLC Coupled to Diode-Array, Charged Aerosol, and Coulometric Detections: Effect of Detection on Screening of Bioactive Compounds in Apples

. 2021 May 28 ; 26 (11) : . [epub] 20210528

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
TJ02000196 Technologická Agentura České Republiky
1466119 Grantová Agentura, Univerzita Karlova
CZ.02.1.01/0.0/0.0/15_003/0000465 Ministerstvo Školství, Mládeže a Tělovýchovy
SVV 260 548 Univerzita Karlova v Praze

Links

PubMed 34071301
PubMed Central PMC8199029
DOI 10.3390/molecules26113246
PII: molecules26113246
Knihovny.cz E-resources

The new screening method for rapid evaluation of major phenolic compounds in apples has been developed. Suitability of coupling HPLC/UHPLC separation with the diode-array detection and universal charged aerosol detection with respect to the presence of interfering substances was tested. Characteristics of both detection techniques were compared and method linearity, limits of detection and quantitation, and selectivity of them determined. Student t-test based on slopes of calibration plots was applied for the detailed comparison. The diode-array detection provided the best results regarding sensitivity and selectivity of the developed method in terms of evaluation of phenolics profiles. The response of the charged aerosol detector was negatively affected by co-eluting substances during rapid-screening analyses. Coulometric detection was used for advanced characterization of extracts in terms of antioxidant content and strength to obtain more complex information concerning sample composition. This detection also allowed evaluation of unidentified compounds with antioxidant activity. HPLC/UHPLC separation using a combination of diode-array and coulometric detectors thus represented the best approach enabling quick, yet complex characterization of bioactive compounds in apples.

See more in PubMed

Cappiello A., Famiglini G., Palma P., Pierini E., Termopoli V., Trufelli H. Overcoming matrix effects in liquid chromatography-mass spectrometry. Anal. Chem. 2008;80:9343–9348. doi: 10.1021/ac8018312. PubMed DOI

Kang J., Hick L.A., Price W.E. Using calibration approaches to compensate for remaining matrix effects in quantitative liquid chromatography/electrospray ionization multistage mass spectrometric analysis of phytoestrogens in aqueous environmental samples. Rapid Commun. Mass Spectrom. 2007;21:4065–4072. doi: 10.1002/rcm.3311. PubMed DOI

Schuhmacher J., Zimmer D., Tesche F., Pickard V. Matrix effects during analysis of plasma samples by electrospray and atmospheric pressure chemical ionization mass spectrometry: Practical approaches to their elimination. Rapid Commun. Mass Spectrom. 2003;17:1950–1957. doi: 10.1002/rcm.1139. PubMed DOI

Avery M.J. Quantitative characterization of differential ion suppression on liquid chromatography/atmospheric pressure ionization mass spectrometric bioanalytical methods. Rapid Commun. Mass Spectrom. 2003;17:197–201. doi: 10.1002/rcm.895. PubMed DOI

Chambers E., Wagrowski-Diehl D.M., Lu Z., Mazzeo J.R. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J. Chromatogr. B. 2007;852:22–34. doi: 10.1016/j.jchromb.2006.12.030. PubMed DOI

Antignac J.P., de Wasch K., Monteau F., De Brabander H., Andre F., Le Bizec B. The ion suppression phenomenon in liquid chromatography–mass spectrometry and its consequences in the field of residue analysis. Anal. Chim. Acta. 2005;529:129–136. doi: 10.1016/j.aca.2004.08.055. DOI

Viñas P., López-Erroz C., Marín-Hernández J.J., Hernández-Córdoba M. Determination of phenols in wines by liquid chromatograpy with photodiode array and fluorescence detection. J. Chromatogr. A. 2000;871:85–93. doi: 10.1016/S0021-9673(99)01087-0. PubMed DOI

Hernando M.D., Aguera A., Fernandez-Alba A.R. LC-MS analysis and environmental risk of lipid regulators. Anal. Bioanal. Chem. 2007;387:1269–1285. doi: 10.1007/s00216-006-0781-y. PubMed DOI

Ferrer C., Lozano A., Aguera A., Giron A.J., Fernandez-Alba A.R. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. J. Chromatogr. A. 2011;1218:7634–7639. doi: 10.1016/j.chroma.2011.07.033. PubMed DOI

Wu J., Qian X., Yang Z., Zhang L. Study on the matrix effect in the determination of selected pharmaceutical residues in seawater by solid-phase extraction and ultra-high-performance liquid chromatography-electrospray ionization low-energy collision-induced dissociation tandem mass spectrometry. J. Chromatogr. A. 2010;1217:1471–1475. PubMed

Yarita T., Aoyagi Y., Otake T. Evaluation of the impact of matrix effect on quantification of pesticides in foods by gas chromatography-mass spectrometry using isotope-labeled internal standards. J. Chromatogr. A. 2015;1396:109–116. doi: 10.1016/j.chroma.2015.03.075. PubMed DOI

Verdu C.F., Gatto J., Freuze I., Richomme P., Laurens F., Guilet D. Comparison of two methods, UHPLC-UV and UHPLC-MS/MS, for the quantification of polyphenols in cider apple juices. Molecules. 2013;18:10213–10227. doi: 10.3390/molecules180910213. PubMed DOI PMC

Walorczyk S. Validation and use of a QuEChERS-based gas chromatographic-tandem mass spectrometric method for multiresidue pesticide analysis in blackcurrants including studies of matrix effects and estimation of measurement uncertainty. Talanta. 2014;120:106–113. doi: 10.1016/j.talanta.2013.11.087. PubMed DOI

Ciric A., Prosen H., Jelikic-Stankov M., Durdevic P. Evaluation of matrix effect in determination of some bioflavonoids in food samples by LC-MS/MS method. Talanta. 2012;99:780–790. doi: 10.1016/j.talanta.2012.07.025. PubMed DOI

Buhrman D.L., Price P.I., Rudewicz P.J. Quantitation of SR 27417 in human plasma using electrospray liquid chromatography-tandem mass spectrometry: A study of ion suppression. J. Am. Soc. Mass Spectrom. 1996;7:1099–1105. doi: 10.1016/S1044-0305(96)00072-4. PubMed DOI

Fernandez-Figares I., Rodriguez L.C., Gonzalez-Casado A. Effect of different matrices on physiological amino acids analysis by liquid chromatography: Evaluation and correction of the matrix effect. J. Chromatogr. B. 2004;799:73–79. doi: 10.1016/j.jchromb.2003.10.012. PubMed DOI

Caporossi L., Tranfo G., Paci E., Rosa M., Capanna S., Tidei F., Papaleo B. LC determination of the skin exposure to oxamyl on greenhouse workers and comparison between DAD and MS–MS detection. Chromatographia. 2010;72:281–287. doi: 10.1365/s10337-010-1651-5. DOI

Weingerl V., Strlič M., Kočar D. Comparison of methods for determination of polyphenols in wine by HPLC-UV/VIS, LC/MS/MS and spectrophotometry. Acta Chim. Slov. 2009;56:698–703.

Lavola A., Maukonen M., Julkunen-Tiitto R. Variability in the composition of phenolic compounds in winter-dormant Salix pyrolifolia in relation to plant part and age. Phytochemistry. 2018;153:102–110. doi: 10.1016/j.phytochem.2018.05.021. PubMed DOI

Elfalleh W., Kirkan B., Sarikurkcu C. Antioxidant potential and phenolic composition of extracts from Stachys tmolea: An endemic plant from Turkey. Ind. Crops Prod. 2019;127:212–216. doi: 10.1016/j.indcrop.2018.10.078. DOI

Kalili K.M., de Villiers A. Recent developments in the HPLC separation of phenolic compounds. J. Sep. Sci. 2011;34:854–876. doi: 10.1002/jssc.201000811. PubMed DOI

Oyedeji A.O., Msagati T.A.M., Williams A.B., Benson N.U. Solid-phase extraction and high performance liquid chromatography with diode array detection method for the determination of antibiotic residues in poultry tissues. Chem. Data Collect. 2020;25:100312. doi: 10.1016/j.cdc.2019.100312. DOI

Corell L., Armenta S., Esteve-Turrillas F.A., de la Guardia M. Flavonoid determination in onion, chili and leek by hard cap espresso extraction and liquid chromatography with diode array detection. Microchem. J. 2018;140:74–79. doi: 10.1016/j.microc.2018.04.014. DOI

Rossle C., Wijngaard H.H., Gormley R.T., Butler F., Brunton N. Effect of storage on the content of polyphenols of minimally processed skin-on apple wedges from ten cultivars and two growing seasons. J. Agric. Food Chem. 2010;58:1609–1614. doi: 10.1021/jf903621y. PubMed DOI

Marti R., Valcarcel M., Herrero-Martinez J.M., Cebolla-Cornejo J., Rosello S. Fast simultaneous determination of prominent polyphenols in vegetables and fruits by reversed phase liquid chromatography using a fused-core column. J. Agric. Food Chem. 2015;169:169–179. doi: 10.1016/j.foodchem.2014.07.151. PubMed DOI

Liaudanskas M., Viškelis P., Kviklys D., Raudonis R., Janulis V. A comparative study of phenolic content in apple fruits. Int. J. Food Prop. 2015;18:945–953. doi: 10.1080/10942912.2014.911311. DOI

Mihailović N.R., Mihailović V.B., Kreft S., Ćirić A.R., Joksović L.G., Đurđević P.T. Analysis of phenolics in the peel and pulp of wild apples (Malus sylvestris (L.) Mill.) J. Food Compos. Anal. 2018;67:1–9. doi: 10.1016/j.jfca.2017.11.007. DOI

McGhie T.K., Hunt M., Barnett L.E. Cultivar and growing region determine the antioxidant polyphenolic concentration and composition of apples grown in New Zealand. J. Agric. Food Chem. 2005;53:3065–3070. doi: 10.1021/jf047832r. PubMed DOI

Plaza M., Kariuki J., Turner C. Quantification of individual phenolic compounds’ contribution to antioxidant capacity in apple: A novel analytical tool based on liquid chromatography with diode array, electrochemical, and charged aerosol detection. J. Agric. Food Chem. 2014;62:409–418. doi: 10.1021/jf404263k. PubMed DOI

Rodrıguez-Delgado M.A., Malovana S., Perez J.P., Borges T., García Montelongo F.J. Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J. Chromatogr. A. 2001;912:249–257. doi: 10.1016/S0021-9673(01)00598-2. PubMed DOI

Granica S., Krupa K., Klebowska A., Kiss A.K. Development and validation of HPLC-DAD-CAD-MS(3) method for qualitative and quantitative standardization of polyphenols in Agrimoniae eupatoriae herba (Ph. Eur) J. Pharm. Biomed. Anal. 2013;86:112–122. doi: 10.1016/j.jpba.2013.08.006. PubMed DOI

Tsao R., Yang R., Young J.C., Zhu H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC) J. Agric. Food Chem. 2003;51:6347–6353. doi: 10.1021/jf0346298. PubMed DOI

Montero L., Herrero M., Ibanez E., Cifuentes A. Profiling of phenolic compounds from different apple varieties using comprehensive two-dimensional liquid chromatography. J. Chromatogr. A. 2013;1313:275–283. doi: 10.1016/j.chroma.2013.06.015. PubMed DOI

Santos J., Oliveira M.B., Ibanez E., Herrero M. Phenolic profile evolution of different ready-to-eat baby-leaf vegetables during storage. J. Chromatogr. A. 2014;1327:118–131. doi: 10.1016/j.chroma.2013.12.085. PubMed DOI

Rodriguez-Bernaldo de Quiros A., Lopez-Hernandez J., Ferraces-Casais P., Lage-Yusty M.A. Analysis of non-anthocyanin phenolic compounds in wine samples using high performance liquid chromatography with ultraviolet and fluorescence detection. J. Sep. Sci. 2007;30:1262–1266. doi: 10.1002/jssc.200600489. PubMed DOI

Zhang Y., Chen Z., Xu X., Zhou Q., Liu X., Liao L., Zhang Z., Wang Z. Rapid separation and simultaneous quantitative determination of 13 constituents in Psoraleae Fructus by a single marker using high-performance liquid chromatography with diode array detection. J. Sep. Sci. 2017;40:4191–4202. doi: 10.1002/jssc.201700482. PubMed DOI

Haidar Ahmad I.A., Blasko A., Tam J., Variankaval N., Halsey H.M., Hartman R., Regalado E.L. Revealing the inner workings of the power function algorithm in Charged Aerosol Detection: A simple and effective approach to optimizing power function value for quantitative analysis. J. Chromatogr. A. 2019;1603:1–7. doi: 10.1016/j.chroma.2019.04.017. PubMed DOI

Viinamäki J., Ojanperä I. Photodiode array to charged aerosol detector response ratio enables comprehensive quantitative monitoring of basic drugs in blood by ultra-high performance liquid chromatography. Anal. Chim. Acta. 2015;865:1–7. doi: 10.1016/j.aca.2014.10.013. PubMed DOI

Dixon R.W., Peterson D.S. Development and testing of a detection method for liquid chromatography based on aerosol charging. Anal. Chem. 2002;74:2930–2937. doi: 10.1021/ac011208l. PubMed DOI

Dvořáková M., Douanier M., Jurková M., Kellner V., Dostálek P. Comparison of antioxidant activity of barley (Hordeum vulgare L.) and malt extracts with the content of free phenolic compounds measured by high performance liquid chromatography coupled with CoulArray detector. J. Inst. Brew. 2008;114:150–159. doi: 10.1002/j.2050-0416.2008.tb00320.x. DOI

Kongwong P., Morozova K., Ferrentino G., Poonlarp P., Scampicchio M. Rapid determination of the antioxidant capacity of lettuce by an e-tongue based on flow injection coulometry. Electroanalysis. 2018;30:230–237. doi: 10.1002/elan.201700354. DOI

Ullucci P.A., Acworth I.N., Crafts C., Bailey B.A., Plante M. Targeted Analyses of Secondary Metabolites in Herbs, Spices, and Beverages Using a Novel Spectro-Electro Array Platform (Application Note No. AN70713_E 07/16S) Thermo Fisher Scientific; Waltham, MA, USA: 2016.

Lima L.G.B., Montenegro J., Abreu J.P., Santos M.C.B., Nascimento T.P.D., Santos M.D.S., Ferreira A.G., Cameron L.C., Ferreira M.S.L., Teodoro A.J. Metabolite Profiling by UPLC-MS(E), NMR, and Antioxidant Properties of Amazonian Fruits: Mamey Apple (Mammea Americana), Camapu (Physalis Angulata), and Uxi (Endopleura Uchi) Molecules. 2020;25:342. doi: 10.3390/molecules25020342. PubMed DOI PMC

Zhu H., Chen L., Yu J., Cui L., Ali I., Song X., Park J.H., Wang D., Wang X. Flavonoid epimers from custard apple leaves, a rapid screening and separation by HSCCC and their antioxidant and hypoglycaemic activities evaluation. Sci. Rep. 2020;10:8819. doi: 10.1038/s41598-020-65769-5. PubMed DOI PMC

Percival B.C., Wann A., Zbasnik R., Schlegel V., Edgar M., Zhang J., Ampem G., Wilson P., Gresley A.L., Naughton D., et al. Evaluations of the Peroxidative Susceptibilities of Cod Liver Oils by a 1H NMR Analysis Strategy: Peroxidative Resistivity of a Natural Collagenous and Biogenic Amine-Rich Fermented Product. Nutrients. 2020;12:753. doi: 10.3390/nu12030753. PubMed DOI PMC

Grootveld M., Percival B.C., Leenders J., Wilson P.B. Potential Adverse Public Health Effects Afforded by the Ingestion of Dietary Lipid Oxidation Product Toxins: Significance of Fried Food Sources. Nutrients. 2020;12:974. doi: 10.3390/nu12040974. PubMed DOI PMC

Peters F.T., Remane D. Aspects of matrix effects in applications of liquid chromatography-mass spectrometry to forensic and clinical toxicology—A review. Anal. Bioanal. Chem. 2012;403:2155–2172. doi: 10.1007/s00216-012-6035-2. PubMed DOI

Sklenářová H., Bílková A., Pechová M., Chocholouš P. Determination of major phenolic compounds in apples: Part I-optimization of high-performance liquid chromatography separation with diode array detection. J. Sep. Sci. 2018;41:3042–3050. doi: 10.1002/jssc.201800302. PubMed DOI

European Medicines Agency (EMA) Guideline on Bioanalytical Method Validation. European Medicines Agency; Amsterdam, The Netherlands: 2015.

Baker T.R., Regg B.T. A multi-detector chromatographic approach for characterization and quantitation of botanical constituents to enable in silico safety assessments. Anal. Bioanal. Chem. 2018;410:5143–5154. doi: 10.1007/s00216-018-1163-y. PubMed DOI PMC

Zhang C.E., Liang L.J., Yu X.H., Wu H., Tu P.F., Ma Z.J., Zhao K.J. Quality assessment of Astragali Radix from different production areas by simultaneous determination of thirteen major compounds using tandem UV/charged aerosol detector. J. Pharm. Biomed. Anal. 2019;165:233–241. doi: 10.1016/j.jpba.2018.12.015. PubMed DOI

Dai J., Mumper R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15:7313–7352. doi: 10.3390/molecules15107313. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...