Czechoslovakian Wolfdog Genomic Divergence from Its Ancestors Canis lupus, German Shepherd Dog, and Different Sheepdogs of European Origin
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34071464
PubMed Central
PMC8228135
DOI
10.3390/genes12060832
PII: genes12060832
Knihovny.cz E-zdroje
- Klíčová slova
- behaviour, dogs, genomic diversity, morphological traits, protein-coding genes, selection events,
- MeSH
- fylogeneze * MeSH
- homozygot MeSH
- molekulární evoluce * MeSH
- polymorfismus genetický MeSH
- psi klasifikace genetika MeSH
- selekce (genetika) MeSH
- vlci genetika MeSH
- zvířata MeSH
- Check Tag
- psi klasifikace genetika MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This study focused on the genomic differences between the Czechoslovakian wolfdog (CWD) and its ancestors, the Grey wolf (GW) and German Shepherd dog. The Saarloos wolfdog and Belgian Shepherd dog were also included to study the level of GW genetics retained in the genome of domesticated breeds. The dataset consisted of 131 animals and 143,593 single nucleotide polymorphisms (SNPs). The effects of demographic history on the overall genome structure were determined by screening the distribution of the homozygous segments. The genetic variance distributed within and between groups was quantified by genetic distances, the FST index, and discriminant analysis of principal components. Fine-scale population stratification due to specific morphological and behavioural traits was assessed by principal component and factorial analyses. In the CWD, a demographic history effect was manifested mainly in a high genome-wide proportion of short homozygous segments corresponding to a historical load of inbreeding derived from founders. The observed proportion of long homozygous segments indicated that the inbreeding events shaped the CWD genome relatively recently compared to other groups. Even if there was a significant increase in genetic similarity among wolf-like breeds, they were genetically separated from each other. Moreover, this study showed that the CWD genome carries private alleles that are not found in either wolves or other dog breeds analysed in this study.
Zobrazit více v PubMed
Caniglia R., Fabbri E., Hulva P., Bolfíková B.Č., Jindřichová M., Stronen A.V., Dykyy I., Camatta A., Carnier P., Randi E., et al. Wolf outside, dog inside? The genomic make-up of the Czechoslovakian Wolfdog. BMC Genom. 2018;19:533. doi: 10.1186/s12864-018-4916-2. PubMed DOI PMC
Federation Cynologique Internationale. [(accessed on 22 January 2021)]; Available online: http://www.fci.be/
Jokinen P., Rusanen E.M., Kennedy L.J., Lohi H. MHC class II risk haplotype associated with canine chronic superficial keratitis in German Shepherd dogs. Vet. Immunol. Immunopathol. 2011;140:37–41. doi: 10.1016/j.vetimm.2010.11.007. PubMed DOI
Mäki K., Groen A., Liinamo A., Ojala M. Population structure, inbreeding trend and their association with hip and elbow dysplasia in dogs. Anim. Sci. 2001;73:217–228. doi: 10.1017/S1357729800058197. DOI
Wijnrocx K., François L., Stinckens A., Janssens S., Buys N. Half of 23 Belgian dog breeds has a compromised genetic diversity, as revealed by genealogical and molecular data analysis. J. Anim. Breed Genet. 2016;133:375–383. doi: 10.1111/jbg.12203. PubMed DOI
Sams A.J., Boyko A.R. Fine-scale resolution of runs of homozygosity reveal patterns of inbreeding and substantial overlap with recessive disease genotypes in domestic dogs. G3 Genes Genomes Genet. 2019;9:117–123. doi: 10.1534/g3.118.200836. PubMed DOI PMC
Kukučková V., Moravčíková N., Ferenčaković M., Simčič M., Mészáros G., Sölkner J., Trakovická A., Kadlečík O., Curik I., Kasarda R. Genomic characterisation of Pinzgau cattle: Genetic conservation and breeding perspectives. Conserv. Genet. 2017;18:893–910. doi: 10.1007/s10592-017-0935-9. DOI
Moravčíková N., Kasarda R., Vostrý L., Krupová Z., Krupa E., Lehocká K., Olšanská B., Trakovická A., Nádaský R., Židek R., et al. Analysis of selection signatures in the beef cattle genome. Czech J. Anim. Sci. 2019;64:491–503. doi: 10.17221/226/2019-CJAS. DOI
Kasarda R., Vostrý L., Moravčíková N., Vostrá-Vydrová H., Dovč P., Kadlečík O. Detailed insight into genetic diversity of the Old Kladruber horse substructure in comparison to the Lipizzan breed. Acta Agric. Scand. A Anim. Sci. 2016;66:67–74. doi: 10.1080/09064702.2016.1249400. DOI
Randi E. Genetics and conservation of wolves Canis lupus in Europe. Mammal. Rev. 2011;41:99–111. doi: 10.1111/j.1365-2907.2010.00176.x. DOI
Gómez-Sánchez D., Olalde I., Sastre N., Enseñat C., Carrasco R., Marques-Bonet T., Lalueza-Fox C., Leonard J.A., Vilà C., Ramírez O. On the path to extinction: Inbreeding and admixture in a declining grey wolf population. Mol. Ecol. 2018;27:3599–3612. doi: 10.1111/mec.14824. PubMed DOI
Caniglia R., Fabbri E., Greco C., Galaverni M., Manghi L., Boitani L., Sforzi A., Randi E. Black coats in an admixed wolf × dog pack is melanism an indicator of hybridization in wolves? Eur. J. Wildl. Res. 2013;59:543–555. doi: 10.1007/s10344-013-0703-1. DOI
Dreger D.L., Schmutz S.M. A SINE insertion causes the black-and-tan and saddle tan phenotypes in domestic dogs. J. Hered. 2011;102:S11–S18. doi: 10.1093/jhered/esr042. PubMed DOI
Randi E., Hulva P., Fabbri E., Galaverni M., Galov A., Kusak J., Bigi D., Bolfíková B.Č., Smetanová M., Caniglia R. Multilocus detection of wolf x dog hybridization in italy, and guidelines for marker selection. PLoS ONE. 2014;9:e86409. doi: 10.1371/journal.pone.0086409. PubMed DOI PMC
Saleh M., Younes M., Sarhan M., Abdel-Hamid F. Melanism and coat colour polymorphism in the Egyptian Wolf Canis lupaster Hemprich & Ehrenberg (Carnivora: Canidae) from Egypt. Zool. Middle East. 2018;64:195–206.
Schweizer R.M., Durvasula A., Smith J., Vohr S.H., Stahler D.R., Galaverni M., Thalmann O., Smith D.W., Randi E., Ostrander E.A., et al. Natural selection and origin of a melanistic allele in North American Gray Wolves. Mol. Biol. Evol. 2018;35:1190–1209. doi: 10.1093/molbev/msy031. PubMed DOI PMC
Kerns J.A., Newton J., Berryere T.G., Rubin E.M., Cheng J.F., Schmutz S.M., Barsh G.S. Characterization of the dog Agouti gene and a nonagoutimutation in German Shepherd Dogs. Mamm. Genome. 2004;15:798–808. doi: 10.1007/s00335-004-2377-1. PubMed DOI
Monteagudo L.V., Tejedor M.T. The b(c) allele of TYRP1 is causative for the recessive brown (liver) colour in German Shepherd dogs. Anim. Genet. 2015;46:588–589. doi: 10.1111/age.12337. PubMed DOI
Miluchová M., Gábor M., Trakovická A., Hanusová J., Kasarda R. Analysis of single nucleotide polymorphism (SNP) RS23472497 associated with canine atopic dermatitis by ACRS-PCR method. Sci. Pap. Anim. Sci. Biotechnol. 2014;47:82–85.
Moravčíková N., Kasarda R., Kukučková V., Trakovická A. The canine melanophilin gene polymorphisms in Slovakian Rough-haired Pointer. Acta Fytotechn. Zootech. 2016;19:71–74. doi: 10.15414/afz.2016.19.si.71-74. DOI
Turcsán B., Kubinyi E., Miklósi A. Trainability and boldness traits differ between dog breed clusters based on conventional breed categories and genetic relatedness. Appl. Anim. Behav. Sci. 2011;132:61–70. doi: 10.1016/j.applanim.2011.03.006. DOI
Takeuchi Y., Mori Y. A comparison of the behavioral profiles of purebred dogs in Japan to profiles of those in the United States and the United Kingdom. J. Vet. Med. Sci. 2006;68:789–796. doi: 10.1292/jvms.68.789. PubMed DOI
Kasarda R., Chudejová I., Chudej P., Kadlečík O. Heritability of hunting performance traits of dachshound in Slovakia. Folia Vet. 2007;51:26–29.
Persson M.E., Wright D., Roth L.S., Batakis P., Jensen P. Genomic regions associated with interspecies communication in dogs contain genes related to human social disorders. Sci. Rep. 2016;6:33439. doi: 10.1038/srep33439. PubMed DOI PMC
vonHoldt B.M., Shuldiner E., Koch I.J., Kartzinel R.Y., Hogan A., Brubaker L., Wanser S., Stahler D., Wynne C.D.L., Ostrander E.A., et al. Structural variants in genes associated with human Williams-Beuren syndrome underlie stereotypical hypersociability in domestic dogs. Sci. Adv. 2017;3:e1700398. doi: 10.1126/sciadv.1700398. PubMed DOI PMC
Takeuchi Y., Hashizume C., Arata S., Inoue-Murayama M., Maki T., Hart B.L., Mori Y. An approach to canine behavioural genetics employing guide dogs for the blind. Anim. Genet. 2009;40:217–224. doi: 10.1111/j.1365-2052.2008.01823.x. PubMed DOI
Persson M.E., Sundman A.S., Halldén L.L., Trottier A.J., Jensen P. Sociality genes are associated with human-directed social behaviour in golden and Labrador retriever dogs. PeerJ. 2018;6:e5889. doi: 10.7717/peerj.5889. PubMed DOI PMC
Friedrich J., Talenti A., Arvelius P., Strandberg E., Haskell M.J., Wiener P. Unravelling selection signatures in a single dog breed suggests recent selection for morphological and behavioral traits. Adv. Genet. 2020;1:e10024. PubMed PMC
Chang C.C., Chow C.C., Tellier L.C.A.M., Vattikuti S., Purcell S.M., Lee J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience. 2015;4:7. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC
Shannon L.M., Boyko R.H., Castelhano M., Corey E., Hayward J.J., McLean C., White M.E., Abi Said M., Anita B.A., Bondjengo N.I. Data from: Genetic structure in village dogs reveals a Central Asian domestication origin. Proc. Natl. Acad. Sci. USA. 2015;112:13639–13644. doi: 10.1073/pnas.1516215112. PubMed DOI PMC
Lencz T., Lambert C., DeRosse P., Burdick K.E., Morgan T.V., Kane J.M., Kucherlapati R., Malhotra A.K. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc. Natl. Acad. Sci. USA. 2007;104:19942–19947. doi: 10.1073/pnas.0710021104. PubMed DOI PMC
Mastrangelo S., Tolone M., Sardina M.T., Sottile G., Sutera A.M., Di Gerlando R., Portolano B. Genome-wide scan for runs of homozygosity identifies potential candidate genes associated with local adaptation in Valle del Belice sheep. Genet. Sel. Evol. 2017;49:84. doi: 10.1186/s12711-017-0360-z. PubMed DOI PMC
Biscarini F., Nicolazzi E.L., Stella A., Boettcher P.J., Gandini G. Challenges and opportunities in genetic improvement of local livestock breeds. Front. Genet. 2015;6:33. doi: 10.3389/fgene.2015.00033. PubMed DOI PMC
Pembleton L.W., Cogan N.O., Forster J.W. StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Res. 2013;13:946–952. doi: 10.1111/1755-0998.12129. PubMed DOI
Jombart T., Ahmed I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–3071. doi: 10.1093/bioinformatics/btr521. PubMed DOI PMC
Neuditschko M., Khatkar M.S., Raadsma H.W. NetView: A high-definition network-visualisation approach to detect fine-scale population structures from genome-wide patterns of variation. PLoS ONE. 2012;7:e48375. doi: 10.1371/journal.pone.0048375. PubMed DOI PMC
Steinig E.J., Neuditschko M., Khatkar M.S., Raadsma H.W., Zenger K.R. netview p: A network visualisation tool to unravel complex population structure using genome-wide SNPs. Mol. Ecol. Resour. 2016;16:216–227. doi: 10.1111/1755-0998.12442. PubMed DOI
Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics portions from molecular data. Mol. Biol. 2000;15:1298–1311. PubMed PMC
Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI
Zhang B., Kirov S., Snoddy J. WebGestalt: An integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005;33:W741–W748. doi: 10.1093/nar/gki475. PubMed DOI PMC
Rainer J., Gatto L., Weichenberger C.X. ensembldb: An R package to create and use Ensembl-based annotation resources. Bioinformatics. 2019;35:3151–3153. doi: 10.1093/bioinformatics/btz031. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 3 January 2021)]. Available online: http://www.R-project.Org.
Yang Q., Chen H., Ye J., Liu C., Wei R., Chen C., Huang L. Genetic diversity and signatures of selection in 15 Chinese indigenous dog breeds revealed by genome-wide SNPs. Front. Genet. 2019;10:1174. doi: 10.3389/fgene.2019.01174. PubMed DOI PMC
Plassais J., Kim J., Davis B.W., Karyadi D.M., Hogan A.N., Harris A.C., Decker B., Parker H.G., Ostrander E.A. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat. Commun. 2019;10:1489. doi: 10.1038/s41467-019-09373-w. PubMed DOI PMC
Gorssen W., Meyermans R., Janssens S., Buys N. A publicly available repository of ROH islands reveals signatures of selection in different livestock and pet species. Genet. Sel. Evol. 2021;53:2. doi: 10.1186/s12711-020-00599-7. PubMed DOI PMC
Smetanová M., Černá Bolfíková B., Randi E., Caniglia R., Fabbri E., Galaverni M., Kutal M., Hulva P. From wolves to dogs, andb: Genetic composition of the Czechoslovakian Wolfdog. PLoS ONE. 2015;10:e0143807. doi: 10.1371/journal.pone.0143807. PubMed DOI PMC
Curik I., Ferenčaković M., Sölkner J. Inbreeding and runs of homozygosity: A possible solution to an old problem. Livestok Sci. 2014;166:26–34. doi: 10.1016/j.livsci.2014.05.034. DOI
Caniglia R., Fabbri E., Galaverni M., Milanesi P., Randi E. Noninvasive sampling and genetic variability, pack structure, and dynamics in an expanding wolf population. J. Mammal. 2014;95:41–59. doi: 10.1644/13-MAMM-A-039. DOI
Parker H.G., Kim L.V., Sutter N.B., Carlson S., Lorentzen T.D., Malek T.B., Johnson G.S., DeFrance H.B., Ostrander E.A., Kruglyak L. Genetic structure of the purebred domestic dog. Science. 2004;304:1160–1164. doi: 10.1126/science.1097406. PubMed DOI
Wang G.D., Zhai W., Yang H.C., Fan R.X., Cao X., Zhong L., Wang L., Liu F., Wu H., Cheng L.G., et al. The genomics of selection in dogs and the parallel evolution between dogs and humans. Nat. Commun. 2013;4:1860. doi: 10.1038/ncomms2814. PubMed DOI
Vanbutsele J.M. Coat Colours of the Belgian Shepherd. Belgian Dogs Publications; Kapelle-op-den-Bos, Belgium: 2018. 112p
Tsuda T., Cutler M.L. Human RSU1 is highly homologous to mouse Rsu-1 and localizes to human chromosome 10. Genomics. 1993;18:461–462. PubMed
Ahmetov I.I., Fedotovskaya O.N. Current progress in sports genomics. Adv. Clin. Chem. 2015;70:247–314. PubMed
Williams C.J., Williams M.G., Eynon N., Ashton K.J., Little J.P., Wisloff U., Coombes J.S. Genes to predict VO2max trainability: A systematic review. BMC Genom. 2017;18:831. doi: 10.1186/s12864-017-4192-6. PubMed DOI PMC
Kubinyi E., Vas J., Hejjas K., Ronai Z., Brúder I., Turcsán B., Sasvari-Szekely M., Miklósi A. Polymorphism in the tyrosine hydroxylase (TH) gene is associated with activity-impulsivity in German Shepherd Dogs. PLoS ONE. 2012;7:e30271. doi: 10.1371/journal.pone.0030271. PubMed DOI PMC
Lancaster T.M., Linden D.E., Heerey E.A. COMT val158met predicts reward responsiveness in humans. Genes Brain Behav. 2012;11:986–992. doi: 10.1111/j.1601-183X.2012.00838.x. PubMed DOI
Bauer A., Kehl A., Jagannathan V., Leeb T. A novel MLPH variant in dogs with coat colour dilution. Anim. Genet. 2018;49:94–97. doi: 10.1111/age.12632. PubMed DOI
Rothschild M.F., Van Cleave P.S., Glenn K.L., Carlstrom L.P., Ellinwood N.M. Association of MITF with white spotting in Beagle crosses and Newfoundland dogs. Anim. Genet. 2006;37:606–607. doi: 10.1111/j.1365-2052.2006.01534.x. PubMed DOI
Horwitz M., Benson K.F., Duan Z., Li F.Q., Person R.E. Hereditary neutropenia: Dogs explain human neutrophil elastase mutations. Trends Mol. Med. 2004;10:163–170. doi: 10.1016/j.molmed.2004.02.002. PubMed DOI
Hédan B., Corre S., Hitte C., Dréano S., Vilboux T., Derrien T., Denis B., Galibert F., Galibert M.D., André C. Coat colour in dogs: Identification of the merle locus in the Australian shepherd breed. BMC Vet. Res. 2006;2:9. doi: 10.1186/1746-6148-2-9. PubMed DOI PMC
Wang G.D., Cheng L.G., Fan R.X., Irwin D.M., Tang S.S., Peng J.G., Zhang Y.P. Signature of balancing selection at the MC1R gene in Kunming dog populations. PLoS ONE. 2013;8:e55469.:e55469. doi: 10.1371/journal.pone.0055469. PubMed DOI PMC
Candille S.I., Kaelin C.B., Cattanach B.M., Yu B., Thompson D.A., Nix M.A., Kerns J.A., Schmutz S.M., Millhauser G.L., Barsh G.S. A -defensin mutation causes black coat color in domestic dogs. Science. 2007;318:1418–1423. doi: 10.1126/science.1147880. PubMed DOI PMC
Schmutz S.M., Berryere T.G., Goldfinch A.D. TYRP1 and MC1R genotypes and their effects on coat color in dogs. Mamm. Genome. 2002;13:380–387. doi: 10.1007/s00335-001-2147-2. PubMed DOI
Kaelin C.B., Barsh G.S. Molecular genetics of coat colour, texture and length in the dog. In: Ruvinsky A., Ostrander E., Sampson J., editors. The Genetics of the Dog. 2nd ed. CABI; Oxfordshire, UK: 2012. pp. 57–82.
Schumutz S.M., Dreger D.L. Genetic interactions among three pigmentation loci in domestic dogs; Proceedings of the 10th World Congress of Genetics Applied to Livestock Production; The Westin Bayshore, VN, Canada. 17–22 August 2014.
Wijesena H., Schmutz S. A Missense Mutation in SLC45A2 is associated with albinism in several small long haired dog breeds. J. Hered. 2015;106:285–288. doi: 10.1093/jhered/esv008. PubMed DOI
Wong A.K., Ruhe A.L., Robertson K.R., Loew E.R., Williams D.C., Neff M.W. A de novo mutation in KIT causes white spotting in a subpopulation of German Shepherd dogs. Anim. Genet. 2013;44:305–310. PubMed
Bouchard C., Hoffman E.P., IOC Medical Commission . Genetic and Molecular Aspects of Sport Performance. Wiley-Blackwell; Oxford, UK: 2011.
Wolfarth B., Rankinen T., Mühlbauer S., Scherr J., Boulay M.R., Pérusse L., Rauramaa R., Bouchard C. Association between a beta2-adrenergic receptor polymorphism and elite endurance performance. Metabolism. 2007;56:1649–1651. doi: 10.1016/j.metabol.2007.07.006. PubMed DOI
Ruiz J.R., Arteta D., Buxens A., Artieda M., Gómez-Gallego F., Santiago C., Yvert T., Morán M., Lucia A. Can we identify a power-oriented polygenic profile? J. Appl. Physiol. 2010;108:561–566. PubMed
Santiago C., Ruiz J.R., Buxens A., Artieda M., Arteta D., González-Freire M., Rodríguez-Romo G., Altmäe S., Lao J.I., Gómez-Gallego F., et al. Trp64Arg polymorphism in ADRB3 gene is associated with elite endurance performance. Br. J. Sports Med. 2011;45:147–149. doi: 10.1136/bjsm.2009.061366. PubMed DOI
Eynon N., Alves A.J., Meckel Y., Yamin C., Ayalon M., Sagiv M., Sagiv M. Is the interaction between HIF1A P582S and ACTN3 R577X determinant for power/sprint performance? Metabolism. 2010;59:861–865. doi: 10.1016/j.metabol.2009.10.003. PubMed DOI
Tsianos G.I., Evangelou E., Boot A., Zillikens M.C., van Meurs J.B., Uitterlinden A.G., Ioannidis J.P. Associations of polymorphisms of eight muscle- or metabolism-related genes with performance in Mount Olympus marathon runners. J. Appl. Physiol. 2010;108:567–574. doi: 10.1152/japplphysiol.00780.2009. PubMed DOI
Huson H.J., Byers A.M., Runstadler J., Ostrander E.A. An SNP within the angiotensin-converting enzyme distinguishes between sprint and distance performing Alaskan sled dogs in a candidate gene analysis. J. Hered. 2011;102(Suppl. S1):S19–S27. doi: 10.1093/jhered/esr022. PubMed DOI PMC
Baumert P., Lake M.J., Stewart C.E., Drust B., Erskine R.M. Genetic variation and exercise-induced muscle damage: Implications for athletic performance, injury and ageing. Eur. J. Appl. Physiol. 2016;116:1595–1625. doi: 10.1007/s00421-016-3411-1. PubMed DOI PMC
Šimonek J., Židek R. Sports talent identification based on motor testsand genetic analysis. Trends Sport Sci. 2018;4:201–207.
Ahmetov I., Kulemin N., Popov D., Naumov V., Akimov E., Bravy Y., Egorova E., Galeeva A., Generozov E., Kostryukova E., et al. Genome-wide association study identifies three novel genetic markers associated with elite endurance performance. Biol. Sport. 2015;32:3–9. doi: 10.5604/20831862.1124568. PubMed DOI PMC
Ilska J., Haskell M.J., Blott S.C., Sánchez-Molano E., Polgar Z., Lofgren S.E., Clements D.N., Wiener P. Genetic characterization of dog personality traits. Genetics. 2017;206:1101–1111. doi: 10.1534/genetics.116.192674. PubMed DOI PMC
Luo D., Ma X., Bai J., Zhou Z., Wang F., Wang A., Wang J. Association between COMT SNP variation and timidity in Golden and Labrador Retrievers. Anim. Genet. 2018;49:340–344. doi: 10.1111/age.12662. PubMed DOI
Bouchard C., Rankinen T., Timmons J.A. Genomics and genetics in the biology of adaptation to exercise. Compr. Physiol. 2011;1:1603–1648. PubMed PMC
Jung J., Bohn G., Allroth A., Boztug K., Brandes G., Sandrock I., Schäffer A.A., Rathinam C., Köllner I., Beger C., et al. Identification of a homozygous deletion in the AP3B1 gene causing Herman-sky-Pudlak syndrome, type 2. Blood. 2006;108:362–369. doi: 10.1182/blood-2005-11-4377. PubMed DOI PMC
Schmutz S., Berryere T. Genes affecting coat colour and pattern in domestic dogs: A review. Anim. Genet. 2007;38:539–549. doi: 10.1111/j.1365-2052.2007.01664.x. PubMed DOI
Clark L.A., Wahl J.M., Rees C.A., Murphy K.E. Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. Proc. Natl. Acad. Sci. USA. 2006;103:1376–1381. doi: 10.1073/pnas.0506940103. PubMed DOI PMC
Kerns J.A., Cargill E.J., Clark L.A., Candille S.I., Berryere T.G., Olivier M., Lust G., Todhunter R.J., Schmutz S.M., Murphy K.E., et al. Linkage and segregation analysis of black and brindle coat color in domestic dogs. Genetics. 2007;176:1679–1689. doi: 10.1534/genetics.107.074237. PubMed DOI PMC
Zarębska A., Sawczyn S., Kaczmarczyk M., Ficek K., Maciejewska-Karłowska A., Sawczuk M., Leońska-Duniec A., Eider J., Grenda A., Cięszczyk P. Association of rs699 (M235T) polymorphism in the AGT gene with power but not endurance athlete status. J. Strength Cond. Res. 2013;27:2898–2903. doi: 10.1519/JSC.0b013e31828155b5. PubMed DOI
Wallberg L., Mikael Mattsson C., Enqvist J.K., Ekblom B. Plasma IL-6 concentration during ultra-endurance exercise. Eur. J. Appl. Physiol. 2011;111:1081–1088. doi: 10.1007/s00421-010-1737-7. PubMed DOI
Pimenta E.M., Coelho D.B., Veneroso C.E., Barros Coelho E.J., Cruz I.R., Morandi R.F., De A Pussieldi G., Carvalho M.R., Garcia E.S., De Paz Fernández J.A. Effect of ACTN3 gene on strength and endurance in soccer players. J. Strength. Cond. Res. 2013;27:3286–3292. doi: 10.1519/JSC.0b013e3182915e66. PubMed DOI
Semenova E.A., Miyamoto-Mikami E., Akimov E.B., Al-Khelaifi F., Murakami H., Zempo H., Kostryukova E.S., Kulemin N.A., Larin A.K., Borisov O.V., et al. The association of HFE gene H63D polymorphism with endurance athlete status and aerobic capacity: Novel findings and a meta-analysis. Eur. J. Appl. Physiol. 2020;120:665–673. doi: 10.1007/s00421-020-04306-8. PubMed DOI PMC