• This record comes from PubMed

Genomic Rewilding of Domestic Animals: The Role of Hybridization and Selection in Wolfdog Breeds

. 2025 Jan 19 ; 16 (1) : . [epub] 20250119

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
SS07010447 TAČR
GA N°101052342 Biodiversa+

Background/Objectives: The domestication of the grey wolf (Canis lupus) and subsequent creation of modern dog breeds have significantly shaped the genetic landscape of domestic canines. This study investigates the genomic effects of hybridization and breeding management practices in two hybrid wolfdog breeds: the Czechoslovakian Wolfdog (CSW) and the Saarloos Wolfdog (SAW). Methods: We analyzed the genomes of 46 CSWs and 20 SAWs, comparing them to 12 German Shepherds (GSHs) and 20 wolves (WLFs), which served as their ancestral populations approximately 70-90 years ago. Results: Our findings highlight that hybridization can increase genetic variability and mitigate the effects of inbreeding, as evidenced by the observed heterozygosity levels in both wolfdog breeds. However, the SAW genome revealed a higher coefficient of inbreeding and longer runs of homozygosity compared to the CSW, reflecting significant inbreeding during its development. Discriminant Analysis of Principal Components and fixation index analyses demonstrate that the CSW exhibits closer genetic proximity to the GSH than the SAW, likely due to differences in the numbers of GSHs used during their creation. Maximum likelihood clustering further confirmed clear genetic differentiation between these hybrid breeds and their respective ancestors, while shared ancestral polymorphism was detectable in all populations. Conclusions: These results highlight the role of controlled hybridization with captive-bred wolves and peculiar breeding strategies in shaping the genetic structure of wolfdog breeds. To ensure the long-term genetic health of these breeds, it is recommended to promote adequate and sustainable breeding practices to maintain genetic diversity, minimize inbreeding, and incorporate the careful selection of unrelated individuals from diverse lineages, while avoiding additional, uncontrolled crossings with wild wolves.

See more in PubMed

Larson G., Karlsson E.K., Perri A., Webster M.T., Ho S.Y.W., Peters J., Stahl P.Q., Piper P.J., Lingaas F., Fredholm M., et al. Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proc. Natl. Acad. Sci. USA. 2012;109:8878–8883. doi: 10.1073/pnas.1203005109. PubMed DOI PMC

Freedman A.H., Grounau I., Schweizer R.M., Ortega-Del Veccyo D., Han E., Silva P.M., Galaverni M., Fan Z., Marx P., Lorente-Galdos B., et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 2014;10:e1004016. doi: 10.1371/journal.pgen.1004016. PubMed DOI PMC

Botigué L.R., Song S., Scheu A., Gopalan S., Pendleton A.L., Oetjens M., Taravella A.M., Seregély T., Zeeb-Lanz A., Arbogast R.M., et al. Ancient European dog genomes reveal continuity since the Early Neolithic. Nat. Commun. 2017;8:16082. doi: 10.1038/ncomms16082. PubMed DOI PMC

Gentry A., Clutton-Brock J., Groves C.P. The naming of wild animal species and their domestic derivatives. J. Archaeol. Sci. 2004;31:645–651. doi: 10.1016/j.jas.2003.10.006. DOI

Saestre P., Lindberg J., Leonard J.A., Olsson K., Pettersson U., Ellegren H., Bergström T.F., Vilà C., Jazin E. From wild wolf to domestic dog: Gene expression changes in the brain. Mol. Brain Res. 2004;126:198–206. doi: 10.1016/j.molbrainres.2004.05.003. PubMed DOI

Serpell J.A. Commensalism or Cross-Species Adoption? A Critical Review of Theories of Wolf Domestication. Front. Vet. Sci. 2021;8:662370. doi: 10.3389/fvets.2021.662370. PubMed DOI PMC

Coppinger R.P., Coppinger L. Dogs: A Startling New Understanding of Canine Origin, Behavior and Evolution. University of Chicago Press; Chicago, IL, USA: 2001. 352p

Lindblad-Toh K., Wade C.M., Mikkelsen T.S., Karlsson E.K., Jaffe D.B., Kamal M., Clamp M., Chang J.L., Kulbokas E.J., III, Zody M.C., et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438:803–819. doi: 10.1038/nature04338. PubMed DOI

Zeder M.A., Emshwiller E., Smith B.D., Bradley D.G. Documenting domestication: The intersection of genetics and archaeology. Trends Genet. 2006;22:139–155. doi: 10.1016/j.tig.2006.01.007. PubMed DOI

Cruz F., Vilà C., Webster M.T. The legacy of domestication: Accumulation of deleterious mutations in the dog genome. Mol. Biol. Evol. 2008;25:2331–2336. doi: 10.1093/molbev/msn177. PubMed DOI

Bosse M., Megens H.-J., Derks M.F.L., de Cara Á.M.R., Groenen M.A.M. Deleterious alleles in the context of domestication, inbreeding, and selection. Evol. Appl. 2017;12:6–17. doi: 10.1111/eva.12691. PubMed DOI PMC

Hörter R. Saarlooswolfhond, The creation of Leendert Saarloos. 2011. [(accessed on 15 November 2024)]. pp. 182–186. Available online: https://riahorter.com/index_htm_files/Canine%20Chronicle%20-Saarlooswolfhond.pdf.

Smetanová M., Černá Bolfíková B., Randi E., Caniglia R., Fabbri E., Galaverni M., Kutal M., Hulva P. From Wolves to Dogs, and Back: Genetic Composition of the Czechoslovakian Wolfdog. PLoS ONE. 2015;10:e0143807. doi: 10.1371/journal.pone.0143807. PubMed DOI PMC

Caniglia R., Fabbri E., Hulva P., Černá Bolfíková B., Jindřichová M., Stronen A.V., Dykyy I., Camatta A., Carnier P., Randi E., et al. Wolf Outside, Dog Inside? The Genomic Make-up of the Czechoslovakian Wolfdog. BMC Genom. 2018;19:533. doi: 10.1186/s12864-018-4916-2. PubMed DOI PMC

Moravčíková N., Kasarda R., Židek R., Vostrý L., Vostrá-Vydrová H., Vašek J., Čílová D. Czechoslovakian Wolfdog Genomic Divergence from Its Ancestors Canis lupus, German Shepherd Dog, and Different Sheepdogs of European Origin. Genes. 2021;12:832. doi: 10.3390/genes12060832. PubMed DOI PMC

Meadows J.R.S., Kidd J.M., Wang G.-D., Parker H.G., Schall P.Z., Bianchi M., Christmas M.J., Bougiouri K., Buckley R.B., Hitte C., et al. Genome sequencing of 2000 canids by the Dog10K consortium advances the understanding of demography, genome function and architecture. Genome Biol. 2023;24:187. PubMed PMC

Schmutz S.M., Berryere T.G., Goldfinch A.D. TYRP1 and MC1R genotypes and their effects on coat color in dogs. Mamm. Genome. 2002;13:380–387. doi: 10.1007/s00335-001-2147-2. PubMed DOI

Stronen A.V., Jędrzejewska B., Pertoldi C., Demontis D., Randi E., Niedziałkowska M., Borowik T., Sidorovich V.E., Kusak J., Kojola I., et al. Genome-Wide Analyses Suggest Parallel Selection for Universal Traits May Eclipse Local Environmental Selection in a Highly Mobile Carnivore. Ecol. Evol. 2015;5:4410–4425. doi: 10.1002/ece3.1695. PubMed DOI PMC

Vaysse A., Ratnakumar A., Derrien T., Axelsson E., Rosengren Pielberg G., Sigurdsson S., Fall T., Seppälä E.H., Hansen M.S.T., Lawney C.T., et al. Identification of Genomic Regions Associated with Phenotypic Variation Between Dog Breeds Using Selection Mapping. PLoS Genet. 2011;7:e1002316. doi: 10.1371/journal.pgen.1002316. PubMed DOI PMC

Chang C.C., Chow C.C., Tellier L.C.A.M., Vattikuti S., Purcell S.M., Lee J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience. 2015;4:s13742-015. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC

Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira A.R.M., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC

Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure. Evolution. 1983;38:1358–1370. doi: 10.2307/2408641. PubMed DOI

Holsinger K.E., Weir B.S. Genetics in geographically structured population: Defining, estimating and interpreting Fst. Nat. Rev. Genet. 2009;10:639–650. doi: 10.1038/nrg2611. PubMed DOI PMC

Alexander D.H., Novembre J., Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664. doi: 10.1101/gr.094052.109. PubMed DOI PMC

Jombart T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–1405. doi: 10.1093/bioinformatics/btn129. PubMed DOI

Jombart T., Devillard S., Balloux F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010;11:94. doi: 10.1186/1471-2156-11-94. PubMed DOI PMC

Miller J.M., Cullingham C.I., Peery R.M. The influence of a priori grouping on inference of genetic clusters: Simulation study and literature review of the DAPC method. Heredity. 2020;125:269–280. doi: 10.1038/s41437-020-0348-2. PubMed DOI PMC

Tenesa A., Navarro P., Hayes B.J., Duffy D.L., Clarke G.M., Goddard M.E., Visscher P.M. Recent human effective population size estimated from linkage disequilibrium. Genome Res. 2007;17:520–526. doi: 10.1101/gr.6023607. PubMed DOI PMC

Hayes B.J., Visscher P.M., McPartlan H.C., Goddard M.E. Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Res. 2003;13:635–643. doi: 10.1101/gr.387103. PubMed DOI PMC

Skoglund P., Götherström A., Jakobsson M. Estimation of population Divergence Times from Non-Overlapping Genomic Sequences: Examples from Dogs and Wolves. Mol. Biol. Evol. 2011;28:1505–1517. doi: 10.1093/molbev/msq342. PubMed DOI

Morrill K., Hekman J., Li X., McClure J., Logan B., Goodman L., Gao M., Dong Y., Alonso M., Carmichael E., et al. Ancestry-inclusive dog genomics challenges popular breed stereotypes. Science. 2022;376:6592. doi: 10.1126/science.abk0639. PubMed DOI PMC

Marsden C.D., Ortega-Del Vecchyo D., O’Brien D.P., Taylor J.F., Ramirez O., Vilà C., Marques-Bonet T., Schnabel R., Wayne R.K., Lohmueller K.E. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc. Natl. Acad. Sci. USA. 2016;113:152–157. doi: 10.1073/pnas.1512501113. PubMed DOI PMC

Haynes W. Effect of the popular sire. J. Hered. 1915;6:494–496. doi: 10.1093/oxfordjournals.jhered.a109022. DOI

Aguirre G.D., Baldwin V., Pearce-Kelling S., Narfström K., Ray K., Acland G.M. Congenital stationary night blindness in the dog: Common mutation in the RPE65 gene indicates founder effect. Mol. Vis. 1998;4:23. PubMed

Ostrander E.A., Kruglyak L. Unleashing the Canine Genome. Genome Res. 2000;10:1271–1274. doi: 10.1101/gr.155900. PubMed DOI

Parker H.G., Ostrander E.A. Canine Genomics and Genetics: Running with the Pack. PLoS Genet. 2005;1:e58. doi: 10.1371/journal.pgen.0010058. PubMed DOI PMC

Hundertmark K., Van Daele L. Founder effect and bottleneck signatures in an introduced, insular population of elk. Conserv. Genet. 2010;11:139–147. doi: 10.1007/s10592-009-0013-z. DOI

Leroy G. Genetic diversity, inbreeding and practices in dogs: Results from pedigree analyses. Vet. J. 2011;189:177–182. doi: 10.1016/j.tvjl.2011.06.016. PubMed DOI

Mabunda R.S., Makgahlela M.L., Nephawe K.A., Mtileni B. Evaluation of Genetic Diversity in Dog Breeds Using Pedigree and Molecular Analysis: A Review. Diversity. 2022;14:1054. doi: 10.3390/d14121054. DOI

Kumar M., Conroy G., Ogbourne S., Cairns K., Borburgh L., Subramanian S. Genomic signatures of bottleneck and founder effects in dingoes. Ecol. Evol. 2023;13:e10525. doi: 10.1002/ece3.10525. PubMed DOI PMC

Abbott R., Albach D., Ansell S., Arntzen J.W., Baird S.J.E., Bierne N., Boughman J., Brelsford A., Buerkle C.A., Buggs R., et al. Hybridization and speciation. J. Evol. Biol. 2013;2:229–246. doi: 10.1111/j.1420-9101.2012.02599.x. PubMed DOI

Hedrick P.W. What is the evidence for heterozygote advantage selection? Trends Ecol. Evol. 2012;27:698–704. doi: 10.1016/j.tree.2012.08.012. PubMed DOI

Getahun D., Alemneh T., Akeberegn D., Getabalew M., Zewdie D. Importance of hybrid vigor of heterosis for animal breeding. Biochem. Biotech. Res. 2019;1:1–4.

American Beefalo Association [(accessed on 1 December 2024)]. Available online: https://americanbeefaloassociation.com/

Fulgione D., Rippa D., Buglione M., Trapanese M., Petrelli S., Maselli V. Unexpected but welcome. Artificially selected traits may increase fitness in wild boar. Evol. Appl. 2016;9:769–776. doi: 10.1111/eva.12383. PubMed DOI PMC

Gopalakrishnan S., Samaniego Castruita J.A., Sinding M.-H.S., Kuderna L.F.K., Räikkönen J., Petersen B., Sicheritz-Ponten T., Larson G., Orlando L., Marques-Bonet T., et al. The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics. BMC Genom. 2017;18:495. doi: 10.1186/s12864-017-3883-3. PubMed DOI PMC

Zhang Q.Q., Guldbrandtsen B., Bosse M., Lund M.S., Sahana G. Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genom. 2015;16:542. doi: 10.1186/s12864-015-1715-x. PubMed DOI PMC

Ceballos F.C., Joshi P.K., Clark D.W., Ramsay M., Wilson J. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet. 2018;19:220–234. doi: 10.1038/nrg.2017.109. PubMed DOI

Hartl K., Jehlička J. Československý Vlčák. LOBA; Brno, Czech Republic: 1996. pp. 12–13.

Gula R., Hausknecht R., Kuehn R. Evidence of wolf dispersal in anthropogenic habitats of the Polish Carpathian Mountains. Biodivers. Conserv. 2009;18:2173–2184. doi: 10.1007/s10531-009-9581-y. DOI

Hulva P., Černá Bolfíková B., Woznicová V., Jindřichová M., Benešová M., Mysłajek R.W., Nowak S., Szewczyk M., Niedźwiecka N., Figura M., et al. Wolves at the crossroad: Fission-fusion range biogeography in the Western Carpathians and Central Europe. Divers. Distrib. 2018;24:179–192. doi: 10.1111/ddi.12676. DOI

Sin T., Gazzola A., Chiriac S., Risnoveanu G. Wolf diet and prey selection in the South-Eastern Carpathian Mountains, Romania. PLoS ONE. 2019;11:e0225424. doi: 10.1371/journal.pone.0225424. PubMed DOI PMC

Cherepanyn R.M., Vykhor B.I., Biatov A.P., Yamelynets T.S., Dykyy I. Population dynamics and spatial distribution of large carnivores in the Ukrainian Carpathians and Polissya. Biosyst. Divers. 2023;31:10–19. doi: 10.15421/012302. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...