Genomic Rewilding of Domestic Animals: The Role of Hybridization and Selection in Wolfdog Breeds
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
SS07010447
TAČR
GA N°101052342
Biodiversa+
PubMed
39858649
PubMed Central
PMC11764532
DOI
10.3390/genes16010102
PII: genes16010102
Knihovny.cz E-resources
- Keywords
- artificial selection, heterosis, hybridization, inbreeding, wolfdog,
- MeSH
- Breeding methods MeSH
- Domestication MeSH
- Genetic Variation MeSH
- Genome genetics MeSH
- Genomics methods MeSH
- Animals, Domestic genetics MeSH
- Hybridization, Genetic * MeSH
- Inbreeding MeSH
- Dogs genetics MeSH
- Selection, Genetic MeSH
- Wolves * genetics MeSH
- Animals MeSH
- Check Tag
- Dogs genetics MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Background/Objectives: The domestication of the grey wolf (Canis lupus) and subsequent creation of modern dog breeds have significantly shaped the genetic landscape of domestic canines. This study investigates the genomic effects of hybridization and breeding management practices in two hybrid wolfdog breeds: the Czechoslovakian Wolfdog (CSW) and the Saarloos Wolfdog (SAW). Methods: We analyzed the genomes of 46 CSWs and 20 SAWs, comparing them to 12 German Shepherds (GSHs) and 20 wolves (WLFs), which served as their ancestral populations approximately 70-90 years ago. Results: Our findings highlight that hybridization can increase genetic variability and mitigate the effects of inbreeding, as evidenced by the observed heterozygosity levels in both wolfdog breeds. However, the SAW genome revealed a higher coefficient of inbreeding and longer runs of homozygosity compared to the CSW, reflecting significant inbreeding during its development. Discriminant Analysis of Principal Components and fixation index analyses demonstrate that the CSW exhibits closer genetic proximity to the GSH than the SAW, likely due to differences in the numbers of GSHs used during their creation. Maximum likelihood clustering further confirmed clear genetic differentiation between these hybrid breeds and their respective ancestors, while shared ancestral polymorphism was detectable in all populations. Conclusions: These results highlight the role of controlled hybridization with captive-bred wolves and peculiar breeding strategies in shaping the genetic structure of wolfdog breeds. To ensure the long-term genetic health of these breeds, it is recommended to promote adequate and sustainable breeding practices to maintain genetic diversity, minimize inbreeding, and incorporate the careful selection of unrelated individuals from diverse lineages, while avoiding additional, uncontrolled crossings with wild wolves.
Biotechnical Faculty University of Ljubljana Jamnikarjeva ulica 101 1000 Ljubljana Slovenia
Department of Biomedical Sciences Cornell University Ithaca NY 14853 USA
Department of Zoology Charles University Viničná 7 12843 Prague Czech Republic
Unit for Conservation Genetics Via Cà Fornacetta 9 40064 Ozzano dell'Emilia Italy
See more in PubMed
Larson G., Karlsson E.K., Perri A., Webster M.T., Ho S.Y.W., Peters J., Stahl P.Q., Piper P.J., Lingaas F., Fredholm M., et al. Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proc. Natl. Acad. Sci. USA. 2012;109:8878–8883. doi: 10.1073/pnas.1203005109. PubMed DOI PMC
Freedman A.H., Grounau I., Schweizer R.M., Ortega-Del Veccyo D., Han E., Silva P.M., Galaverni M., Fan Z., Marx P., Lorente-Galdos B., et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 2014;10:e1004016. doi: 10.1371/journal.pgen.1004016. PubMed DOI PMC
Botigué L.R., Song S., Scheu A., Gopalan S., Pendleton A.L., Oetjens M., Taravella A.M., Seregély T., Zeeb-Lanz A., Arbogast R.M., et al. Ancient European dog genomes reveal continuity since the Early Neolithic. Nat. Commun. 2017;8:16082. doi: 10.1038/ncomms16082. PubMed DOI PMC
Gentry A., Clutton-Brock J., Groves C.P. The naming of wild animal species and their domestic derivatives. J. Archaeol. Sci. 2004;31:645–651. doi: 10.1016/j.jas.2003.10.006. DOI
Saestre P., Lindberg J., Leonard J.A., Olsson K., Pettersson U., Ellegren H., Bergström T.F., Vilà C., Jazin E. From wild wolf to domestic dog: Gene expression changes in the brain. Mol. Brain Res. 2004;126:198–206. doi: 10.1016/j.molbrainres.2004.05.003. PubMed DOI
Serpell J.A. Commensalism or Cross-Species Adoption? A Critical Review of Theories of Wolf Domestication. Front. Vet. Sci. 2021;8:662370. doi: 10.3389/fvets.2021.662370. PubMed DOI PMC
Coppinger R.P., Coppinger L. Dogs: A Startling New Understanding of Canine Origin, Behavior and Evolution. University of Chicago Press; Chicago, IL, USA: 2001. 352p
Lindblad-Toh K., Wade C.M., Mikkelsen T.S., Karlsson E.K., Jaffe D.B., Kamal M., Clamp M., Chang J.L., Kulbokas E.J., III, Zody M.C., et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438:803–819. doi: 10.1038/nature04338. PubMed DOI
Zeder M.A., Emshwiller E., Smith B.D., Bradley D.G. Documenting domestication: The intersection of genetics and archaeology. Trends Genet. 2006;22:139–155. doi: 10.1016/j.tig.2006.01.007. PubMed DOI
Cruz F., Vilà C., Webster M.T. The legacy of domestication: Accumulation of deleterious mutations in the dog genome. Mol. Biol. Evol. 2008;25:2331–2336. doi: 10.1093/molbev/msn177. PubMed DOI
Bosse M., Megens H.-J., Derks M.F.L., de Cara Á.M.R., Groenen M.A.M. Deleterious alleles in the context of domestication, inbreeding, and selection. Evol. Appl. 2017;12:6–17. doi: 10.1111/eva.12691. PubMed DOI PMC
Hörter R. Saarlooswolfhond, The creation of Leendert Saarloos. 2011. [(accessed on 15 November 2024)]. pp. 182–186. Available online: https://riahorter.com/index_htm_files/Canine%20Chronicle%20-Saarlooswolfhond.pdf.
Smetanová M., Černá Bolfíková B., Randi E., Caniglia R., Fabbri E., Galaverni M., Kutal M., Hulva P. From Wolves to Dogs, and Back: Genetic Composition of the Czechoslovakian Wolfdog. PLoS ONE. 2015;10:e0143807. doi: 10.1371/journal.pone.0143807. PubMed DOI PMC
Caniglia R., Fabbri E., Hulva P., Černá Bolfíková B., Jindřichová M., Stronen A.V., Dykyy I., Camatta A., Carnier P., Randi E., et al. Wolf Outside, Dog Inside? The Genomic Make-up of the Czechoslovakian Wolfdog. BMC Genom. 2018;19:533. doi: 10.1186/s12864-018-4916-2. PubMed DOI PMC
Moravčíková N., Kasarda R., Židek R., Vostrý L., Vostrá-Vydrová H., Vašek J., Čílová D. Czechoslovakian Wolfdog Genomic Divergence from Its Ancestors Canis lupus, German Shepherd Dog, and Different Sheepdogs of European Origin. Genes. 2021;12:832. doi: 10.3390/genes12060832. PubMed DOI PMC
Meadows J.R.S., Kidd J.M., Wang G.-D., Parker H.G., Schall P.Z., Bianchi M., Christmas M.J., Bougiouri K., Buckley R.B., Hitte C., et al. Genome sequencing of 2000 canids by the Dog10K consortium advances the understanding of demography, genome function and architecture. Genome Biol. 2023;24:187. PubMed PMC
Schmutz S.M., Berryere T.G., Goldfinch A.D. TYRP1 and MC1R genotypes and their effects on coat color in dogs. Mamm. Genome. 2002;13:380–387. doi: 10.1007/s00335-001-2147-2. PubMed DOI
Stronen A.V., Jędrzejewska B., Pertoldi C., Demontis D., Randi E., Niedziałkowska M., Borowik T., Sidorovich V.E., Kusak J., Kojola I., et al. Genome-Wide Analyses Suggest Parallel Selection for Universal Traits May Eclipse Local Environmental Selection in a Highly Mobile Carnivore. Ecol. Evol. 2015;5:4410–4425. doi: 10.1002/ece3.1695. PubMed DOI PMC
Vaysse A., Ratnakumar A., Derrien T., Axelsson E., Rosengren Pielberg G., Sigurdsson S., Fall T., Seppälä E.H., Hansen M.S.T., Lawney C.T., et al. Identification of Genomic Regions Associated with Phenotypic Variation Between Dog Breeds Using Selection Mapping. PLoS Genet. 2011;7:e1002316. doi: 10.1371/journal.pgen.1002316. PubMed DOI PMC
Chang C.C., Chow C.C., Tellier L.C.A.M., Vattikuti S., Purcell S.M., Lee J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience. 2015;4:s13742-015. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC
Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira A.R.M., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC
Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure. Evolution. 1983;38:1358–1370. doi: 10.2307/2408641. PubMed DOI
Holsinger K.E., Weir B.S. Genetics in geographically structured population: Defining, estimating and interpreting Fst. Nat. Rev. Genet. 2009;10:639–650. doi: 10.1038/nrg2611. PubMed DOI PMC
Alexander D.H., Novembre J., Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664. doi: 10.1101/gr.094052.109. PubMed DOI PMC
Jombart T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–1405. doi: 10.1093/bioinformatics/btn129. PubMed DOI
Jombart T., Devillard S., Balloux F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010;11:94. doi: 10.1186/1471-2156-11-94. PubMed DOI PMC
Miller J.M., Cullingham C.I., Peery R.M. The influence of a priori grouping on inference of genetic clusters: Simulation study and literature review of the DAPC method. Heredity. 2020;125:269–280. doi: 10.1038/s41437-020-0348-2. PubMed DOI PMC
Tenesa A., Navarro P., Hayes B.J., Duffy D.L., Clarke G.M., Goddard M.E., Visscher P.M. Recent human effective population size estimated from linkage disequilibrium. Genome Res. 2007;17:520–526. doi: 10.1101/gr.6023607. PubMed DOI PMC
Hayes B.J., Visscher P.M., McPartlan H.C., Goddard M.E. Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Res. 2003;13:635–643. doi: 10.1101/gr.387103. PubMed DOI PMC
Skoglund P., Götherström A., Jakobsson M. Estimation of population Divergence Times from Non-Overlapping Genomic Sequences: Examples from Dogs and Wolves. Mol. Biol. Evol. 2011;28:1505–1517. doi: 10.1093/molbev/msq342. PubMed DOI
Morrill K., Hekman J., Li X., McClure J., Logan B., Goodman L., Gao M., Dong Y., Alonso M., Carmichael E., et al. Ancestry-inclusive dog genomics challenges popular breed stereotypes. Science. 2022;376:6592. doi: 10.1126/science.abk0639. PubMed DOI PMC
Marsden C.D., Ortega-Del Vecchyo D., O’Brien D.P., Taylor J.F., Ramirez O., Vilà C., Marques-Bonet T., Schnabel R., Wayne R.K., Lohmueller K.E. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc. Natl. Acad. Sci. USA. 2016;113:152–157. doi: 10.1073/pnas.1512501113. PubMed DOI PMC
Haynes W. Effect of the popular sire. J. Hered. 1915;6:494–496. doi: 10.1093/oxfordjournals.jhered.a109022. DOI
Aguirre G.D., Baldwin V., Pearce-Kelling S., Narfström K., Ray K., Acland G.M. Congenital stationary night blindness in the dog: Common mutation in the RPE65 gene indicates founder effect. Mol. Vis. 1998;4:23. PubMed
Ostrander E.A., Kruglyak L. Unleashing the Canine Genome. Genome Res. 2000;10:1271–1274. doi: 10.1101/gr.155900. PubMed DOI
Parker H.G., Ostrander E.A. Canine Genomics and Genetics: Running with the Pack. PLoS Genet. 2005;1:e58. doi: 10.1371/journal.pgen.0010058. PubMed DOI PMC
Hundertmark K., Van Daele L. Founder effect and bottleneck signatures in an introduced, insular population of elk. Conserv. Genet. 2010;11:139–147. doi: 10.1007/s10592-009-0013-z. DOI
Leroy G. Genetic diversity, inbreeding and practices in dogs: Results from pedigree analyses. Vet. J. 2011;189:177–182. doi: 10.1016/j.tvjl.2011.06.016. PubMed DOI
Mabunda R.S., Makgahlela M.L., Nephawe K.A., Mtileni B. Evaluation of Genetic Diversity in Dog Breeds Using Pedigree and Molecular Analysis: A Review. Diversity. 2022;14:1054. doi: 10.3390/d14121054. DOI
Kumar M., Conroy G., Ogbourne S., Cairns K., Borburgh L., Subramanian S. Genomic signatures of bottleneck and founder effects in dingoes. Ecol. Evol. 2023;13:e10525. doi: 10.1002/ece3.10525. PubMed DOI PMC
Abbott R., Albach D., Ansell S., Arntzen J.W., Baird S.J.E., Bierne N., Boughman J., Brelsford A., Buerkle C.A., Buggs R., et al. Hybridization and speciation. J. Evol. Biol. 2013;2:229–246. doi: 10.1111/j.1420-9101.2012.02599.x. PubMed DOI
Hedrick P.W. What is the evidence for heterozygote advantage selection? Trends Ecol. Evol. 2012;27:698–704. doi: 10.1016/j.tree.2012.08.012. PubMed DOI
Getahun D., Alemneh T., Akeberegn D., Getabalew M., Zewdie D. Importance of hybrid vigor of heterosis for animal breeding. Biochem. Biotech. Res. 2019;1:1–4.
American Beefalo Association [(accessed on 1 December 2024)]. Available online: https://americanbeefaloassociation.com/
Fulgione D., Rippa D., Buglione M., Trapanese M., Petrelli S., Maselli V. Unexpected but welcome. Artificially selected traits may increase fitness in wild boar. Evol. Appl. 2016;9:769–776. doi: 10.1111/eva.12383. PubMed DOI PMC
Gopalakrishnan S., Samaniego Castruita J.A., Sinding M.-H.S., Kuderna L.F.K., Räikkönen J., Petersen B., Sicheritz-Ponten T., Larson G., Orlando L., Marques-Bonet T., et al. The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics. BMC Genom. 2017;18:495. doi: 10.1186/s12864-017-3883-3. PubMed DOI PMC
Zhang Q.Q., Guldbrandtsen B., Bosse M., Lund M.S., Sahana G. Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genom. 2015;16:542. doi: 10.1186/s12864-015-1715-x. PubMed DOI PMC
Ceballos F.C., Joshi P.K., Clark D.W., Ramsay M., Wilson J. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet. 2018;19:220–234. doi: 10.1038/nrg.2017.109. PubMed DOI
Hartl K., Jehlička J. Československý Vlčák. LOBA; Brno, Czech Republic: 1996. pp. 12–13.
Gula R., Hausknecht R., Kuehn R. Evidence of wolf dispersal in anthropogenic habitats of the Polish Carpathian Mountains. Biodivers. Conserv. 2009;18:2173–2184. doi: 10.1007/s10531-009-9581-y. DOI
Hulva P., Černá Bolfíková B., Woznicová V., Jindřichová M., Benešová M., Mysłajek R.W., Nowak S., Szewczyk M., Niedźwiecka N., Figura M., et al. Wolves at the crossroad: Fission-fusion range biogeography in the Western Carpathians and Central Europe. Divers. Distrib. 2018;24:179–192. doi: 10.1111/ddi.12676. DOI
Sin T., Gazzola A., Chiriac S., Risnoveanu G. Wolf diet and prey selection in the South-Eastern Carpathian Mountains, Romania. PLoS ONE. 2019;11:e0225424. doi: 10.1371/journal.pone.0225424. PubMed DOI PMC
Cherepanyn R.M., Vykhor B.I., Biatov A.P., Yamelynets T.S., Dykyy I. Population dynamics and spatial distribution of large carnivores in the Ukrainian Carpathians and Polissya. Biosyst. Divers. 2023;31:10–19. doi: 10.15421/012302. PubMed DOI