Structural and Functional Modulation of Perineuronal Nets: In Search of Important Players with Highlight on Tenascins

. 2021 May 29 ; 10 (6) : . [epub] 20210529

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34072323

Grantová podpora
CA15214 European Cooperation in Science and Technology
451-03-68/2020-14/200178 Ministry of education, science and technological development of the Republic of Serbia

The extracellular matrix (ECM) of the brain plays a crucial role in providing optimal conditions for neuronal function. Interactions between neurons and a specialized form of ECM, perineuronal nets (PNN), are considered a key mechanism for the regulation of brain plasticity. Such an assembly of interconnected structural and regulatory molecules has a prominent role in the control of synaptic plasticity. In this review, we discuss novel ways of studying the interplay between PNN and its regulatory components, particularly tenascins, in the processes of synaptic plasticity, mechanotransduction, and neurogenesis. Since enhanced neuronal activity promotes PNN degradation, it is possible to study PNN remodeling as a dynamical change in the expression and organization of its constituents that is reflected in its ultrastructure. The discovery of these subtle modifications is enabled by the development of super-resolution microscopy and advanced methods of image analysis.

Zobrazit více v PubMed

Golgi C. Intorno Alla Struttura Della Cellula Nervosa. Boll. Della Soc. Med. -Chir. Di Pavia. 1898;13:316.

Celio M.R., Spreafico R., De Biasi S., Vitellaro-Zuccarello L. Perineuronal Nets: Past and Present. Trends Neurosci. 1998;21:510–515. doi: 10.1016/S0166-2236(98)01298-3. PubMed DOI

Ruoslahti E. Brain Extracellular Matrix. Glycobiology. 1996;6:489–492. doi: 10.1093/glycob/6.5.489. PubMed DOI

Yamada J., Ohgomori T., Jinno S. Perineuronal Nets Affect Parvalbumin Expression in GABAergic Neurons of the Mouse Hippocampus. Eur. J. Neurosci. 2015;41:368–378. doi: 10.1111/ejn.12792. PubMed DOI

Carceller H., Guirado R., Ripolles-Campos E., Teruel-Marti V., Nacher J. Perineuronal Nets Regulate the Inhibitory Perisomatic Input onto Parvalbumin Interneurons and γ Activity in the Prefrontal Cortex. J. Neurosci. 2020;40:5008–5018. doi: 10.1523/JNEUROSCI.0291-20.2020. PubMed DOI PMC

Wang D., Fawcett J. The Perineuronal Net and the Control of Cns Plasticity. Cell Tissue Res. 2012;349:147–160. doi: 10.1007/s00441-012-1375-y. PubMed DOI

Brückner G., Brauer K., Härtig W., Wolff J.R., Rickmann M.J., Derouiche A., Delpech B., Girard N., Oertel W.H., Reichenbach A. Perineuronal Nets Provide a Polyanionic, Glia-associated Form of Microenvironment around Certain Neurons in Many Parts of the Rat Brain. Glia. 1993;8:183–200. doi: 10.1002/glia.440080306. PubMed DOI

Balmer T.S. Perineuronal Nets Enhance the Excitability of Fast-Spiking Neurons. eNeuro. 2016;3:745–751. doi: 10.1523/ENEURO.0112-16.2016. PubMed DOI PMC

Suttkus A., Holzer M., Morawski M., Arendt T. The Neuronal Extracellular Matrix Restricts Distribution and Internalization of Aggregated Tau-Protein. Neuroscience. 2016;313:225–235. doi: 10.1016/j.neuroscience.2015.11.040. PubMed DOI

Reinert T., Morawski M., Arendt T., Butz T. Quantitative Microanalysis of Perineuronal Nets in Brain Tissue. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003;210:395–400. doi: 10.1016/S0168-583X(03)01041-3. DOI

Martín-De-Saavedra M.D., Del Barrio L., Cañas N., Egea J., Lorrio S., Montell E., Vergés J., García A.G., López M.G. Chondroitin Sulfate Reduces Cell Death of Rat Hippocampal Slices Subjected to Oxygen and Glucose Deprivation by Inhibiting P38, NFκB and INOS. Neurochem. Int. 2011;58:676–683. doi: 10.1016/j.neuint.2011.02.006. PubMed DOI

Cabungcal J.H., Steullet P., Morishita H., Kraftsik R., Cuenod M., Hensch T.K., Do K.Q. Perineuronal Nets Protect Fast-Spiking Interneurons against Oxidative Stress. Proc. Natl. Acad. Sci. USA. 2013;110:9130–9135. doi: 10.1073/pnas.1300454110. PubMed DOI PMC

Soleman S., Filippov M.A., Dityatev A., Fawcett J.W. Targeting the Neural Extracellular Matrix in Neurological Disorders. Neuroscience. 2013;253:194–213. doi: 10.1016/j.neuroscience.2013.08.050. PubMed DOI

Mauney S.A., Athanas K.M., Pantazopoulos H., Shaskan N., Passeri E., Berretta S., Woo T.U.W. Developmental Pattern of Perineuronal Nets in the Human Prefrontal Cortex and Their Deficit in Schizophrenia. Biol. Psychiatry. 2013;74:427–435. doi: 10.1016/j.biopsych.2013.05.007. PubMed DOI PMC

Slaker M., Barnes J., Sorg B.A., Grimm J.W. Impact of Environmental Enrichment on Perineuronal Nets in the Prefrontal Cortex Following Early and Late Abstinence from Sucrose Self-Administration in Rats. PLoS ONE. 2016;11:1–14. doi: 10.1371/journal.pone.0168256. PubMed DOI PMC

Thompson E.H., Lensjø K.K., Wigestrand M.B., Malthe-Sørenssen A., Hafting T., Fyhn M. Removal of Perineuronal Nets Disrupts Recall of a Remote Fear Memory. Proc. Natl. Acad. Sci. USA. 2018;115:607–612. doi: 10.1073/pnas.1713530115. PubMed DOI PMC

Reichelt A.C., Hare D.J., Bussey T.J., Saksida L.M. Perineuronal Nets: Plasticity, Protection, and Therapeutic Potential. Trends Neurosci. 2019;42:458–470. doi: 10.1016/j.tins.2019.04.003. PubMed DOI

Calabrese V., Cornelius C., Dinkova-Kostova A.T., Calabrese E.J., Mattson M.P. Cellular Stress Responses, the Hormesis Paradigm, and Vitagenes: Novel Targets for Therapeutic Intervention in Neurodegenerative Disorders. Antioxid. Redox Signal. 2010;13:1763–1811. doi: 10.1089/ars.2009.3074. PubMed DOI PMC

Härtig W., Brauer K., Brückner G. Wisteria Floribunda Agglutinin-Labelled Nets Surround Parvalbumin-Containing Neurons. Neuroreport. 1992;3:869–872. doi: 10.1097/00001756-199210000-00012. PubMed DOI

Carstens K.E., Phillips M.L., Pozzo-Miller L., Weinberg R.J., Dudek S.M. Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons. J. Neurosci. 2016;36:6312–6320. doi: 10.1523/JNEUROSCI.0245-16.2016. PubMed DOI PMC

Bignami A., Hosley M., Dahl D. Hyaluronic Acid and Hyaluronic Acid-Binding Proteins in Brain Extracellular Matrix. Anat. Embryol. (Berl). 1993;188:419–433. doi: 10.1007/BF00190136. PubMed DOI

Morawski M., Dityatev A., Hartlage-Rübsamen M., Blosa M., Holzer M., Flach K., Pavlica S., Dityateva G., Dityateva G., Brückner G., et al. Tenascin-R Promotes Assembly of the Extracellular Matrix of Perineuronal Nets via Clustering of Aggrecan. Philos. Trans. R. Soc. B Biol. Sci. 2014;369:20140046. doi: 10.1098/rstb.2014.0046. PubMed DOI PMC

Oohashi T., Edamatsu M., Bekku Y., Carulli D. The Hyaluronan and Proteoglycan Link Proteins: Organizers of the Brain Extracellular Matrix and Key Molecules for Neuronal Function and Plasticity. Exp. Neurol. 2015;274:134–144. doi: 10.1016/j.expneurol.2015.09.010. PubMed DOI

Yamaguchi Y. Lecticans: Organizers of the Brain Extracellular Matrix. Cell. Mol. Life Sci. 2000;57:276–289. doi: 10.1007/PL00000690. PubMed DOI PMC

Bandtlow C.E., Zimmermann D.R. Proteoglycans in the Developing Brain: New Conceptual Insights for Old Proteins. Physiol. Rev. 2000;80:1267–1290. doi: 10.1152/physrev.2000.80.4.1267. PubMed DOI

Giamanco K.A., Morawski M., Matthews R.T. Perineuronal Net Formation and Structure in Aggrecan Knockout Mice. Neuroscience. 2010;170:1314–1327. doi: 10.1016/j.neuroscience.2010.08.032. PubMed DOI

Rowlands D., Lensjø K.K., Dinh T., Yang S., Andrews M.R., Hafting T., Fyhn M., Fawcett J.W., Dick G. Aggrecan Directs Extracellular Matrix-Mediated Neuronal Plasticity. J. Neurosci. 2018;38:10102–10113. doi: 10.1523/JNEUROSCI.1122-18.2018. PubMed DOI PMC

Giamanco K.A., Matthews R.T. Deconstructing the Perineuronal Net: Cellular Contributions and Molecular Composition of the Neuronal Extracellular Matrix. Neuroscience. 2012;218:367–384. doi: 10.1016/j.neuroscience.2012.05.055. PubMed DOI PMC

Favuzzi E., Marques-Smith A., Deogracias R., Winterflood C.M., Sánchez-Aguilera A., Mantoan L., Maeso P., Fernandes C., Ewers H., Rico B. Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican. Neuron. 2017;95:639–655. doi: 10.1016/j.neuron.2017.06.028. PubMed DOI

Gottschling C., Wegrzyn D., Denecke B., Faissner A. Elimination of the Four Extracellular Matrix Molecules Tenascin-C, Tenascin-R, Brevican and Neurocan Alters the Ratio of Excitatory and Inhibitory Synapses. Sci. Rep. 2019;9:1–17. doi: 10.1038/s41598-019-50404-9. PubMed DOI PMC

Eill G.J., Sinha A., Morawski M., Viapiano M.S., Matthews R.T. The Protein Tyrosine Phosphatase RPTPξ/Phosphacan Is Critical for Perineuronal Net Structure. J. Biol. Chem. 2020;295:955–968. doi: 10.1016/S0021-9258(17)49907-8. PubMed DOI PMC

Miyata S., Nishimura Y., Hayashi N., Oohira A. Construction of Perineuronal Net-like Structure by Cortical Neurons in Culture. Neuroscience. 2005;136:95–104. doi: 10.1016/j.neuroscience.2005.07.031. PubMed DOI

Kwok J.C.F., Carulli D., Fawcett J.W. In Vitro Modeling of Perineuronal Nets: Hyaluronan Synthase and Link Protein Are Necessary for Their Formation and Integrity. J. Neurochem. 2010;114:1447–1459. doi: 10.1111/j.1471-4159.2010.06878.x. PubMed DOI

Celio M.R., Chiquet-Ehrismann R. “Perineuronal Nets” around Cortical Interneurons Expressing Parvalbumin Are Rich in Tenascin. Neurosci. Lett. 1993;162:137–140. doi: 10.1016/0304-3940(93)90579-A. PubMed DOI

Grumet M., Milev P., Sakurai T., Karthikeyan L., Bourdon M., Margolis R.K., Margolis R.U. Interactions with Tenascin and Differential Effects on Cell Adhesion of Neurocan and Phosphacan, Two Major Chondroitin Sulfate Proteoglycans of Nervous Tissue. J. Biol. Chem. 1994;269:12142–12146. doi: 10.1016/S0021-9258(17)32692-3. PubMed DOI

Day J.M., Olin A.I., Murdoch A.D., Canfield A., Sasaki T., Timpl R., Hardingham T.E., Aspberg A. Alternative Splicing in the Aggrecan G3 Domain Influences Binding Interactions with Tenascin-C and Other Extracellular Matrix Proteins. J. Biol. Chem. 2004;279:12511–12518. doi: 10.1074/jbc.M400242200. PubMed DOI

Milev P., Fischer D., Häring M., Schulthess T., Margolis R.K., Chiquet-Ehrismann R., Margolis R.U. The Fibrinogen-like Globe of Tenascin-C Mediates Its Interactions with Neurocan and Phosphacan/Protein-Tyrosine Phosphatase-ζ/β. J. Biol. Chem. 1997;272:15501–15509. doi: 10.1074/jbc.272.24.15501. PubMed DOI

Rauch U., Clement A., Retzler C., Fröhlich L., Fässler R., Göhring W., Faissner A. Mapping of a Defined Neurocan Binding Site to Distinct Domains of Tenascin-C. J. Biol. Chem. 1997;272:26905–26912. doi: 10.1074/jbc.272.43.26905. PubMed DOI

Götz B., Scholze A., Clement A., Joester A., Schütte K., Wigger F., Frank R., Spiess E., Ekblom P., Faissner A. Tenascin-C Contains Distinct Adhesive, Anti-Adhesive, and Neurite Outgrowth Promoting Sites for Neurons. J. Cell Biol. 1996;132:681–699. doi: 10.1083/jcb.132.4.681. PubMed DOI PMC

Yokosaki Y., Matsuura N., Higashiyama S., Murakami I., Obara M., Yamakido M., Shigeto N., Chen J., Sheppard D. Identification of the Ligand Binding Site for the Integrin A9β1 in the Third Fibronectin Type III Repeat of Tenascin-C. J. Biol. Chem. 1998;273:11423–11428. doi: 10.1074/jbc.273.19.11423. PubMed DOI

Schnapp L.M., Hatch N., Ramos D.M., Klimanskaya I.V., Sheppard D., Pytela R. The Human Integrin A8β1 Functions as a Receptor for Tenascin, Fibronectin, and Vitronectin. J. Biol. Chem. 1995;270:23196–23202. doi: 10.1074/jbc.270.39.23196. PubMed DOI

Andrews M.R., Czvitkovich S., Dassie E., Vogelaar C.F., Faissner A., Blits B., Gage F.H., Ffrench-Constant C., Fawcett J.W. A9 Integrin Promotes Neurite Outgrowth on Tenascin-C and Enhances Sensory Axon Regeneration. J. Neurosci. 2009;29:5546–5557. doi: 10.1523/JNEUROSCI.0759-09.2009. PubMed DOI PMC

Maurel P., Rauch U., Flad M., Margolis R.K., Margolis R.U. Phosphacan, a Chondroitin Sulfate Proteoglycan of Brain That Interacts with Neurons and Neural Cell-Adhesion Molecules, Is an Extracellular Variant of a Receptor-Type Protein Tyrosine Phosphatase. Proc. Natl. Acad. Sci. 1994;91:2512–2516. doi: 10.1073/pnas.91.7.2512. PubMed DOI PMC

Bartsch U. The Extracellular Matrix Molecule Tenascin-C: Expression In Vivo and Functional Characterization In Vitro. Prog. Neurobiol. 1996;49:145–161. doi: 10.1016/0301-0082(96)00014-7. PubMed DOI

Brückner G., Grosche J., Schmidt S., Härtig W., Margolis R.U., Delpech B., Seidenbecher C.I., Czaniera R., Schachner M. Postnatal Development of Perineuronal Nets in Wild-Type Mice and in a Mutant Deficient in Tenascin-R. J. Comp. Neurol. 2000;428:616–629. doi: 10.1002/1096-9861(20001225)428:4<616::AID-CNE3>3.0.CO;2-K. PubMed DOI

Mouw J.K., Ou G., Weaver V.M. Extracellular Matrix Assembly: A Multiscale Deconstruction. Nat. Rev. Mol. Cell Biol. 2014;15:771–785. doi: 10.1038/nrm3902. PubMed DOI PMC

Brodkey J.A., Laywell E.D., O’Brien T.F., Faissner A., Stefansson K., Dörries H.U., Schachner M., Steindler D.A. Focal Brain Injury and Upregulation of a Developmentally Regulated Extracellular Matrix Protein. J. Neurosurg. 1995;82:106–112. doi: 10.3171/jns.1995.82.1.0106. PubMed DOI

Ferhat L., Chevassus Au Louis N., Jorquera I., Niquet J., Khrestchatisky M., Ben-Ari Y., Represa A. Transient Increase of Tenascin-C in Immature Hippocampus: Astroglial and Neuronal Expression. J. Neurocytol. 1996;25:53–66. doi: 10.1007/BF02284785. PubMed DOI

Theodosis D.T., Pierre K., Cadoret M.A., Allard M., Faissner A., Poulain D.A. Expression of High Levels of the Extracellular Matrix Glycoprotein, Tenascin-C, in the Normal Adult Hypothalamoneurohypophysial System. J. Comp. Neurol. 1997;379:386–398. doi: 10.1002/(SICI)1096-9861(19970317)379:3<386::AID-CNE5>3.0.CO;2-#. PubMed DOI

Stamenkovic V., Stamenkovic S., Jaworski T., Gawlak M., Jovanovic M., Jakovcevski I., Wilczynski G.M., Kaczmarek L., Schachner M., Radenovic L., et al. The Extracellular Matrix Glycoprotein Tenascin-C and Matrix Metalloproteinases Modify Cerebellar Structural Plasticity by Exposure to an Enriched Environment. Brain Struct. Funct. 2017;222:393–415. doi: 10.1007/s00429-016-1224-y. PubMed DOI

Scheffler B., Faissner A., Beck H., Behle K., Wolf H.K., Wiestler O.D., Blümcke I. Hippocampal Loss of Tenascin Boundaries in Ammon’s Horn Sclerosis. Glia. 1997;19:35–46. doi: 10.1002/(SICI)1098-1136(199701)19:1<35::AID-GLIA4>3.0.CO;2-9. PubMed DOI

Haunsoø A., Ibrahim M., Bartsch U., Letiembre M., Celio M.R., Menoud P.A. Morphology of Perineuronal Nets in Tenascin-R and Parvalbumin Single and Double Knockout Mice. Brain Res. 2000;864:142–145. doi: 10.1016/S0006-8993(00)02173-9. PubMed DOI

Hagihara K., Miura R., Kosaki R., Berglund E., Ranscht B., Yamaguchi Y. Immunohistochemical Evidence for the Brevican-Tenascin-R Interaction: Colocalization in Perineuronal Nets Suggests a Physiological Role for the Interaction in the Adult Rat Brain. J. Comp. Neurol. 1999;410:256–264. doi: 10.1002/(SICI)1096-9861(19990726)410:2<256::AID-CNE7>3.0.CO;2-5. PubMed DOI

Fukamauchi F., Mataga N., Wang Y.J., Sato S., Yoshiki A., Kusakabe M. Abnormal Behavior and Neurotransmissions of Tenascin Gene Knockout Mouse. Biochem. Biophys. Res. Commun. 1996;221:151–156. doi: 10.1006/bbrc.1996.0561. PubMed DOI

Evers M.R., Salmen B., Bukalo O., Rollenhagen A., Bösl M.R., Morellini F., Bartsch U., Dityatev A., Schachner M. Impairment of L-Type Ca2+ Channel-Dependent Forms of Hippocampal Synaptic Plasticity in Mice Deficient in the Extracellular Matrix Glycoprotein Tenascin-C. J. Neurosci. 2002;22:7177–7194. doi: 10.1523/JNEUROSCI.22-16-07177.2002. PubMed DOI PMC

Morellini F., Schachner M. Enhanced Novelty-Induced Activity, Reduced Anxiety, Delayed Resynchronization to Daylight Reversal and Weaker Muscle Strength in Tenascin-C-Deficient Mice. Eur. J. Neurosci. 2006;23:1255–1268. doi: 10.1111/j.1460-9568.2006.04657.x. PubMed DOI

Stamenkovic V., Milenkovic I., Galjak N., Todorovic V., Andjus P. Enriched Environment Alters the Behavioral Profile of Tenascin-C Deficient Mice. Behav. Brain Res. 2017;331:241–253. doi: 10.1016/j.bbr.2017.05.047. PubMed DOI

Irintchev A., Rollenhagen A., Troncoso E., Kiss J.Z., Schachner M. Structural and Functional Aberrations in the Cerebral Cortex of Tenascin-C Deficient Mice. Cereb. Cortex. 2005;15:950–962. doi: 10.1093/cercor/bhh195. PubMed DOI

Gurevicius K., Kuang F., Stoenica L., Irintchev A., Gureviciene I., Dityatev A., Schachner M., Tanila H. Genetic Ablation of Tenascin-C Expression Leads to Abnormal Hippocampal CA1 Structure and Electrical Activity In Vivo. Hippocampus. 2009;19:1232–1246. doi: 10.1002/hipo.20585. PubMed DOI

Šekeljić V., Andjus P.R. Tenascin-C and Its Functions in Neuronal Plasticity. Int. J. Biochem. Cell Biol. 2012:44. doi: 10.1016/j.biocel.2012.02.014. PubMed DOI

Citri A., Malenka R.C. Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology. 2008;33:18–41. doi: 10.1038/sj.npp.1301559. PubMed DOI

Lledo P.M., Alonso M., Grubb M.S. Adult Neurogenesis and Functional Plasticity in Neuronal Circuits. Nat. Rev. Neurosci. 2006;7:179–193. doi: 10.1038/nrn1867. PubMed DOI

Mangina C.A., Sokolov E.N. Neuronal Plasticity in Memory and Learning Abilities: Theoretical Position and Selective Review. Int. J. Psychophysiol. 2006;60:203–214. doi: 10.1016/j.ijpsycho.2005.11.004. PubMed DOI

Navarro X., Vivó M., Valero-Cabré A. Neural Plasticity after Peripheral Nerve Injury and Regeneration. Prog. Neurobiol. 2007;82:163–201. doi: 10.1016/j.pneurobio.2007.06.005. PubMed DOI

Hensch T.K. Controlling the Critical Period. Neurosci. Res. 2003;47:17–22. doi: 10.1016/S0168-0102(03)00164-0. PubMed DOI

Pizzorusso T., Medini P., Berardi N., Chierzi S., Fawcett J.W., Maffei L. Reactivation of Ocular Dominance Plasticity in the Adult Visual Cortex. Science. 2002;298:1248–1251. doi: 10.1126/science.1072699. PubMed DOI

Travaglia A., Steinmetz A.B., Miranda J.M., Alberini C.M. Mechanisms of Critical Period in the Hippocampus Underlie Object Location Learning and Memory in Infant Rats. Learn. Mem. 2018;25:176–182. doi: 10.1101/lm.046946.117. PubMed DOI PMC

Lensjø K.K., Christensen A.C., Tennøe S., Fyhn M., Hafting T. Differential Expression and Cell-Type Specificity of Perineuronal Nets in Hippocampus, Medial Entorhinal Cortex, and Visual Cortex Examined in the Rat and Mouse. eNeuro. 2017;4:1–18. doi: 10.1523/ENEURO.0379-16.2017. PubMed DOI PMC

Beurdeley M., Spatazza J., Lee H.H.C., Sugiyama S., Bernard C., Di Nardo A.A., Hensch T.K., Prochiantz A. Otx2 Binding to Perineuronal Nets Persistently Regulates Plasticity in the Mature Visual Cortex. J. Neurosci. 2012;32:9429–9437. doi: 10.1523/JNEUROSCI.0394-12.2012. PubMed DOI PMC

Bernard C., Prochiantz A. Otx2-PNN Interaction to Regulate Cortical Plasticity. Neural Plast. 2016;2016 doi: 10.1155/2016/7931693. PubMed DOI PMC

Mix A., Hoppenrath K., Funke K. Reduction in Cortical Parvalbumin Expression Due to Intermittent Theta-Burst Stimulation Correlates with Maturation of the Perineuronal Nets in Young Rats. Dev. Neurobiol. 2015:75. doi: 10.1002/dneu.22205. PubMed DOI

Nimchinsky E.A., Sabatini B.L., Svoboda K. Structure and Function of Dendritic Spines. Annu. Rev. Physiol. 2002;64:313–353. doi: 10.1146/annurev.physiol.64.081501.160008. PubMed DOI

Dino M.R., Harroch S., Hockfield S., Matthews R.T. Monoclonal Antibody Cat-315 Detects a Glycoform of Receptor Protein Tyrosine Phosphatase Beta/Phosphacan Early in CNS Development That Localizes to Extrasynaptic Sites Prior to Synapse Formation. Neuroscience. 2006;142:1055–1069. doi: 10.1016/j.neuroscience.2006.07.054. PubMed DOI

De Vivo L., Landi S., Panniello M., Baroncelli L., Chierzi S., Mariotti L., Spolidoro M., Pizzorusso T., Maffei L., Ratto G.M. Extracellular Matrix Inhibits Structural and Functional Plasticity of Dendritic Spines in the Adult Visual Cortex. Nat. Commun. 2013;4:1–10. doi: 10.1038/ncomms2491. PubMed DOI

Miyata S., Komatsu Y., Yoshimura Y., Taya C., Kitagawa H. Persistent Cortical Plasticity by Upregulation of Chondroitin 6-Sulfation. Nat. Neurosci. 2012;15:414–422. doi: 10.1038/nn.3023. PubMed DOI

Yang X. Chondroitin Sulfate Proteoglycans: Key Modulators of Neuronal Plasticity, Long-Term Memory, Neurodegenerative, and Psychiatric Disorders. Rev. Neurosci. 2020;31:555–568. doi: 10.1515/revneuro-2019-0117. PubMed DOI

Frischknecht R., Heine M., Perrais D., Seidenbecher C.I., Choquet D., Gundelfinger E.D. Brain Extracellular Matrix Affects AMPA Receptor Lateral Mobility and Short-Term Synaptic Plasticity. Nat. Neurosci. 2009;12:897–904. doi: 10.1038/nn.2338. PubMed DOI

Vedunova M., Sakharnova T., Mitroshina E., Perminova M., Pimashkin A., Zakharov Y., Dityatev A., Mukhina I. Seizure-like Activity in Hyaluronidase-Treated Dissociated Hippocampal Cultures. Front. Cell. Neurosci. 2013;7:1–10. doi: 10.3389/fncel.2013.00149. PubMed DOI PMC

Maroto M., Fernández-Morales J.C., Padín J.F., González J.C., Hernández-Guijo J.M., Montell E., Vergés J., De Diego A.M.G., García A.G. Chondroitin Sulfate, a Major Component of the Perineuronal Net, Elicits Inward Currents, Cell Depolarization, and Calcium Transients by Acting on AMPA and Kainate Receptors of Hippocampal Neurons. J. Neurochem. 2013;125:205–213. doi: 10.1111/jnc.12159. PubMed DOI

Vo T., Carulli D., Ehlert E.M.E., Kwok J.C.F., Dick G., Mecollari V., Moloney E.B., Neufeld G., de Winter F., Fawcett J.W., et al. The Chemorepulsive Axon Guidance Protein Semaphorin3A Is a Constituent of Perineuronal Nets in the Adult Rodent Brain. Mol. Cell. Neurosci. 2013;56:186–200. doi: 10.1016/j.mcn.2013.04.009. PubMed DOI

Sun Z.Y., Bozzelli P.L., Caccavano A., Allen M., Balmuth J., Vicini S., Wu J.Y., Conant K. Disruption of Perineuronal Nets Increases the Frequency of Sharp Wave Ripple Events. Hippocampus. 2018;28:42–52. doi: 10.1002/hipo.22804. PubMed DOI PMC

Lensjø K.K., Lepperød M.E., Dick G., Hafting T., Fyhn M. Removal of Perineuronal Nets Unlocks Juvenile Plasticity through Network Mechanisms of Decreased Inhibition and Increased Gamma Activity. J. Neurosci. 2017;37:1269–1283. doi: 10.1523/JNEUROSCI.2504-16.2016. PubMed DOI PMC

Dityatev A., Rusakov D.A. Molecular Signals of Plasticity at the Tetrapartite Synapse. Curr. Opin. Neurobiol. 2011;21:353–359. doi: 10.1016/j.conb.2010.12.006. PubMed DOI PMC

Levy C., Brooks J.M., Chen J., Su J., Fox M.A. Cell-Specific and Developmental Expression of Lectican-Cleaving Proteases in Mouse Hippocampus and Neocortex. J. Comp. Neurol. 2015;523:629–648. doi: 10.1002/cne.23701. PubMed DOI PMC

Wen T.H., Afroz S., Reinhard S.M., Palacios A.R., Tapia K., Binder D.K., Razak K.A., Ethell I.M. Genetic Reduction of Matrix Metalloproteinase-9 Promotes Formation of Perineuronal Nets Around Parvalbumin-Expressing Interneurons and Normalizes Auditory Cortex Responses in Developing Fmr1 Knock-Out Mice. Cereb. Cortex. 2018;28:3951–3964. doi: 10.1093/cercor/bhx258. PubMed DOI PMC

Donato F., Rompani S.B., Caroni P. Parvalbumin-Expressing Basket-Cell Network Plasticity Induced by Experience Regulates Adult Learning. Nature. 2013;504:272–276. doi: 10.1038/nature12866. PubMed DOI

Missirlis Y.F. Mechanoepigenetics. Front. Cell Dev. Biol. 2016;4:10–13. doi: 10.3389/fcell.2016.00113. PubMed DOI PMC

Jiang F.X., Lin D.C., Horkay F., Langrana N.A. Probing Mechanical Adaptation of Neurite Outgrowth on a Hydrogel Material Using Atomic Force Microscopy. Ann. Biomed. Eng. 2011;39:706–713. doi: 10.1007/s10439-010-0194-0. PubMed DOI PMC

Kwok J.C.F., Dick G., Wang D., Fawcett J.W. Extracellular Matrix and Perineuronal Nets in CNS Repair. Dev. Neurobiol. 2011;71:1073–1089. doi: 10.1002/dneu.20974. PubMed DOI

Harris N.G., Carmichael S.T., Hovda D.A., Sutton R.L. Traumatic Brain Injury Results in Disparate Regions of Chondroitin Sulfate Proteoglycan Expression That Are Temporally Limited. J. Neurosci. Res. 2009;87:2937–2950. doi: 10.1002/jnr.22115. PubMed DOI PMC

Yi J.H., Katagiri Y., Susarla B., Figge D., Symes A.J., Geller H.M. Alterations in Sulfated Chondroitin Glycosaminoglycans Following Controlled Cortical Impact Injury in Mice. J. Comp. Neurol. 2012;520:3295–3313. doi: 10.1002/cne.23156. PubMed DOI PMC

Vita S.M., Grayson B.E., Grill R.J. Acute Damage to the Blood–Brain Barrier and Perineuronal Net Integrity in a Clinically-Relevant Rat Model of Traumatic Brain Injury. Neuroreport. 2020;31:1167–1174. doi: 10.1097/WNR.0000000000001531. PubMed DOI

Ulbrich P., Khoshneviszadeh M., Jandke S., Schreiber S., Dityatev A. Interplay between Perivascular and Perineuronal Extracellular Matrix Remodelling in Neurological and Psychiatric Diseases. Eur. J. Neurosci. 2020 doi: 10.1111/ejn.14887. PubMed DOI

Bornstein P. Matricellular Proteins: An Overview. J. Cell Commun. Signal. 2009;3:163–165. doi: 10.1007/s12079-009-0069-z. PubMed DOI PMC

Kannus P., Jozsa L., Järvinen T.A.H., Järvinen T.L.N., Kvist M., Natri A., Järvinen M. Location and Distribution of Non-Collagenous Matrix Proteins in Musculoskeletal Tissues of Rat. Histochem. J. 1998;30:799–810. doi: 10.1023/A:1003448106673. PubMed DOI

Oberhauser A.F., Marszalek P.E., Erickson H.P., Fernandez J.M. The Molecular Elasticity of the Extracellular Matrix Protein Tenascin. Nature. 1998;393:181–185. doi: 10.1038/30270. PubMed DOI

Chiquet M., Tunç-Civelek V., Sarasa-Renedo A. Gene Regulation by Mechanotransduction in Fibroblasts. Appl. Physiol. Nutr. Metab. 2007;32:967–973. doi: 10.1139/H07-053. PubMed DOI

Plotnikov S.V., Pasapera A.M., Sabass B., Waterman C.M. Force Fluctuations within Focal Adhesions Mediate ECM-Rigidity Sensing to Guide Directed Cell Migration. Cell. 2012;151:1513–1527. doi: 10.1016/j.cell.2012.11.034. PubMed DOI PMC

Midwood K.S., Schwarzbauer J.E. Tenascin-C Modulates Matrix Contraction via Focal Adhesion Kinase– and Rho-Mediated Signaling Pathways. Mol. Biol. Cell. 2002;13:3601–3613. doi: 10.1091/mbc.e02-05-0292. PubMed DOI PMC

Nishio T., Kawaguchi S., Yamamoto M., Iseda T., Kawasaki T., Hase T. Tenascin-C Regulates Proliferation and Migration of Cultured Astrocytes in a Scratch Wound Assay. Neuroscience. 2005;132:87–102. doi: 10.1016/j.neuroscience.2004.12.028. PubMed DOI

Anderson M.A., Burda J.E., Ren Y., Ao Y., O’Shea T.M., Kawaguchi R., Coppola G., Khakh B.S., Deming T.J., Michael S.V. Astrocyte Scar Formation Aids CNS Axon Regeneration. Nature. 2016;532:195–200. doi: 10.1038/nature17623. PubMed DOI PMC

Rauch U. Extracellular Matrix Components Associated with Remodeling Processes in Brain. Cell. Mol. Life Sci. 2004;61:2031–2045. doi: 10.1007/s00018-004-4043-x. PubMed DOI PMC

Varga I., Hutóczki G., Szemcsák C.D., Zahuczky G., Tóth J., Adamecz Z., Kenyeres A., Bognár L., Hanzély Z., Klekner A. Brevican, Neurocan, Tenascin-C and Versican Are Mainly Responsible for the Invasiveness of Low-Grade Astrocytoma. Pathol. Oncol. Res. 2012;18:413–420. doi: 10.1007/s12253-011-9461-0. PubMed DOI

Miroshnikova Y.A., Mouw J.K., Barnes J.M., Pickup M.W., Lakins J.N., Kim Y., Lobo K., Persson A.I., Reis G.F., McKnigh T.R., et al. Tissue Mechanics Promote IDH1-Dependent HIF1α-Tenascin C Feedback to Regulate Glioblastoma Aggression. Nat. Cell Biol. 2016;18:1336–1345. doi: 10.1038/ncb3429. PubMed DOI PMC

Tajerian M., Hung V., Nguyen H., Lee G., Joubert L.M., Malkovskiy A.V., Zou B., Xie S., Huang T.T., Clark J.D. The Hippocampal Extracellular Matrix Regulates Pain and Memory after Injury. Mol. Psychiatry. 2018;23:2302–2313. doi: 10.1038/s41380-018-0209-z. PubMed DOI PMC

Altman J., Das G.D. Autoradiographic and Histological Evidence of Postnatal Hippocampal Neurogenesis in Rats. J. Comp. Neurol. 1965;124:319–335. doi: 10.1002/cne.901240303. PubMed DOI

Ge S., Goh E.L.K., Sailor K.A., Kitabatake Y., Ming G.L., Song H. GABA Regulates Synaptic Integration of Newly Generated Neurons in the Adult Brain. Nature. 2006;439:589–593. doi: 10.1038/nature04404. PubMed DOI PMC

Song J., Sun J., Moss J., Wen Z., Sun G.J., Hsu D., Zhong C., Davoudi H., Christian K.M., Toni N., et al. Parvalbumin Interneurons Mediate Neuronal Circuitry-Neurogenesis Coupling in the Adult Hippocampus. Nat. Neurosci. 2013;16:1728–1730. doi: 10.1038/nn.3572. PubMed DOI PMC

Vaden R.J., Gonzalez J.C., Tsai M.C., Niver A.J., Fusilier A.R., Griffith C.M., Kramer R.H., Wadiche J.I., Overstreet-Wadiche L. Parvalbumin Interneurons Provide Spillover to Newborn and Mature Dentate Granule Cells. Elife. 2020;9:1–23. doi: 10.7554/eLife.54125. PubMed DOI PMC

Groisman A.I., Yang S.M., Schinder A.F. Differential Coupling of Adult-Born Granule Cells to Parvalbumin and Somatostatin Interneurons. bioRxiv. 2019:598615. doi: 10.1016/j.celrep.2019.12.005. PubMed DOI PMC

Ikrar T., Guo N., He K., Besnard A., Levinson S., Hill A., Lee H.K., Hen R., Xu X., Sahay A. Adult Neurogenesis Modifies Excitability of the Dentate Gyrus. Front. Neural Circuits. 2013;7:1–15. doi: 10.3389/fncir.2013.00204. PubMed DOI PMC

Dityatev A., Brückner G., Dityateva G., Grosche J., Kleene R., Schachner M. Activity-Dependent Formation and Functions of Chondroitin Sulfate-Rich Extracellular Matrix of Perineuronal Nets. Dev. Neurobiol. 2007;67:570–588. doi: 10.1002/dneu.20361. PubMed DOI

Ge S., Yang C., Hsu K., Ming G., Song H. A Critical Period for Enhanced Synaptic Plasticity in Newly Generated Neurons of the Adult Brain. Neuron. 2007;54:559–566. doi: 10.1016/j.neuron.2007.05.002. PubMed DOI PMC

Fowke T.M., Karunasinghe R.N., Bai J.-Z., Jordan S., Gunn A.J., Dean J.M. Hyaluronan Synthesis by Developing Cortical Neurons In Vitro. Sci. Rep. 2017;7:44135. doi: 10.1038/srep44135. PubMed DOI PMC

Su W., Matsumoto S., Sorg B., Sherman L.S. Distinct Roles for Hyaluronan in Neural Stem Cell Niches and Perineuronal Nets. Matrix Biol. 2019;78–79:272–283. doi: 10.1016/j.matbio.2018.01.022. PubMed DOI PMC

Su W., Foster S.C., Xing R., Feistel K., Olsen R.H.J., Acevedo S.F., Raber J., Sherman L.S. CD44 Transmembrane Receptor and Hyaluronan Regulate Adult Hippocampal Neural Stem Cell Quiescence and Differentiation. J. Biol. Chem. 2017;292:4434–4445. doi: 10.1074/jbc.M116.774109. PubMed DOI PMC

Yamada J., Nadanaka S., Kitagawa H., Takeuchi K., Jinno S. Increased Synthesis of Chondroitin Sulfate Proteoglycan Promotes Adult Hippocampal Neurogenesis in Response to Enriched Environment. J. Neurosci. 2018;38:8496–8513. doi: 10.1523/JNEUROSCI.0632-18.2018. PubMed DOI PMC

Mencio C.P., Hussein R.K., Yu P., Geller H.M. The Role of Chondroitin Sulfate Proteoglycans in Nervous System Development. J. Histochem. Cytochem. 2021;69:61–80. doi: 10.1369/0022155420959147. PubMed DOI PMC

Sirko S., Von Holst A., Weber A., Wizenmann A., Theocharidis U., Götz M., Faissner A. Chondroitin Sulfates Are Required for Fibroblast Growth Factor-2-Dependent Proliferation and Maintenance in Neural Stem Cells and for Epidermal Growth Factor-Dependent Migration of Their Progeny. Stem Cells. 2010;28:775–787. doi: 10.1002/stem.309. PubMed DOI

Gates M.A., Thomas L.B., Howard E.M., Laywell E.D., Sajin B., Faissner A., Götz B., Silver J., Steindler D.A. Cell and Molecular Analysis of the Developing and Adult Mouse Subventricular Zone of the Cerebral Hemispheres. J. Comp. Neurol. 1995;361:249–266. doi: 10.1002/cne.903610205. PubMed DOI

Garcion E., Faissner A., Ffrench-Constant C. Knockout Mice Reveal a Contribution of the Extracellular Matrix Molecule Tenascin-C to Neural Precursor Proliferation and Migration. Development. 2001;128:2485–2496. doi: 10.1242/dev.128.13.2485. PubMed DOI

Garcion E., Halilagic A., Faissner A., Ffrench-Constant C. Generation of an Environmental Niche for Neural Stem Cell Development Bythe Extracellular Matrix Molecule Tenascin, C. Development. 2004;131:3423–3432. doi: 10.1242/dev.01202. PubMed DOI

Kwok J.C.F., Foscarin S., Fawcett J.W. Extracellular Matrix. Humana Press; New York, NY, USA: 2015. Perineuronal Nets: A Special Structure in the Central Nervous System Extracellular Matrix; pp. 23–32. DOI

Köppe G., Brückner G., Härtig W., Delpech B., Bigl V. Characterization of Proteoglycan-Containing Perineuronal Nets by Enzymatic Treatments of Rat Brain Sections. Histochem. J. 1997;29:11–20. doi: 10.1023/A:1026408716522. PubMed DOI

Seeger G., Brauer K., Härtig W., Brückner G. Mapping of Perineuronal Nets in the Rat Brain Stained by Colloidal Iron Hydroxide Histochemistry and Lectin Cytochemistry. Neuroscience. 1994;58:371–388. doi: 10.1016/0306-4522(94)90044-2. PubMed DOI

Dzyubenko E., Manrique-Castano D., Kleinschnitz C., Faissner A., Hermann D.M. Topological Remodeling of Cortical Perineuronal Nets in Focal Cerebral Ischemia and Mild Hypoperfusion. Matrix Biol. 2018;74:121–132. doi: 10.1016/j.matbio.2018.08.001. PubMed DOI

Sigal Y.M., Bae H., Bogart L.J., Hensch T.K., Zhuang X. Structural Maturation of Cortical Perineuronal Nets and Their Perforating Synapses Revealed by Superresolution Imaging. Proc. Natl. Acad. Sci. USA. 2019;116:7071–7076. doi: 10.1073/pnas.1817222116. PubMed DOI PMC

Arnst N., Kuznetsova S., Lipachev N., Shaikhutdinov N., Melnikova A., Mavlikeev M., Uvarov P., Baltina T.V., Rauvala H., Osin Y.N., et al. Spatial Patterns and Cell Surface Clusters in Perineuronal Nets. Brain Res. 2016;1648:214–223. doi: 10.1016/j.brainres.2016.07.020. PubMed DOI

Jakovljevic A., Blazikova M., Tucic M., Stamenkovic V., Andjus R.P. Analysis of Perineuronal Net Topography in the Hippocampus of Tenascin-C Deficient Mice; Proceedings of the 12th FENS Forum of Neuroscience, Virtual Forum; Glasgow, UK. 11–15 July 2020.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...