Structural and Functional Modulation of Perineuronal Nets: In Search of Important Players with Highlight on Tenascins
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
CA15214
European Cooperation in Science and Technology
451-03-68/2020-14/200178
Ministry of education, science and technological development of the Republic of Serbia
PubMed
34072323
PubMed Central
PMC8230358
DOI
10.3390/cells10061345
PII: cells10061345
Knihovny.cz E-zdroje
- Klíčová slova
- extracellular matrix, mechanotransduction, neurogenesis, perineuronal nets, super-resolution microscopy, synaptic plasticity, tenascin-C,
- MeSH
- buněčný převod mechanických signálů fyziologie MeSH
- extracelulární matrix - proteiny metabolismus MeSH
- extracelulární matrix metabolismus MeSH
- neurogeneze fyziologie MeSH
- neurony cytologie MeSH
- neuroplasticita fyziologie MeSH
- počítačové zpracování obrazu metody MeSH
- proteiny nervové tkáně metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- extracelulární matrix - proteiny MeSH
- neuronectin MeSH Prohlížeč
- proteiny nervové tkáně MeSH
The extracellular matrix (ECM) of the brain plays a crucial role in providing optimal conditions for neuronal function. Interactions between neurons and a specialized form of ECM, perineuronal nets (PNN), are considered a key mechanism for the regulation of brain plasticity. Such an assembly of interconnected structural and regulatory molecules has a prominent role in the control of synaptic plasticity. In this review, we discuss novel ways of studying the interplay between PNN and its regulatory components, particularly tenascins, in the processes of synaptic plasticity, mechanotransduction, and neurogenesis. Since enhanced neuronal activity promotes PNN degradation, it is possible to study PNN remodeling as a dynamical change in the expression and organization of its constituents that is reflected in its ultrastructure. The discovery of these subtle modifications is enabled by the development of super-resolution microscopy and advanced methods of image analysis.
Zobrazit více v PubMed
Golgi C. Intorno Alla Struttura Della Cellula Nervosa. Boll. Della Soc. Med. -Chir. Di Pavia. 1898;13:316.
Celio M.R., Spreafico R., De Biasi S., Vitellaro-Zuccarello L. Perineuronal Nets: Past and Present. Trends Neurosci. 1998;21:510–515. doi: 10.1016/S0166-2236(98)01298-3. PubMed DOI
Ruoslahti E. Brain Extracellular Matrix. Glycobiology. 1996;6:489–492. doi: 10.1093/glycob/6.5.489. PubMed DOI
Yamada J., Ohgomori T., Jinno S. Perineuronal Nets Affect Parvalbumin Expression in GABAergic Neurons of the Mouse Hippocampus. Eur. J. Neurosci. 2015;41:368–378. doi: 10.1111/ejn.12792. PubMed DOI
Carceller H., Guirado R., Ripolles-Campos E., Teruel-Marti V., Nacher J. Perineuronal Nets Regulate the Inhibitory Perisomatic Input onto Parvalbumin Interneurons and γ Activity in the Prefrontal Cortex. J. Neurosci. 2020;40:5008–5018. doi: 10.1523/JNEUROSCI.0291-20.2020. PubMed DOI PMC
Wang D., Fawcett J. The Perineuronal Net and the Control of Cns Plasticity. Cell Tissue Res. 2012;349:147–160. doi: 10.1007/s00441-012-1375-y. PubMed DOI
Brückner G., Brauer K., Härtig W., Wolff J.R., Rickmann M.J., Derouiche A., Delpech B., Girard N., Oertel W.H., Reichenbach A. Perineuronal Nets Provide a Polyanionic, Glia-associated Form of Microenvironment around Certain Neurons in Many Parts of the Rat Brain. Glia. 1993;8:183–200. doi: 10.1002/glia.440080306. PubMed DOI
Balmer T.S. Perineuronal Nets Enhance the Excitability of Fast-Spiking Neurons. eNeuro. 2016;3:745–751. doi: 10.1523/ENEURO.0112-16.2016. PubMed DOI PMC
Suttkus A., Holzer M., Morawski M., Arendt T. The Neuronal Extracellular Matrix Restricts Distribution and Internalization of Aggregated Tau-Protein. Neuroscience. 2016;313:225–235. doi: 10.1016/j.neuroscience.2015.11.040. PubMed DOI
Reinert T., Morawski M., Arendt T., Butz T. Quantitative Microanalysis of Perineuronal Nets in Brain Tissue. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003;210:395–400. doi: 10.1016/S0168-583X(03)01041-3. DOI
Martín-De-Saavedra M.D., Del Barrio L., Cañas N., Egea J., Lorrio S., Montell E., Vergés J., García A.G., López M.G. Chondroitin Sulfate Reduces Cell Death of Rat Hippocampal Slices Subjected to Oxygen and Glucose Deprivation by Inhibiting P38, NFκB and INOS. Neurochem. Int. 2011;58:676–683. doi: 10.1016/j.neuint.2011.02.006. PubMed DOI
Cabungcal J.H., Steullet P., Morishita H., Kraftsik R., Cuenod M., Hensch T.K., Do K.Q. Perineuronal Nets Protect Fast-Spiking Interneurons against Oxidative Stress. Proc. Natl. Acad. Sci. USA. 2013;110:9130–9135. doi: 10.1073/pnas.1300454110. PubMed DOI PMC
Soleman S., Filippov M.A., Dityatev A., Fawcett J.W. Targeting the Neural Extracellular Matrix in Neurological Disorders. Neuroscience. 2013;253:194–213. doi: 10.1016/j.neuroscience.2013.08.050. PubMed DOI
Mauney S.A., Athanas K.M., Pantazopoulos H., Shaskan N., Passeri E., Berretta S., Woo T.U.W. Developmental Pattern of Perineuronal Nets in the Human Prefrontal Cortex and Their Deficit in Schizophrenia. Biol. Psychiatry. 2013;74:427–435. doi: 10.1016/j.biopsych.2013.05.007. PubMed DOI PMC
Slaker M., Barnes J., Sorg B.A., Grimm J.W. Impact of Environmental Enrichment on Perineuronal Nets in the Prefrontal Cortex Following Early and Late Abstinence from Sucrose Self-Administration in Rats. PLoS ONE. 2016;11:1–14. doi: 10.1371/journal.pone.0168256. PubMed DOI PMC
Thompson E.H., Lensjø K.K., Wigestrand M.B., Malthe-Sørenssen A., Hafting T., Fyhn M. Removal of Perineuronal Nets Disrupts Recall of a Remote Fear Memory. Proc. Natl. Acad. Sci. USA. 2018;115:607–612. doi: 10.1073/pnas.1713530115. PubMed DOI PMC
Reichelt A.C., Hare D.J., Bussey T.J., Saksida L.M. Perineuronal Nets: Plasticity, Protection, and Therapeutic Potential. Trends Neurosci. 2019;42:458–470. doi: 10.1016/j.tins.2019.04.003. PubMed DOI
Calabrese V., Cornelius C., Dinkova-Kostova A.T., Calabrese E.J., Mattson M.P. Cellular Stress Responses, the Hormesis Paradigm, and Vitagenes: Novel Targets for Therapeutic Intervention in Neurodegenerative Disorders. Antioxid. Redox Signal. 2010;13:1763–1811. doi: 10.1089/ars.2009.3074. PubMed DOI PMC
Härtig W., Brauer K., Brückner G. Wisteria Floribunda Agglutinin-Labelled Nets Surround Parvalbumin-Containing Neurons. Neuroreport. 1992;3:869–872. doi: 10.1097/00001756-199210000-00012. PubMed DOI
Carstens K.E., Phillips M.L., Pozzo-Miller L., Weinberg R.J., Dudek S.M. Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons. J. Neurosci. 2016;36:6312–6320. doi: 10.1523/JNEUROSCI.0245-16.2016. PubMed DOI PMC
Bignami A., Hosley M., Dahl D. Hyaluronic Acid and Hyaluronic Acid-Binding Proteins in Brain Extracellular Matrix. Anat. Embryol. (Berl). 1993;188:419–433. doi: 10.1007/BF00190136. PubMed DOI
Morawski M., Dityatev A., Hartlage-Rübsamen M., Blosa M., Holzer M., Flach K., Pavlica S., Dityateva G., Dityateva G., Brückner G., et al. Tenascin-R Promotes Assembly of the Extracellular Matrix of Perineuronal Nets via Clustering of Aggrecan. Philos. Trans. R. Soc. B Biol. Sci. 2014;369:20140046. doi: 10.1098/rstb.2014.0046. PubMed DOI PMC
Oohashi T., Edamatsu M., Bekku Y., Carulli D. The Hyaluronan and Proteoglycan Link Proteins: Organizers of the Brain Extracellular Matrix and Key Molecules for Neuronal Function and Plasticity. Exp. Neurol. 2015;274:134–144. doi: 10.1016/j.expneurol.2015.09.010. PubMed DOI
Yamaguchi Y. Lecticans: Organizers of the Brain Extracellular Matrix. Cell. Mol. Life Sci. 2000;57:276–289. doi: 10.1007/PL00000690. PubMed DOI PMC
Bandtlow C.E., Zimmermann D.R. Proteoglycans in the Developing Brain: New Conceptual Insights for Old Proteins. Physiol. Rev. 2000;80:1267–1290. doi: 10.1152/physrev.2000.80.4.1267. PubMed DOI
Giamanco K.A., Morawski M., Matthews R.T. Perineuronal Net Formation and Structure in Aggrecan Knockout Mice. Neuroscience. 2010;170:1314–1327. doi: 10.1016/j.neuroscience.2010.08.032. PubMed DOI
Rowlands D., Lensjø K.K., Dinh T., Yang S., Andrews M.R., Hafting T., Fyhn M., Fawcett J.W., Dick G. Aggrecan Directs Extracellular Matrix-Mediated Neuronal Plasticity. J. Neurosci. 2018;38:10102–10113. doi: 10.1523/JNEUROSCI.1122-18.2018. PubMed DOI PMC
Giamanco K.A., Matthews R.T. Deconstructing the Perineuronal Net: Cellular Contributions and Molecular Composition of the Neuronal Extracellular Matrix. Neuroscience. 2012;218:367–384. doi: 10.1016/j.neuroscience.2012.05.055. PubMed DOI PMC
Favuzzi E., Marques-Smith A., Deogracias R., Winterflood C.M., Sánchez-Aguilera A., Mantoan L., Maeso P., Fernandes C., Ewers H., Rico B. Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican. Neuron. 2017;95:639–655. doi: 10.1016/j.neuron.2017.06.028. PubMed DOI
Gottschling C., Wegrzyn D., Denecke B., Faissner A. Elimination of the Four Extracellular Matrix Molecules Tenascin-C, Tenascin-R, Brevican and Neurocan Alters the Ratio of Excitatory and Inhibitory Synapses. Sci. Rep. 2019;9:1–17. doi: 10.1038/s41598-019-50404-9. PubMed DOI PMC
Eill G.J., Sinha A., Morawski M., Viapiano M.S., Matthews R.T. The Protein Tyrosine Phosphatase RPTPξ/Phosphacan Is Critical for Perineuronal Net Structure. J. Biol. Chem. 2020;295:955–968. doi: 10.1016/S0021-9258(17)49907-8. PubMed DOI PMC
Miyata S., Nishimura Y., Hayashi N., Oohira A. Construction of Perineuronal Net-like Structure by Cortical Neurons in Culture. Neuroscience. 2005;136:95–104. doi: 10.1016/j.neuroscience.2005.07.031. PubMed DOI
Kwok J.C.F., Carulli D., Fawcett J.W. In Vitro Modeling of Perineuronal Nets: Hyaluronan Synthase and Link Protein Are Necessary for Their Formation and Integrity. J. Neurochem. 2010;114:1447–1459. doi: 10.1111/j.1471-4159.2010.06878.x. PubMed DOI
Celio M.R., Chiquet-Ehrismann R. “Perineuronal Nets” around Cortical Interneurons Expressing Parvalbumin Are Rich in Tenascin. Neurosci. Lett. 1993;162:137–140. doi: 10.1016/0304-3940(93)90579-A. PubMed DOI
Grumet M., Milev P., Sakurai T., Karthikeyan L., Bourdon M., Margolis R.K., Margolis R.U. Interactions with Tenascin and Differential Effects on Cell Adhesion of Neurocan and Phosphacan, Two Major Chondroitin Sulfate Proteoglycans of Nervous Tissue. J. Biol. Chem. 1994;269:12142–12146. doi: 10.1016/S0021-9258(17)32692-3. PubMed DOI
Day J.M., Olin A.I., Murdoch A.D., Canfield A., Sasaki T., Timpl R., Hardingham T.E., Aspberg A. Alternative Splicing in the Aggrecan G3 Domain Influences Binding Interactions with Tenascin-C and Other Extracellular Matrix Proteins. J. Biol. Chem. 2004;279:12511–12518. doi: 10.1074/jbc.M400242200. PubMed DOI
Milev P., Fischer D., Häring M., Schulthess T., Margolis R.K., Chiquet-Ehrismann R., Margolis R.U. The Fibrinogen-like Globe of Tenascin-C Mediates Its Interactions with Neurocan and Phosphacan/Protein-Tyrosine Phosphatase-ζ/β. J. Biol. Chem. 1997;272:15501–15509. doi: 10.1074/jbc.272.24.15501. PubMed DOI
Rauch U., Clement A., Retzler C., Fröhlich L., Fässler R., Göhring W., Faissner A. Mapping of a Defined Neurocan Binding Site to Distinct Domains of Tenascin-C. J. Biol. Chem. 1997;272:26905–26912. doi: 10.1074/jbc.272.43.26905. PubMed DOI
Götz B., Scholze A., Clement A., Joester A., Schütte K., Wigger F., Frank R., Spiess E., Ekblom P., Faissner A. Tenascin-C Contains Distinct Adhesive, Anti-Adhesive, and Neurite Outgrowth Promoting Sites for Neurons. J. Cell Biol. 1996;132:681–699. doi: 10.1083/jcb.132.4.681. PubMed DOI PMC
Yokosaki Y., Matsuura N., Higashiyama S., Murakami I., Obara M., Yamakido M., Shigeto N., Chen J., Sheppard D. Identification of the Ligand Binding Site for the Integrin A9β1 in the Third Fibronectin Type III Repeat of Tenascin-C. J. Biol. Chem. 1998;273:11423–11428. doi: 10.1074/jbc.273.19.11423. PubMed DOI
Schnapp L.M., Hatch N., Ramos D.M., Klimanskaya I.V., Sheppard D., Pytela R. The Human Integrin A8β1 Functions as a Receptor for Tenascin, Fibronectin, and Vitronectin. J. Biol. Chem. 1995;270:23196–23202. doi: 10.1074/jbc.270.39.23196. PubMed DOI
Andrews M.R., Czvitkovich S., Dassie E., Vogelaar C.F., Faissner A., Blits B., Gage F.H., Ffrench-Constant C., Fawcett J.W. A9 Integrin Promotes Neurite Outgrowth on Tenascin-C and Enhances Sensory Axon Regeneration. J. Neurosci. 2009;29:5546–5557. doi: 10.1523/JNEUROSCI.0759-09.2009. PubMed DOI PMC
Maurel P., Rauch U., Flad M., Margolis R.K., Margolis R.U. Phosphacan, a Chondroitin Sulfate Proteoglycan of Brain That Interacts with Neurons and Neural Cell-Adhesion Molecules, Is an Extracellular Variant of a Receptor-Type Protein Tyrosine Phosphatase. Proc. Natl. Acad. Sci. 1994;91:2512–2516. doi: 10.1073/pnas.91.7.2512. PubMed DOI PMC
Bartsch U. The Extracellular Matrix Molecule Tenascin-C: Expression In Vivo and Functional Characterization In Vitro. Prog. Neurobiol. 1996;49:145–161. doi: 10.1016/0301-0082(96)00014-7. PubMed DOI
Brückner G., Grosche J., Schmidt S., Härtig W., Margolis R.U., Delpech B., Seidenbecher C.I., Czaniera R., Schachner M. Postnatal Development of Perineuronal Nets in Wild-Type Mice and in a Mutant Deficient in Tenascin-R. J. Comp. Neurol. 2000;428:616–629. doi: 10.1002/1096-9861(20001225)428:4<616::AID-CNE3>3.0.CO;2-K. PubMed DOI
Mouw J.K., Ou G., Weaver V.M. Extracellular Matrix Assembly: A Multiscale Deconstruction. Nat. Rev. Mol. Cell Biol. 2014;15:771–785. doi: 10.1038/nrm3902. PubMed DOI PMC
Brodkey J.A., Laywell E.D., O’Brien T.F., Faissner A., Stefansson K., Dörries H.U., Schachner M., Steindler D.A. Focal Brain Injury and Upregulation of a Developmentally Regulated Extracellular Matrix Protein. J. Neurosurg. 1995;82:106–112. doi: 10.3171/jns.1995.82.1.0106. PubMed DOI
Ferhat L., Chevassus Au Louis N., Jorquera I., Niquet J., Khrestchatisky M., Ben-Ari Y., Represa A. Transient Increase of Tenascin-C in Immature Hippocampus: Astroglial and Neuronal Expression. J. Neurocytol. 1996;25:53–66. doi: 10.1007/BF02284785. PubMed DOI
Theodosis D.T., Pierre K., Cadoret M.A., Allard M., Faissner A., Poulain D.A. Expression of High Levels of the Extracellular Matrix Glycoprotein, Tenascin-C, in the Normal Adult Hypothalamoneurohypophysial System. J. Comp. Neurol. 1997;379:386–398. doi: 10.1002/(SICI)1096-9861(19970317)379:3<386::AID-CNE5>3.0.CO;2-#. PubMed DOI
Stamenkovic V., Stamenkovic S., Jaworski T., Gawlak M., Jovanovic M., Jakovcevski I., Wilczynski G.M., Kaczmarek L., Schachner M., Radenovic L., et al. The Extracellular Matrix Glycoprotein Tenascin-C and Matrix Metalloproteinases Modify Cerebellar Structural Plasticity by Exposure to an Enriched Environment. Brain Struct. Funct. 2017;222:393–415. doi: 10.1007/s00429-016-1224-y. PubMed DOI
Scheffler B., Faissner A., Beck H., Behle K., Wolf H.K., Wiestler O.D., Blümcke I. Hippocampal Loss of Tenascin Boundaries in Ammon’s Horn Sclerosis. Glia. 1997;19:35–46. doi: 10.1002/(SICI)1098-1136(199701)19:1<35::AID-GLIA4>3.0.CO;2-9. PubMed DOI
Haunsoø A., Ibrahim M., Bartsch U., Letiembre M., Celio M.R., Menoud P.A. Morphology of Perineuronal Nets in Tenascin-R and Parvalbumin Single and Double Knockout Mice. Brain Res. 2000;864:142–145. doi: 10.1016/S0006-8993(00)02173-9. PubMed DOI
Hagihara K., Miura R., Kosaki R., Berglund E., Ranscht B., Yamaguchi Y. Immunohistochemical Evidence for the Brevican-Tenascin-R Interaction: Colocalization in Perineuronal Nets Suggests a Physiological Role for the Interaction in the Adult Rat Brain. J. Comp. Neurol. 1999;410:256–264. doi: 10.1002/(SICI)1096-9861(19990726)410:2<256::AID-CNE7>3.0.CO;2-5. PubMed DOI
Fukamauchi F., Mataga N., Wang Y.J., Sato S., Yoshiki A., Kusakabe M. Abnormal Behavior and Neurotransmissions of Tenascin Gene Knockout Mouse. Biochem. Biophys. Res. Commun. 1996;221:151–156. doi: 10.1006/bbrc.1996.0561. PubMed DOI
Evers M.R., Salmen B., Bukalo O., Rollenhagen A., Bösl M.R., Morellini F., Bartsch U., Dityatev A., Schachner M. Impairment of L-Type Ca2+ Channel-Dependent Forms of Hippocampal Synaptic Plasticity in Mice Deficient in the Extracellular Matrix Glycoprotein Tenascin-C. J. Neurosci. 2002;22:7177–7194. doi: 10.1523/JNEUROSCI.22-16-07177.2002. PubMed DOI PMC
Morellini F., Schachner M. Enhanced Novelty-Induced Activity, Reduced Anxiety, Delayed Resynchronization to Daylight Reversal and Weaker Muscle Strength in Tenascin-C-Deficient Mice. Eur. J. Neurosci. 2006;23:1255–1268. doi: 10.1111/j.1460-9568.2006.04657.x. PubMed DOI
Stamenkovic V., Milenkovic I., Galjak N., Todorovic V., Andjus P. Enriched Environment Alters the Behavioral Profile of Tenascin-C Deficient Mice. Behav. Brain Res. 2017;331:241–253. doi: 10.1016/j.bbr.2017.05.047. PubMed DOI
Irintchev A., Rollenhagen A., Troncoso E., Kiss J.Z., Schachner M. Structural and Functional Aberrations in the Cerebral Cortex of Tenascin-C Deficient Mice. Cereb. Cortex. 2005;15:950–962. doi: 10.1093/cercor/bhh195. PubMed DOI
Gurevicius K., Kuang F., Stoenica L., Irintchev A., Gureviciene I., Dityatev A., Schachner M., Tanila H. Genetic Ablation of Tenascin-C Expression Leads to Abnormal Hippocampal CA1 Structure and Electrical Activity In Vivo. Hippocampus. 2009;19:1232–1246. doi: 10.1002/hipo.20585. PubMed DOI
Šekeljić V., Andjus P.R. Tenascin-C and Its Functions in Neuronal Plasticity. Int. J. Biochem. Cell Biol. 2012:44. doi: 10.1016/j.biocel.2012.02.014. PubMed DOI
Citri A., Malenka R.C. Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology. 2008;33:18–41. doi: 10.1038/sj.npp.1301559. PubMed DOI
Lledo P.M., Alonso M., Grubb M.S. Adult Neurogenesis and Functional Plasticity in Neuronal Circuits. Nat. Rev. Neurosci. 2006;7:179–193. doi: 10.1038/nrn1867. PubMed DOI
Mangina C.A., Sokolov E.N. Neuronal Plasticity in Memory and Learning Abilities: Theoretical Position and Selective Review. Int. J. Psychophysiol. 2006;60:203–214. doi: 10.1016/j.ijpsycho.2005.11.004. PubMed DOI
Navarro X., Vivó M., Valero-Cabré A. Neural Plasticity after Peripheral Nerve Injury and Regeneration. Prog. Neurobiol. 2007;82:163–201. doi: 10.1016/j.pneurobio.2007.06.005. PubMed DOI
Hensch T.K. Controlling the Critical Period. Neurosci. Res. 2003;47:17–22. doi: 10.1016/S0168-0102(03)00164-0. PubMed DOI
Pizzorusso T., Medini P., Berardi N., Chierzi S., Fawcett J.W., Maffei L. Reactivation of Ocular Dominance Plasticity in the Adult Visual Cortex. Science. 2002;298:1248–1251. doi: 10.1126/science.1072699. PubMed DOI
Travaglia A., Steinmetz A.B., Miranda J.M., Alberini C.M. Mechanisms of Critical Period in the Hippocampus Underlie Object Location Learning and Memory in Infant Rats. Learn. Mem. 2018;25:176–182. doi: 10.1101/lm.046946.117. PubMed DOI PMC
Lensjø K.K., Christensen A.C., Tennøe S., Fyhn M., Hafting T. Differential Expression and Cell-Type Specificity of Perineuronal Nets in Hippocampus, Medial Entorhinal Cortex, and Visual Cortex Examined in the Rat and Mouse. eNeuro. 2017;4:1–18. doi: 10.1523/ENEURO.0379-16.2017. PubMed DOI PMC
Beurdeley M., Spatazza J., Lee H.H.C., Sugiyama S., Bernard C., Di Nardo A.A., Hensch T.K., Prochiantz A. Otx2 Binding to Perineuronal Nets Persistently Regulates Plasticity in the Mature Visual Cortex. J. Neurosci. 2012;32:9429–9437. doi: 10.1523/JNEUROSCI.0394-12.2012. PubMed DOI PMC
Bernard C., Prochiantz A. Otx2-PNN Interaction to Regulate Cortical Plasticity. Neural Plast. 2016;2016 doi: 10.1155/2016/7931693. PubMed DOI PMC
Mix A., Hoppenrath K., Funke K. Reduction in Cortical Parvalbumin Expression Due to Intermittent Theta-Burst Stimulation Correlates with Maturation of the Perineuronal Nets in Young Rats. Dev. Neurobiol. 2015:75. doi: 10.1002/dneu.22205. PubMed DOI
Nimchinsky E.A., Sabatini B.L., Svoboda K. Structure and Function of Dendritic Spines. Annu. Rev. Physiol. 2002;64:313–353. doi: 10.1146/annurev.physiol.64.081501.160008. PubMed DOI
Dino M.R., Harroch S., Hockfield S., Matthews R.T. Monoclonal Antibody Cat-315 Detects a Glycoform of Receptor Protein Tyrosine Phosphatase Beta/Phosphacan Early in CNS Development That Localizes to Extrasynaptic Sites Prior to Synapse Formation. Neuroscience. 2006;142:1055–1069. doi: 10.1016/j.neuroscience.2006.07.054. PubMed DOI
De Vivo L., Landi S., Panniello M., Baroncelli L., Chierzi S., Mariotti L., Spolidoro M., Pizzorusso T., Maffei L., Ratto G.M. Extracellular Matrix Inhibits Structural and Functional Plasticity of Dendritic Spines in the Adult Visual Cortex. Nat. Commun. 2013;4:1–10. doi: 10.1038/ncomms2491. PubMed DOI
Miyata S., Komatsu Y., Yoshimura Y., Taya C., Kitagawa H. Persistent Cortical Plasticity by Upregulation of Chondroitin 6-Sulfation. Nat. Neurosci. 2012;15:414–422. doi: 10.1038/nn.3023. PubMed DOI
Yang X. Chondroitin Sulfate Proteoglycans: Key Modulators of Neuronal Plasticity, Long-Term Memory, Neurodegenerative, and Psychiatric Disorders. Rev. Neurosci. 2020;31:555–568. doi: 10.1515/revneuro-2019-0117. PubMed DOI
Frischknecht R., Heine M., Perrais D., Seidenbecher C.I., Choquet D., Gundelfinger E.D. Brain Extracellular Matrix Affects AMPA Receptor Lateral Mobility and Short-Term Synaptic Plasticity. Nat. Neurosci. 2009;12:897–904. doi: 10.1038/nn.2338. PubMed DOI
Vedunova M., Sakharnova T., Mitroshina E., Perminova M., Pimashkin A., Zakharov Y., Dityatev A., Mukhina I. Seizure-like Activity in Hyaluronidase-Treated Dissociated Hippocampal Cultures. Front. Cell. Neurosci. 2013;7:1–10. doi: 10.3389/fncel.2013.00149. PubMed DOI PMC
Maroto M., Fernández-Morales J.C., Padín J.F., González J.C., Hernández-Guijo J.M., Montell E., Vergés J., De Diego A.M.G., García A.G. Chondroitin Sulfate, a Major Component of the Perineuronal Net, Elicits Inward Currents, Cell Depolarization, and Calcium Transients by Acting on AMPA and Kainate Receptors of Hippocampal Neurons. J. Neurochem. 2013;125:205–213. doi: 10.1111/jnc.12159. PubMed DOI
Vo T., Carulli D., Ehlert E.M.E., Kwok J.C.F., Dick G., Mecollari V., Moloney E.B., Neufeld G., de Winter F., Fawcett J.W., et al. The Chemorepulsive Axon Guidance Protein Semaphorin3A Is a Constituent of Perineuronal Nets in the Adult Rodent Brain. Mol. Cell. Neurosci. 2013;56:186–200. doi: 10.1016/j.mcn.2013.04.009. PubMed DOI
Sun Z.Y., Bozzelli P.L., Caccavano A., Allen M., Balmuth J., Vicini S., Wu J.Y., Conant K. Disruption of Perineuronal Nets Increases the Frequency of Sharp Wave Ripple Events. Hippocampus. 2018;28:42–52. doi: 10.1002/hipo.22804. PubMed DOI PMC
Lensjø K.K., Lepperød M.E., Dick G., Hafting T., Fyhn M. Removal of Perineuronal Nets Unlocks Juvenile Plasticity through Network Mechanisms of Decreased Inhibition and Increased Gamma Activity. J. Neurosci. 2017;37:1269–1283. doi: 10.1523/JNEUROSCI.2504-16.2016. PubMed DOI PMC
Dityatev A., Rusakov D.A. Molecular Signals of Plasticity at the Tetrapartite Synapse. Curr. Opin. Neurobiol. 2011;21:353–359. doi: 10.1016/j.conb.2010.12.006. PubMed DOI PMC
Levy C., Brooks J.M., Chen J., Su J., Fox M.A. Cell-Specific and Developmental Expression of Lectican-Cleaving Proteases in Mouse Hippocampus and Neocortex. J. Comp. Neurol. 2015;523:629–648. doi: 10.1002/cne.23701. PubMed DOI PMC
Wen T.H., Afroz S., Reinhard S.M., Palacios A.R., Tapia K., Binder D.K., Razak K.A., Ethell I.M. Genetic Reduction of Matrix Metalloproteinase-9 Promotes Formation of Perineuronal Nets Around Parvalbumin-Expressing Interneurons and Normalizes Auditory Cortex Responses in Developing Fmr1 Knock-Out Mice. Cereb. Cortex. 2018;28:3951–3964. doi: 10.1093/cercor/bhx258. PubMed DOI PMC
Donato F., Rompani S.B., Caroni P. Parvalbumin-Expressing Basket-Cell Network Plasticity Induced by Experience Regulates Adult Learning. Nature. 2013;504:272–276. doi: 10.1038/nature12866. PubMed DOI
Missirlis Y.F. Mechanoepigenetics. Front. Cell Dev. Biol. 2016;4:10–13. doi: 10.3389/fcell.2016.00113. PubMed DOI PMC
Jiang F.X., Lin D.C., Horkay F., Langrana N.A. Probing Mechanical Adaptation of Neurite Outgrowth on a Hydrogel Material Using Atomic Force Microscopy. Ann. Biomed. Eng. 2011;39:706–713. doi: 10.1007/s10439-010-0194-0. PubMed DOI PMC
Kwok J.C.F., Dick G., Wang D., Fawcett J.W. Extracellular Matrix and Perineuronal Nets in CNS Repair. Dev. Neurobiol. 2011;71:1073–1089. doi: 10.1002/dneu.20974. PubMed DOI
Harris N.G., Carmichael S.T., Hovda D.A., Sutton R.L. Traumatic Brain Injury Results in Disparate Regions of Chondroitin Sulfate Proteoglycan Expression That Are Temporally Limited. J. Neurosci. Res. 2009;87:2937–2950. doi: 10.1002/jnr.22115. PubMed DOI PMC
Yi J.H., Katagiri Y., Susarla B., Figge D., Symes A.J., Geller H.M. Alterations in Sulfated Chondroitin Glycosaminoglycans Following Controlled Cortical Impact Injury in Mice. J. Comp. Neurol. 2012;520:3295–3313. doi: 10.1002/cne.23156. PubMed DOI PMC
Vita S.M., Grayson B.E., Grill R.J. Acute Damage to the Blood–Brain Barrier and Perineuronal Net Integrity in a Clinically-Relevant Rat Model of Traumatic Brain Injury. Neuroreport. 2020;31:1167–1174. doi: 10.1097/WNR.0000000000001531. PubMed DOI
Ulbrich P., Khoshneviszadeh M., Jandke S., Schreiber S., Dityatev A. Interplay between Perivascular and Perineuronal Extracellular Matrix Remodelling in Neurological and Psychiatric Diseases. Eur. J. Neurosci. 2020 doi: 10.1111/ejn.14887. PubMed DOI
Bornstein P. Matricellular Proteins: An Overview. J. Cell Commun. Signal. 2009;3:163–165. doi: 10.1007/s12079-009-0069-z. PubMed DOI PMC
Kannus P., Jozsa L., Järvinen T.A.H., Järvinen T.L.N., Kvist M., Natri A., Järvinen M. Location and Distribution of Non-Collagenous Matrix Proteins in Musculoskeletal Tissues of Rat. Histochem. J. 1998;30:799–810. doi: 10.1023/A:1003448106673. PubMed DOI
Oberhauser A.F., Marszalek P.E., Erickson H.P., Fernandez J.M. The Molecular Elasticity of the Extracellular Matrix Protein Tenascin. Nature. 1998;393:181–185. doi: 10.1038/30270. PubMed DOI
Chiquet M., Tunç-Civelek V., Sarasa-Renedo A. Gene Regulation by Mechanotransduction in Fibroblasts. Appl. Physiol. Nutr. Metab. 2007;32:967–973. doi: 10.1139/H07-053. PubMed DOI
Plotnikov S.V., Pasapera A.M., Sabass B., Waterman C.M. Force Fluctuations within Focal Adhesions Mediate ECM-Rigidity Sensing to Guide Directed Cell Migration. Cell. 2012;151:1513–1527. doi: 10.1016/j.cell.2012.11.034. PubMed DOI PMC
Midwood K.S., Schwarzbauer J.E. Tenascin-C Modulates Matrix Contraction via Focal Adhesion Kinase– and Rho-Mediated Signaling Pathways. Mol. Biol. Cell. 2002;13:3601–3613. doi: 10.1091/mbc.e02-05-0292. PubMed DOI PMC
Nishio T., Kawaguchi S., Yamamoto M., Iseda T., Kawasaki T., Hase T. Tenascin-C Regulates Proliferation and Migration of Cultured Astrocytes in a Scratch Wound Assay. Neuroscience. 2005;132:87–102. doi: 10.1016/j.neuroscience.2004.12.028. PubMed DOI
Anderson M.A., Burda J.E., Ren Y., Ao Y., O’Shea T.M., Kawaguchi R., Coppola G., Khakh B.S., Deming T.J., Michael S.V. Astrocyte Scar Formation Aids CNS Axon Regeneration. Nature. 2016;532:195–200. doi: 10.1038/nature17623. PubMed DOI PMC
Rauch U. Extracellular Matrix Components Associated with Remodeling Processes in Brain. Cell. Mol. Life Sci. 2004;61:2031–2045. doi: 10.1007/s00018-004-4043-x. PubMed DOI PMC
Varga I., Hutóczki G., Szemcsák C.D., Zahuczky G., Tóth J., Adamecz Z., Kenyeres A., Bognár L., Hanzély Z., Klekner A. Brevican, Neurocan, Tenascin-C and Versican Are Mainly Responsible for the Invasiveness of Low-Grade Astrocytoma. Pathol. Oncol. Res. 2012;18:413–420. doi: 10.1007/s12253-011-9461-0. PubMed DOI
Miroshnikova Y.A., Mouw J.K., Barnes J.M., Pickup M.W., Lakins J.N., Kim Y., Lobo K., Persson A.I., Reis G.F., McKnigh T.R., et al. Tissue Mechanics Promote IDH1-Dependent HIF1α-Tenascin C Feedback to Regulate Glioblastoma Aggression. Nat. Cell Biol. 2016;18:1336–1345. doi: 10.1038/ncb3429. PubMed DOI PMC
Tajerian M., Hung V., Nguyen H., Lee G., Joubert L.M., Malkovskiy A.V., Zou B., Xie S., Huang T.T., Clark J.D. The Hippocampal Extracellular Matrix Regulates Pain and Memory after Injury. Mol. Psychiatry. 2018;23:2302–2313. doi: 10.1038/s41380-018-0209-z. PubMed DOI PMC
Altman J., Das G.D. Autoradiographic and Histological Evidence of Postnatal Hippocampal Neurogenesis in Rats. J. Comp. Neurol. 1965;124:319–335. doi: 10.1002/cne.901240303. PubMed DOI
Ge S., Goh E.L.K., Sailor K.A., Kitabatake Y., Ming G.L., Song H. GABA Regulates Synaptic Integration of Newly Generated Neurons in the Adult Brain. Nature. 2006;439:589–593. doi: 10.1038/nature04404. PubMed DOI PMC
Song J., Sun J., Moss J., Wen Z., Sun G.J., Hsu D., Zhong C., Davoudi H., Christian K.M., Toni N., et al. Parvalbumin Interneurons Mediate Neuronal Circuitry-Neurogenesis Coupling in the Adult Hippocampus. Nat. Neurosci. 2013;16:1728–1730. doi: 10.1038/nn.3572. PubMed DOI PMC
Vaden R.J., Gonzalez J.C., Tsai M.C., Niver A.J., Fusilier A.R., Griffith C.M., Kramer R.H., Wadiche J.I., Overstreet-Wadiche L. Parvalbumin Interneurons Provide Spillover to Newborn and Mature Dentate Granule Cells. Elife. 2020;9:1–23. doi: 10.7554/eLife.54125. PubMed DOI PMC
Groisman A.I., Yang S.M., Schinder A.F. Differential Coupling of Adult-Born Granule Cells to Parvalbumin and Somatostatin Interneurons. bioRxiv. 2019:598615. doi: 10.1016/j.celrep.2019.12.005. PubMed DOI PMC
Ikrar T., Guo N., He K., Besnard A., Levinson S., Hill A., Lee H.K., Hen R., Xu X., Sahay A. Adult Neurogenesis Modifies Excitability of the Dentate Gyrus. Front. Neural Circuits. 2013;7:1–15. doi: 10.3389/fncir.2013.00204. PubMed DOI PMC
Dityatev A., Brückner G., Dityateva G., Grosche J., Kleene R., Schachner M. Activity-Dependent Formation and Functions of Chondroitin Sulfate-Rich Extracellular Matrix of Perineuronal Nets. Dev. Neurobiol. 2007;67:570–588. doi: 10.1002/dneu.20361. PubMed DOI
Ge S., Yang C., Hsu K., Ming G., Song H. A Critical Period for Enhanced Synaptic Plasticity in Newly Generated Neurons of the Adult Brain. Neuron. 2007;54:559–566. doi: 10.1016/j.neuron.2007.05.002. PubMed DOI PMC
Fowke T.M., Karunasinghe R.N., Bai J.-Z., Jordan S., Gunn A.J., Dean J.M. Hyaluronan Synthesis by Developing Cortical Neurons In Vitro. Sci. Rep. 2017;7:44135. doi: 10.1038/srep44135. PubMed DOI PMC
Su W., Matsumoto S., Sorg B., Sherman L.S. Distinct Roles for Hyaluronan in Neural Stem Cell Niches and Perineuronal Nets. Matrix Biol. 2019;78–79:272–283. doi: 10.1016/j.matbio.2018.01.022. PubMed DOI PMC
Su W., Foster S.C., Xing R., Feistel K., Olsen R.H.J., Acevedo S.F., Raber J., Sherman L.S. CD44 Transmembrane Receptor and Hyaluronan Regulate Adult Hippocampal Neural Stem Cell Quiescence and Differentiation. J. Biol. Chem. 2017;292:4434–4445. doi: 10.1074/jbc.M116.774109. PubMed DOI PMC
Yamada J., Nadanaka S., Kitagawa H., Takeuchi K., Jinno S. Increased Synthesis of Chondroitin Sulfate Proteoglycan Promotes Adult Hippocampal Neurogenesis in Response to Enriched Environment. J. Neurosci. 2018;38:8496–8513. doi: 10.1523/JNEUROSCI.0632-18.2018. PubMed DOI PMC
Mencio C.P., Hussein R.K., Yu P., Geller H.M. The Role of Chondroitin Sulfate Proteoglycans in Nervous System Development. J. Histochem. Cytochem. 2021;69:61–80. doi: 10.1369/0022155420959147. PubMed DOI PMC
Sirko S., Von Holst A., Weber A., Wizenmann A., Theocharidis U., Götz M., Faissner A. Chondroitin Sulfates Are Required for Fibroblast Growth Factor-2-Dependent Proliferation and Maintenance in Neural Stem Cells and for Epidermal Growth Factor-Dependent Migration of Their Progeny. Stem Cells. 2010;28:775–787. doi: 10.1002/stem.309. PubMed DOI
Gates M.A., Thomas L.B., Howard E.M., Laywell E.D., Sajin B., Faissner A., Götz B., Silver J., Steindler D.A. Cell and Molecular Analysis of the Developing and Adult Mouse Subventricular Zone of the Cerebral Hemispheres. J. Comp. Neurol. 1995;361:249–266. doi: 10.1002/cne.903610205. PubMed DOI
Garcion E., Faissner A., Ffrench-Constant C. Knockout Mice Reveal a Contribution of the Extracellular Matrix Molecule Tenascin-C to Neural Precursor Proliferation and Migration. Development. 2001;128:2485–2496. doi: 10.1242/dev.128.13.2485. PubMed DOI
Garcion E., Halilagic A., Faissner A., Ffrench-Constant C. Generation of an Environmental Niche for Neural Stem Cell Development Bythe Extracellular Matrix Molecule Tenascin, C. Development. 2004;131:3423–3432. doi: 10.1242/dev.01202. PubMed DOI
Kwok J.C.F., Foscarin S., Fawcett J.W. Extracellular Matrix. Humana Press; New York, NY, USA: 2015. Perineuronal Nets: A Special Structure in the Central Nervous System Extracellular Matrix; pp. 23–32. DOI
Köppe G., Brückner G., Härtig W., Delpech B., Bigl V. Characterization of Proteoglycan-Containing Perineuronal Nets by Enzymatic Treatments of Rat Brain Sections. Histochem. J. 1997;29:11–20. doi: 10.1023/A:1026408716522. PubMed DOI
Seeger G., Brauer K., Härtig W., Brückner G. Mapping of Perineuronal Nets in the Rat Brain Stained by Colloidal Iron Hydroxide Histochemistry and Lectin Cytochemistry. Neuroscience. 1994;58:371–388. doi: 10.1016/0306-4522(94)90044-2. PubMed DOI
Dzyubenko E., Manrique-Castano D., Kleinschnitz C., Faissner A., Hermann D.M. Topological Remodeling of Cortical Perineuronal Nets in Focal Cerebral Ischemia and Mild Hypoperfusion. Matrix Biol. 2018;74:121–132. doi: 10.1016/j.matbio.2018.08.001. PubMed DOI
Sigal Y.M., Bae H., Bogart L.J., Hensch T.K., Zhuang X. Structural Maturation of Cortical Perineuronal Nets and Their Perforating Synapses Revealed by Superresolution Imaging. Proc. Natl. Acad. Sci. USA. 2019;116:7071–7076. doi: 10.1073/pnas.1817222116. PubMed DOI PMC
Arnst N., Kuznetsova S., Lipachev N., Shaikhutdinov N., Melnikova A., Mavlikeev M., Uvarov P., Baltina T.V., Rauvala H., Osin Y.N., et al. Spatial Patterns and Cell Surface Clusters in Perineuronal Nets. Brain Res. 2016;1648:214–223. doi: 10.1016/j.brainres.2016.07.020. PubMed DOI
Jakovljevic A., Blazikova M., Tucic M., Stamenkovic V., Andjus R.P. Analysis of Perineuronal Net Topography in the Hippocampus of Tenascin-C Deficient Mice; Proceedings of the 12th FENS Forum of Neuroscience, Virtual Forum; Glasgow, UK. 11–15 July 2020.