Association of the CD14 -260C/T polymorphism with plaque-induced gingivitis depends on the presence of Porphyromonas gingivalis

. 2022 Mar ; 32 (2) : 223-231. [epub] 20210615

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34097794

Grantová podpora
LM2011028 Ministerstvo Školství, Mládeže a Tělovýchovy
NV17-30439A Ministerstvo Zdravotnictví Ceské Republiky
MUNI/A/1675/2020 Lékařská fakulta, Masarykova univerzita
ROZV/28/LF1/2020 Lékařská fakulta, Masarykova univerzita

BACKGROUND: Plaque-induced gingivitis is the most prevalent periodontal disease associated with pathogenic biofilms. The host immune system responds to pathogens through pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and their co-receptor cluster of differentiation 14 (CD14). AIM: This study investigated the association between the functional polymorphism in the CD14 gene and the dental plaque microbiota in children with gingivitis. DESIGN: A total of 590 unrelated children (307 with plaque-induced gingivitis and 283 controls, aged 13-15 years) were enrolled in this case-control study. Dental plaque was processed using a ParoCheck® 20 detection kit. The CD14 -260C/T (rs2569190) polymorphism was determined with the PCR-RFLP method. RESULTS: Gingivitis was detected in 64.2% of boys and 35.8% of girls (P < .001). Children with gingivitis had a significantly higher occurrence of dental caries (P < .001). No significant differences in the CD14 -260C/T allele and genotype distribution among individuals with or without gingivitis in the whole cohort were found. Children with gingivitis and P gingivalis, however, were significantly more frequent carriers of the CT and TT genotypes than children with gingivitis without P gingivalis or healthy controls (P < .05). CONCLUSIONS: The CD14 -260C/T polymorphism acts in cooperation with P gingivalis to trigger plaque-induced gingivitis in Czech children.

Zobrazit více v PubMed

Trombelli L, Farina R, Silva CO, Tatakis DN. Plaque-induced gingivitis: case definition and diagnostic considerations. J Periodontol. 2018;1:S46-S73.

Tatakis DN, Kumar PS. Etiology and pathogenesis of periodontal diseases. Dent Clin North Am. 2005;49(3):491-516.

Trombelli L, Farina R. A review of factors influencing the incidence and severity of plaque-induced gingivitis. Minerva Stomatol. 2013;62(6):207-234.

Dashash M, Drucker DB, Hutchinson IV, Bazrafshani MR, Blinkhorn AS. Interleukin-1 receptor antagonist gene polymorphism and gingivitis in children. Oral Dis. 2007;13(3):308-313.

Barbosa MCF, Lima DC, Reis CLB, et al. Vitamin D receptor FokI and BglI genetic polymorphisms, dental caries, and gingivitis. Int J Paediatr Dent. 2020;30(5):642-649.

Zhang S, Divaris K, Moss K, et al. The novel ASIC2 locus is associated with severe gingival inflammation. JDR Clin Transl Res. 2016;1(2):163-170.

Bascones-Martínez A, Muñoz-Corcuera M, Noronha S, Mota P, Bascones-Ilundain C, Campo-Trapero J. Host defence mechanisms against bacterial aggression in periodontal disease: Basic mechanisms. Med Oral Patol Oral Cir Bucal. 2009;14(12):e680-e685. https://doi.org/10.4317/medoral.14.e680

Sugawara S, Sugiyama A, Nemoto E, Rikiishi H, Takada H. Heterogeneous expression and release of CD14 by human gingival fibroblasts: characterization and CD14-mediated interleukin-8 secretion in response to lipopolysaccharide. Infect Immun. 1998;66(7):3043-3049. https://doi.org/10.1128/IAI.66.7.3043-3049.1998

Frey EA, Miller DS, Jahr TG, et al. Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med. 1992;176(6):1665-1671. https://doi.org/10.1084/jem.176.6.1665

Amano S, Kawakami K, Iwahashi H, Kitano S, Hanazawa S. Functional role of endogenous CD14 in lipopolysaccharide-stimulated bone resorption. J Cell Physiol. 1997;173(3):301-309. https://doi.org/10.1002/(SICI)1097-4652(199712)173:3<301:AID-JCP1>3.0.CO;2-R

Pan Z, Hetherington CJ, Zhang DE. CCAAT/enhancer-binding protein activates the CD14 promoter and mediates transforming growth factor beta signaling in monocyte development. J Biol Chem. 1999;274(33):23242-23248. https://doi.org/10.1074/jbc.274.33.23242

LeVan TD, Bloom JW, Bailey TJ, et al. A common single nucleotide polymorphism in the CD14 promoter decreases the affinity of sp. protein binding and enhances transcriptional activity. J Immunol. 2001;167(10):5838-5844. https://doi.org/10.4049/jimmunol.167.10.5838

Baldini M, Lohman IC, Halonen M, Erickson RP, Holt PG, Martinez FD. A Polymorphism* in the 5′ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am J Respir Cell Mol Biol. 1999;20(5):976-983. https://doi.org/10.1165/ajrcmb.20.5.3494

Zhang H, Zhou L, Han Y, et al. Associations between CD14 −159 C>T polymorphism and chronic/aggressive periodontitis susceptibility. Oral Dis. 2013;19(8):805-811. https://doi.org/10.1111/odi.12096

Zheng J, Hou T, Gao L, et al. Association between CD14 gene polymorphism and periodontitis: a meta-analysis. Crit Rev Eukaryot Gene Expr. 2013;23(2):115-123. https://doi.org/10.1615/critreveukaryotgeneexpr.2013006952

Paediatr Perinat Epidemiol. European longitudinal study of pregnancy and childhood (ELSPAC). 1989;3(4):460-469. https://doi.org/10.1111/j.1365-3016.1989.tb00533.x

Izakovicova Holla L, Musilova K, Vokurka J, et al. Association of interleukin-6 (IL-6) haplotypes with plaque-induced gingivitis in children. Acta Odontol Scand. 2008;66:105-112.

WHO. Oral Health Surveys:Basic Methods, 4th edn. Geneva: WHO; 1997.

Silness J, Löe H. Periodontal disease in pregnancy. II. Correlation between oral hygiene and periodontal condition. Acta Odontol Scand. 1964;22:121-135.

Vieira Colombo AP, Magalhães CB, Hartenbach FA, Martins do Souto R, Maciel da Silva-Boghossian C. Periodontal-disease-associated biofilm: a reservoir for pathogens of medical importance. Microb Pathog. 2016;94:27-34. https://doi.org/10.1016/j.micpath.2015.09.009

Wang PL, Ohura K, Fujii T, et al. DNA microarray analysis of human gingival fibroblasts from healthy and inflammatory gingival tissues. Biochem Biophys Res Commun. 2003;305(4):970-973. https://doi.org/10.1016/s0006-291x(03)00821-0

Wang PL, Ohura K Porphyromonas gingivalis lipopolysaccharide signaling in gingival fibroblasts-CD14 and toll-like receptors. Crit Rev Oral Biol Med. 2002;13(2):132-142. https://doi.org/10.1177/154411130201300204

Becerik S, Ozsan N, Gürkan A, Oztürk VÖ, Atilla G, Emingil G. Toll like receptor 4 and membrane-bound CD14 expressions in gingivitis, periodontitis and CsA-induced gingival overgrowth. Arch Oral Biol. 2011;56(5):456-465. https://doi.org/10.1016/j.archoralbio.2010.11.008

Ghaderi H, Kiany F, Razmkhah M, et al. mRNA expression of pattern recognition receptors and their signaling mediators in healthy and diseased gingival tissues. J Indian Soc Periodontol. 2014;18(2):150-154. https://doi.org/10.4103/0972-124X.131309

Folwaczny M, Glas J, Török HP, Fricke K, Folwaczny C. The CD14 -159C-to-T promoter polymorphism in periodontal disease. J Clin Periodontol. 2004;31(11):991-995. https://doi.org/10.1111/j.1600-051X.2004.00600.x

Pasqualini D, Bergandi L, Palumbo L, et al. Association among oral health, apical periodontitis, CD14 polymorphisms, and coronary heart disease in middle-aged adults. J Endod. 2012;38(12):1570-1577. https://doi.org/10.1016/j.joen.2012.08.013

Foey AD, Crean S. Macrophage subset sensitivity to endotoxin tolerisation by Porphyromonas gingivalis. PLoS ONE. 2013;8(7):e67955. https://doi.org/10.1371/journal.pone.0067955

Sellers RM, Payne JB, Yu F, LeVan TD, Walker C, Mikuls TR. TLR4 Asp299Gly polymorphism may be protective against chronic periodontitis. J Periodontal Res. 2016;51(2):203-211. https://doi.org/10.1111/jre.12299

McClellan DL, Griffen AL, Leys EJ. Age and prevalence of Porphyromonas gingivalis in children. J Clin Microbiol. 1996;34(8):2017-2019. https://doi.org/10.1128/JCM.34.8.2017-2019.1996

Manukyan M, Triantafilou K, Triantafilou M, et al. Binding of lipopeptide to CD14 induces physical proximity of CD14, TLR2 and TLR1. Eur J Immunol. 2005;35(3):911-921. https://doi.org/10.1002/eji.200425336

Scheres N, Laine ML, Sipos PM, et al. Periodontal ligament and gingival fibroblasts from periodontitis patients are more active in interaction with Porphyromonas gingivalis. J Periodont Res. 2011;46(4):407-416. https://doi.org/10.1111/j.1600-0765.2011.01353.x

Shang L, Deng D, Buskermolen JK, et al. Commensal and pathogenic biofílms alter toll-like receptor signaling in reconstructed human gingiva. Front Cell Infect Microbiol. 2019;9:282. https://doi.org/10.3389/fcimb.2019.00282

Ebersole JL, Peyyala R, Gonzalez OA. Biofilm-induced profiles of immune response gene expression by oral epithelial cells. Mol Oral Microbiol. 2019;34(1):e12251. https://doi.org/10.1111/omi.12251

Zanoni I, Granucci F. Role of CD14 in host protection against infections and in metabolism regulation. Front Cell Infect Microbiol. 2013;3:32. https://doi.org/10.3389/fcimb.2013.00032

Zanoni I, Ostuni R, Marek LR, et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell. 2011;147:868-880. https://doi.org/10.1016/j.cell.2011.09.051

Wilensky A, Tzach-Nahman R, Potempa J, Shapira L, Nussbaum G Porphyromonas gingivalis gingipains selectively reduce CD14 expression, leading to macrophage hyporesponsiveness to bacterial infection. J Innate Immun. 2015;7(2):127-135. https://doi.org/10.1159/000365970

Cheng WC, van Asten SD, Burns LA, et al. Periodontitis-associated pathogens P gingivalis and A actinomycetemcomitans activate human CD14(+) monocytes leading to enhanced Th17/IL-17 responses. Eur J Immunol. 2016;46(9):2211-2221. https://doi.org/10.1002/eji.201545871

Gong Y, Bi W, Cao L, Yang Y, Chen J, Yu Y. Association of CD14-260 polymorphisms, red-complex periodontopathogens and gingival crevicular fluid cytokine levels with cyclosporine A-induced gingival overgrowth in renal transplant patients. J Periodont Res. 2013;48(2):203-212. https://doi.org/10.1111/j.1600-0765.2012.01521.x

Schulz S, Zissler N, Altermann W, et al. Impact of genetic variants of CD14 and TLR4 on subgingival periodontopathogens. Int J Immunogenet. 2008;35(6):457-464. https://doi.org/10.1111/j.1744-313X.2008.00811.x

Zhenghao W, Zhenxiong Z, Zehua L, Ping L. CD14: biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev. 2019;48:24-31. https://doi.org/10.1016/j.cytogfr.2019.06.003

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Glutathione S-transferase M1, T1, and P1 polymorphisms and periodontitis in a Caucasian population: a case-control study

. 2024 Feb 28 ; 24 (1) : 288. [epub] 20240228

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace