A synergy of liquid chromatography with high-resolution mass spectrometry and coagulation test for determination of direct oral anticoagulants for clinical and toxicological purposes
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
        Grant support
          
              FNOl 00098892 
          
      Ministry of Health, Czech Republic - conceptual development of research organization   
      
      
    PubMed
          
           34109658
           
          
          
    DOI
          
           10.1002/bmc.5195
           
          
          
  
    Knihovny.cz E-resources
    
  
              
      
- Keywords
- coagulation test, direct oral anticoagulant, high-resolution mass spectrometry, liquid chromatography, toxicology,
- MeSH
- Anticoagulants * administration & dosage blood isolation & purification toxicity MeSH
- Administration, Oral MeSH
- Chromatography, Liquid methods MeSH
- Mass Spectrometry methods MeSH
- Humans MeSH
- Linear Models MeSH
- Reproducibility of Results MeSH
- Sensitivity and Specificity MeSH
- Blood Coagulation Tests methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anticoagulants * MeSH
Direct oral anticoagulants are an alternative to anticoagulants based on vitamin K antagonists. Monitoring of direct oral anticoagulant concentration levels is necessary in specific cases (e.g. in emergency conditions, for determination of the cause of bleeding, adverse effects, risk of drug-direct oral anticoagulants interaction); therefore, a sensitive and specific method is needed. A methanol protein precipitation method followed by liquid chromatography with high-resolution mass spectrometry was developed for simultaneous separation and determination of apixaban, betrixaban, edoxaban, dabigatran, rivaroxaban and ximelagatran. The proposed method was fully validated in terms of linearity, the limits of detection and quantification, intra- and inter-day trueness and precision, recovery, matrix effect, process efficiency and stability. The method shows a strong correlation (Pearson's correlation coefficients > 0.92) with coagulation assays of apixaban, dabigatran and rivaroxaban (dilute thrombin time for gatrans and anti Xa factor (anti-Xa) activity for xabans). In addition, the developed method was applied for the identification and determination of apixaban and dabigatran in post-mortem serum samples. The developed method is a good alternative to coagulation tests which may show various interferences.
See more in PubMed
Blaich, C., Müller, C., Michels, G., & Wiesen, M. H. J. (2015). Multi-analyte analysis of non-vitamin K antagonist oral anticoagulants in human plasma using tandem mass spectrometry. Clinical Chemistry and Laboratory Medicine, 53, 1981-1990. https://doi.org/10.1515/cclm-2014-1108
Çelebier, M., Reçber, T., Koçak, E., Altinöz, S., & Kir, S. (2016). Determination of rivaroxaban in human plasma by solid-phase extraction-high performance liquid chromatography. Journal of Chromatography Science, 54, 216-220. https://doi.org/10.1093/chromsci/bmv135
Derogis, P. B. M., Sanches, L. R., de Aranda, V. F., Colombini, M. P., Mangueira, C. L. P., Katz, M., Faulhaber, A. C. L., Mendes, C. E. A., dos Santos Ferreira, C. E., França, C. N., & de Campos Guerra, J. C. (2017). Determination of rivaroxaban in patient's plasma samples by anti-Xa chromogenic test associated to high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). PLoS ONE, 12, e0171272. https://doi.org/10.1371/journal.pone.0171272
Ferrone, V., Todaro, S., Carlucci, M., Fontana, A., Ventrella, A., Carlucci, G., & Milanetti, E. (2020). Optimisation by response surface methodology of a dispersive magnetic solid phase extraction exploiting magnetic graphene nano composite coupled with UHPLC-PDA for simultaneous determination of new oral anticoagulants (NAOs) in human plasma. Journal of Pharmaceutical and Biomedical Analysis, 179, 112992. https://doi.org/10.1016/j.jpba.2019.112992
Hanada, K., Matsumoto, S., Shibata, S., Matsubara, H., Tsukumira, Y., & Takahashi, H. (2018). A quantitative LC/MSMS method for determination of edoxaban, a Xa inhibitor and its pharmacokinetic application in patients after total knee arthroplasty. Biomedical Chromatography, 32, e4213. https://doi.org/10.1002/bmc.4213
Harenberg, J., & Kreamer, R. (2012). Measurement of the new anticoagulants. Thrombosis Research, 1, S106-S113. https://doi.org/10.1016/S0049-3848(12)70028-2
Harenberg, J., Marx, S., Erdle, S., & Krämer, R. (2012). Determination of the anticoagulant effects of new oral anticoagulants: An unmet need. Expert Review of Hematology, 5, 107-113. https://doi.org/10.1586/ehm.11.79
Harenberg, J., Shanshan, D., Krämer, S., Weiss, C., Krämer, R., & Wehling, M. (2015). Patient's serum and urine as easily accessible samples for the measurement of non-vitamin K antagonist oral anticoagulants. Seminars in Thrombosis and Hemostasis, 41, 228-236. https://doi.org/10.1055/s-0035-1544158
ICH. (2019). Guideline M10 on bioanalytical method validation. https://www.ema.europa.eu/en/documents/scientific-guideline/draft-ich-guideline-m10-bioanalytical-method-validation-step-2b_en.pdf
Iqbal, M., Khalil, N. Y., Imam, F., & Anwer, K. (2015). A validated high-throughput UHPLC-MS/MS assay for accurate determination of rivaroxaban in plasma sample. Journal of Thrombosis and Thrombolysis, 39, 79-88. https://doi.org/10.1007/s11239-014-1121-2
Jensen, K. O. F., Hansen, S. H., Goetze, J. P., Jesting, A., Stensballe, J., & Hansen, H. (2017). Preliminary report: Measurement of apixaban and rivaroxaban in plasma from bleeding patients. European Journal Heamatology, 99, 431-436. https://doi.org/10.1111/ejh.12942
Matuszewski, B. K., Constanzer, M. L., & Chavez-Eng, C. M. (2003). Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Analytical Chemistry, 75, 3019-3030. https://doi.org/10.1021/ac020361s
Mekaj, Y., Mekaj, A., Duci, S., & Miftari, E. (2015). New oral anticoagulants: Their advantages and disadvantages compared with vitamin K antagonists in the prevention and treatment of patients with thromboembolic events. Therapeutics and Clinical Risk Managament, 11, 967-977. https://doi.org/10.2147/TCRM.S84210
Nouman, E. G., Al-Ghobashy, M. A., & Lofty, H. M. (2015). Development and validation of LC-MS/MS assay for the determination of the prodrug dabigatran etexilate and its active metabolites in human plasma. Journal of Chromatography B, 989, 37-45. https://doi.org/10.1016/j.jchromb.2015.02.042
Peacock, W. F., Rafique, Z., & Singer, A. J. (2016). Direct-acting oral anticoagulants: Practical considerations for emergency medicine physicians. Emergency Medicine International, 2016, 1781684. https://doi.org/10.1155/2016/1781684
Reçber, T., Haznedaroglu, I. C., & Çelebier, M. (2020). Review on characteristics and analytical methods of rivaroxaban. Critical Reviews in Analytical Chemistry, 4, 1-13. https://doi.org/10.1080/10408347.2020.1839735
Samama, M. M., & Guinet, C. (2011). Laboratory assessment of new anticoagulants. Clinical Chemistry and Laboratory Medicine, 49, 761-772. https://doi.org/10.1515/CCLM.2011.134
Schellings, M. W. M., Boonen, K., Schmitz, E. M. H., Jonkers, F., van den Heuvel, D. J., Besselaar, A., Hendriks, M. W. M., & van de Kerkhof, D. (2016). Determination of dabigatran and rivaroxaban by ultra-performance liquid chromatography-tandem mass spectrometry and coagulation assays after major orthopaedic surgery. Thrombosis Research, 139, 128-134. https://doi.org/10.1016/j.thromres.2016.01.012
Shaikh, K., Mungantiwar, A., Halde, S., & Pandita, N. (2020). Liquid chromatography-tandem mass spectrometry method for determination of rivaroxaban in human plasma and its application to a pharmacokinetic study. European Journal of Mass Spectrometry, 26, 91-105. https://doi.org/10.1177/1469066719875014
Sikorska, J., & James, U. (2017). Direct oral anticoagulants: A quick guide. European Cardiology, 12, 40-45. https://doi.org/10.15420/ecr.2017:11:2
Slavik, L., Jacova, J., Friedecky, D., Ulehlova, J., Tauber, Z., Prochazkova, J., Hlusi, A., & Palova, M. (2019). Evaluation of the DOAC-Stop procedure by LC-MS/MS assays for determining the residual activity of dabigatran, rivaroxaban, and apixaban. Clinical and Applied Thrombosis/Hemostasis, 25, 1-6. https://doi.org/10.1177/1076029619872556
Slavik, L., Lukes, J., Friedecky, D., Zhanelova, M., Nemcova, M., Ulehlova, J., Prochazkova, J., Hlusi, A., Palova, M., & Vaclavik, J. (2018). Multianalyte determination of DOACs using LC-MS/MS and comparison with functional coagulation assays. Clinical Laboratory, 64, 1611-1621. https://doi.org/10.7754/Clin.Lab.2018.180335
Tilea, I., Popa, D. S., Xantus, T. S., Primejdie, D., Grigorescu, B., Tilea, B., Bocicor, A. E., & Varga, A. (2015). Determination of apixaban levels in human plasma by a high-throughput liquid chromatography tandem mass spectrometry assay. Revista Romana de Medicina de Laborator, 23, 115-125. https://doi.org/10.1515/rrlm-2015-0006
Zhang, M., Moore, G. A., & Chin, P. K. (2020). Simultaneous determination of dabigatran, rivaroxaban, and Apixaban in human plasma by liquid chromatography/tandem mass spectrometry. Therapeutic Drug Monitoring, 42, 473-480. https://doi.org/10.1097/FTD.0000000000000744
