Population structure and genetic diversity of non-native aoudad populations
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34112859
PubMed Central
PMC8192935
DOI
10.1038/s41598-021-91678-2
PII: 10.1038/s41598-021-91678-2
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- genetická variace genetika MeSH
- haplotypy genetika MeSH
- mikrosatelitní repetice genetika MeSH
- mitochondriální DNA genetika MeSH
- populační genetika * MeSH
- přežvýkavci klasifikace genetika MeSH
- savci genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Evropa MeSH
- Španělsko MeSH
- Názvy látek
- mitochondriální DNA MeSH
The aoudad (Ammotragus lervia Pallas 1777) is an ungulate species, native to the mountain ranges of North Africa. In the second half of the twentieth century, it was successfully introduced in some European countries, mainly for hunting purposes, i.e. in Croatia, the Czech Republic, Italy, and Spain. We used neutral genetic markers, the mitochondrial DNA control region sequence and microsatellite loci, to characterize and compare genetic diversity and spatial pattern of genetic structure on different timeframes among all European aoudad populations. Four distinct control region haplotypes found in European aoudad populations indicate that the aoudad has been introduced in Europe from multiple genetic sources, with the population in the Sierra Espuña as the only population in which more than one haplotype was detected. The number of detected microsatellite alleles within all populations (< 3.61) and mean proportion of shared alleles within all analysed populations (< 0.55) indicates relatively low genetic variability, as expected for new populations funded by a small number of individuals. In STRUCTURE results with K = 2-4, Croatian and Czech populations cluster in the same genetic cluster, indicating joined origin. Among three populations from Spain, Almeria population shows as genetically distinct from others in results, while other Spanish populations diverge at K = 4. Maintenance of genetic diversity should be included in the management of populations to sustain their viability, specially for small Czech population with high proportion of shared alleles (0.85) and Croatian population that had the smallest estimated effective population size (Ne = 5.4).
Centre of Excellence for Biodiversity and Molecular Plant Breeding 10000 Zagreb Croatia
Department of Biology Faculty of Science University of Zagreb 10000 Zagreb Croatia
Department of Veterinary Medicine University of Sassari 07100 Sassari Italy
Zobrazit více v PubMed
Blackburn TM, Duncan RP. Establishment patterns of exotic birds are constrained by non-random patterns in introduction. J. Biogeogr. 2001;28:927–939. doi: 10.1046/j.1365-2699.2001.00597.x. DOI
Long JL. Introduced Mammals of the World: Their History, Distribution and Abundance. CABI Publishing; 2003.
Stuwe M, Scribner KT. Low genetic variability in reintroduced alpine ibex (Capra ibex ibex) populations. J. Mammal. 1989;70:370–373. doi: 10.2307/1381520. DOI
Allendorf FW, Lundquist LL. Introduction: Population biology, evolution, and control of invasive species. Conserv. Biol. 2003;17:24–30. doi: 10.1046/j.1523-1739.2003.02365.x. DOI
Frankham R. Genetics and extinction. Biol. Conserv. 2005;126:131–140. doi: 10.1016/j.biocon.2005.05.002. DOI
Michael Reed J, et al. Emerging issues in population viability analysis. Conserv. Biol. 2002;16:7–19. doi: 10.1046/j.1523-1739.2002.99419.x. PubMed DOI
Carpio AJ, et al. Hunting as a source of alien species: A European review. Biol. Invasions. 2017;19:1197–1211. doi: 10.1007/s10530-016-1313-0. DOI
Linnell JDC, Zachos FE. Status and distribution patterns of European ungulates: genetics, population history and conservation. In: Putman R, Apollonio M, Andersen R, editors. Ungulate Management in Europe: Problems and Practices. Cambridge University Press; 2011. pp. 12–53.
Šprem N, Gančević P, Safner T, Jerina K, Cassinello J. Barbary sheep (Ammotragus lervia, Pallas 1777) In: Hackländer K, Zachos FE, editors. Handbook of the Mammals of Europe. Springer; 2021.
Cassinello J. Ammotragus lervia: A review on systematics, biology, ecology and distribution. Ann. Zool. Fennici. 1998;35:149–162.
Cassinello, J. Ammotragus lervia (aoudad). Invasive species compendium. http://www.cabi.org/isc (2015).
Bounaceur F, Benamor N, Bissaad FZ, Abdi A, Aulagnier S. Is there a future for the last populations of aoudad (Ammotragus lervia) in northern Algeria? Pak. J. Zool. 2016;48:1727–1731.
Cassinello, J. et al. Ammotragus lervia. The IUCN Red List of Threatened Species. www.iucnredlist.org (2008).
Lazarus M, et al. Barbary sheep tissues as bioindicators of radionuclide and stabile element contamination in Croatia: Exposure assessment for consumers. Environ. Sci. Pollut. Res. 2019;26:14521–14533. doi: 10.1007/s11356-019-04507-5. PubMed DOI
Mori E, Mazza G, Saggiomo L, Sommese A, Esattore B. Strangers coming from the Sahara: An update of the worldwide distribution, potential impacts and conservation opportunities of alien aoudad. Ann. Zool. Fennici. 2017;54:373–386. doi: 10.5735/086.054.0501. DOI
Gančević, P., Šprem, N. & Jerina, K. Space use and activity patterns of introduced Barbary sheep (Ammotragus lervia) in Southern Dinarides, Croatia in Abstract book of 6th World Congress on Mountain Ungulates and 5th International Symposium on Mouflon (ed. Hadjisterkotis, E.) 41 (2016).
Bartoš L, Kotrba R, Pintíř J. Ungulates and their management in the Czech Republic. In: Apollonio M, Reidar A, Rory P, editors. European Ungulates and their Management in the 21st Century. Cambridge University Press; 2010. pp. 243–261.
Cassinello J, Serrano E, Calabuig G, Pérez JM. Range expansion of an exotic ungulate (Ammotragus lervia) in southern Spain: Ecological and conservation concerns. Biodivers. Conserv. 2004;13:851–866. doi: 10.1023/B:BIOC.0000014461.69034.78. DOI
Anadón JD, Pérez-García JM, Pérez I, Royo J, Sánchez-Zapata JA. Disentangling the effects of habitat, connectivity and interspecific competition in the range expansion of exotic and native ungulates. Landsc. Ecol. 2018;33:597–608. doi: 10.1007/s10980-018-0622-3. DOI
Cassinello J. Misconception and mismanagement of invasive species: The paradoxical case of an alien ungulate in Spain. Conserv. Lett. 2018;11:e12440. doi: 10.1111/conl.12440. DOI
Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ. Adaptive evolution in invasive species. Trends Plant Sci. 2008;13:288–294. doi: 10.1016/j.tplants.2008.03.004. PubMed DOI
Derouiche L, et al. Deep mitochondrial DNA phylogeographic divergence in the threatened aoudad Ammotragus lervia (Bovidae, Caprini) Gene. 2020;739:144510. doi: 10.1016/j.gene.2020.144510. PubMed DOI
Selkoe KA, Toonen RJ. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 2006;9:615–629. doi: 10.1111/j.1461-0248.2006.00889.x. PubMed DOI
Fernando P, Vidya TNC, Rajapakse C, Dangolla A, Melnick DJ. Reliable noninvasive genotyping: Fantasy or reality? J. Hered. 2003;94:115–123. doi: 10.1093/jhered/esg022. PubMed DOI
Cassinello J. Ammotragus free-ranging population in the south-east of Spain: A necessary first account. Biodivers. Conserv. 2000;9:887–900. doi: 10.1023/A:1008953028861. DOI
Moravčíková N, et al. Identification of genetic families based on mitochondrial D-loop sequence in population of the Tatra chamois (Rupicapra rupicapra tatrica) Biologia. 2019;75:121–128. doi: 10.2478/s11756-019-00313-z. DOI
Cassinello J. Ammotragus lervia Aoudad (Barbary Sheep, Arui) In: Kingdon J, Hoffmann M, editors. Mammals of Africa. Volume VI: Pigs, Hippopotamuses, Chevrotain, Giraffes, Deer and Bovids. Bloomsbury Publishing; 2013. pp. 595–599.
Nei M, Maruyama T, Chakraborty R. The bottleneck effect and genetic variability in populations. Evolution. 1975;29:1–10. doi: 10.1111/j.1558-5646.1975.tb00807.x. PubMed DOI
Šprem N, Buzan E. The genetic impact of chamois management in the dinarides. J. Wildl. Manag. 2016;80:783–793. doi: 10.1002/jwmg.21081. DOI
Pascual-Rico R, et al. Ecological niche overlap between co-occurring native and exotic ungulates: Insights for a conservation conflict. Biol. Invasions. 2020;22:2497–2508. doi: 10.1007/s10530-020-02265-x. DOI
Dlugosch KM, Parker IM. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 2008;17:431–449. doi: 10.1111/j.1365-294X.2007.03538.x. PubMed DOI
Beja-Pereira A, et al. Twenty polymorphic microsatellites in two of North Africa’s most threatened ungulates: Gazella dorcas and Ammotragus lervia (Bovidae; Artiodactyla) Mol. Ecol. Notes. 2004;4:452–455. doi: 10.1111/j.1471-8286.2004.00678.x. DOI
Schuelke M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 2000;18:233–234. doi: 10.1038/72708. PubMed DOI
Mereu P, Palici di Suni M, Manca L, Masala B. Complete nucleotide mtDNA sequence of Barbary sheep (Ammotragus lervia) DNA Seq. 2008;19:241–245. doi: 10.1080/10425170701550599. PubMed DOI
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Rozas J, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017;34:3299–3302. doi: 10.1093/molbev/msx248. PubMed DOI
Bandelt H-J, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999;16:37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI
Leigh JW, Bryant D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015;6:1110–1116. doi: 10.1111/2041-210X.12410. DOI
van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICROCHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 2004;4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x. DOI
Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. 1977;39:1–22.
Chapuis M-P, Estoup A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 2007;24:621–631. doi: 10.1093/molbev/msl191. PubMed DOI
Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007;16:1099–1106. doi: 10.1111/j.1365-294X.2007.03089.x. PubMed DOI
Belkhir K, Borsa P, Goudet, J., Chikhi, L. & Bonhomme, F. Genetix 4.05, logiciel sous Windows TM pour la genetique des populations. Available at: http://www.genetix.univ-montp2.fr/genetix/genetix.htm (2004)
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–1370. PubMed
Rousset F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 2008;8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x. PubMed DOI
Kalinowski ST. Counting alleles with rarefaction: Private alleles and hierarchical sampling designs. Conserv. Genet. 2004;5:539–543. doi: 10.1023/B:COGE.0000041021.91777.1a. DOI
Waples RS. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv. Genet. 2006;7:167–184. doi: 10.1007/s10592-005-9100-y. DOI
Do C, et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 2014;14:209–214. doi: 10.1111/1755-0998.12157. PubMed DOI
Waples RS, Do C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 2010;3:244–262. doi: 10.1111/j.1752-4571.2009.00104.x. PubMed DOI PMC
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC
Earl DA, vonHoldt BM. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012;4:359–361. doi: 10.1007/s12686-011-9548-7. DOI
Jakobsson M, Rosenberg NA. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801–1806. doi: 10.1093/bioinformatics/btm233. PubMed DOI
Rosenberg NA. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes. 2004;4:137–138. doi: 10.1046/j.1471-8286.2003.00566.x. DOI