OpiumPlex is a novel microsatellite system for profiling opium poppy (Papaver somniferum L.)

. 2021 Jun 17 ; 11 (1) : 12799. [epub] 20210617

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34140548
Odkazy

PubMed 34140548
PubMed Central PMC8211840
DOI 10.1038/s41598-021-91962-1
PII: 10.1038/s41598-021-91962-1
Knihovny.cz E-zdroje

Opium poppy (Papaver somniferum L.) is a versatile plant exploited by the pharmaceutical and food industries. Unfortunately, it is also infamously known as a source of highly addictive narcotics, primarily heroin. Drug abuse has devastating consequences for users and also has many direct or indirect negative impacts on human society as a whole. Therefore, developing a molecular genetic tool for the individualization of opium poppy, raw opium or heroin samples could help in the fight against the drug trade by retrieving more information about the source of narcotics and linking isolated criminal cases. Bioinformatic analysis provided insight into the distribution, density and other characteristics of roughly 150 thousand microsatellite loci within the poppy genome and indicated underrepresentation of microsatellites with the desired attributes. Despite this fact, 27 polymorphic STR markers, divided into three multiplexed assays, were developed in this work. Internal validation confirmed species-specific amplification, showed that the optimal amount of DNA is within the range of 0.625-1.25 ng per reaction, and indicate relatively well balanced assays according to the metrics used. Moreover, the stutter ratio (mean + 3 SD 2.28-15.59%) and allele-specific stutters were described. The analysis of 187 individual samples led to the identification of 158 alleles in total, with a mean of 5.85 alleles and a range of 3-14 alleles per locus. Most of the alleles (151) were sequenced by the Sanger method, which enabled us to propose standardized nomenclature and create three allelic ladders. The OpiumPlex system discriminates most of the varieties from each other and pharmaceutical varieties from the others (culinary, dual and ornamental).

Zobrazit více v PubMed

Merlin MD. Archaeological evidence for the tradition of psychoactive plant use in the old world. Econ. Bot. 2003;57:295–323. doi: 10.1663/0013-0001(2003)057[0295:AEFTTO]2.0.CO;2. DOI

Stranska I, Skalicky M, Novak J, Matyasova E, Hejnak V. Analysis of selected poppy (Papaver somniferum L.) cultivars: pharmaceutically important alkaloids. Ind. Crops Prod. 2013;41:120–126. doi: 10.1016/j.indcrop.2012.04.018. DOI

Verma N, Jena SN, Shukla S, Yadav K. Genetic diversity, population structure and marker trait associations for alkaloid content and licit opium yield in India-wide collection of poppy (Papaver somniferum L.) Plant Gene. 2016;7:26–41. doi: 10.1016/j.plgene.2016.08.001. DOI

Kabera JN, Semana E, Mussa AR, He X. Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol. 2014;2:377–392.

Winzer T, et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science. 2012;336:1704–1708. doi: 10.1126/science.1220757. PubMed DOI

United Nations Office on Drugs and Crime. World Drug Report 2019 (2019).

Odell LR, Skopec J, McCluskey A. Isolation and identification of unique marker compounds from the Tasmanian poppy Papaver somniferum N. Forensic Sci. Int. 2008;175:202–208. doi: 10.1016/j.forsciint.2007.07.002. PubMed DOI

Balayssac S, et al. Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR. Forensic Sci. Int. 2014;234:29–38. doi: 10.1016/j.forsciint.2013.10.025. PubMed DOI

Collins M. Illicit drug profiling: the Australian experience—revisited. Aust. J. Forensic Sci. 2017;49:591–604. doi: 10.1080/00450618.2017.1348009. DOI

Mák (Powerprint, 2010).

Benson S, Lennard C, Maynard P, Roux C. Forensic applications of isotope ratio mass spectrometry—a review. Forensic Sci. Int. 2006;157:1–22. doi: 10.1016/j.forsciint.2005.03.012. PubMed DOI

DeBord J, Pourmand A, Jantzi SC, Panicker S, Almirall J. Profiling of heroin and assignment of provenance by 87Sr/86Sr isotope ratio analysis. Inorganica Chim. Acta. 2017;468:294–299. doi: 10.1016/j.ica.2017.07.049. DOI

Marciano MA, Panicker SX, Liddil GD, Lindgren D, Sweder KS. Development of a method to extract opium poppy (Papaver somniferum L.) DNA from heroin. Sci. Rep. 2018;8:2590. doi: 10.1038/s41598-018-20996-9. PubMed DOI PMC

Guo L, et al. The opium poppy genome and morphinan production. Science. 2018;362:343–347. doi: 10.1126/science.aat4096. PubMed DOI

Lee EJ, et al. Exploiting expressed sequence tag databases for the development and characterization of gene-derived simple sequence repeat markers in the opium poppy (Papaver somniferum L.) for forensic applications. J. Forensic Sci. 2011;56:1131–1135. doi: 10.1111/j.1556-4029.2011.01810.x. PubMed DOI

Şelale H, et al. Development of EST-SSR markers for diversity and breeding studies in opium poppy. Plant Breed. 2013;132:344–351. doi: 10.1111/pbr.12059. DOI

Mičianová V, et al. Forensic application of EST-derived STR markers in opium poppy. Biologia. 2017;72:587. doi: 10.1515/biolog-2017-0076. DOI

Vašek J, et al. New EST-SSR markers for individual genotyping of opium poppy cultivars (Papaver somniferum L.) Plants. 2020;9:10. doi: 10.3390/plants9010010. PubMed DOI PMC

Celik I, Gultekin V, Allmer J, Doganlar S, Frary A. Development of genomic simple sequence repeat markers in opium poppy by next-generation sequencing. Mol. Breed. 2014;34:323–334. doi: 10.1007/s11032-014-0036-0. DOI

Young B, Roman MG, LaRue B, Gangitano D, Houston R. Evaluation of 19 short tandem repeat markers for individualization of Papaver somniferum. Sci. Justice. 2020;60:253–262. doi: 10.1016/j.scijus.2019.12.002. PubMed DOI

Labanca F, Ovesnà J, Milella L. Papaver somniferum L. taxonomy, uses and new insight in poppy alkaloid pathways. Phytochem. Rev. 2018;17:853–871. doi: 10.1007/s11101-018-9563-3. DOI

Wang X. GMATA: an integrated software package for genome-scale ssr mining, marker development and viewing. Front. Plant Sci. 2016;7:11. PubMed PMC

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2020.

Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000;7:203–214. doi: 10.1089/10665270050081478. PubMed DOI

Untergasser A, et al. Primer3—new capabilities and interfaces. Nucl. Acids Res. 2012;40:e115–e115. doi: 10.1093/nar/gks596. PubMed DOI PMC

Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23:1289–1291. doi: 10.1093/bioinformatics/btm091. PubMed DOI

Vallone PM, Butler JM. AutoDimer: a screening tool for primer-dimer and hairpin structures. Biotechniques. 2004;37:226–231. doi: 10.2144/04372ST03. PubMed DOI

Brownstein MJ, Carpten JD, Smith JR. Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques. 1996;20:1004–1010. doi: 10.2144/96206st01. PubMed DOI

Benbouza H, Jacquemin J-M, Baudoin J-P, Mergeai G. Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnol. Agron. Soc. Environ. 2006;5:374–380.

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999;41:95–98.

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Gill P, et al. Considerations from the European DNA profiling group (EDNAP) concerning STR nomenclature. Forensic Sci. Int. 1997 doi: 10.1016/S0379-0738(97)00111-4. PubMed DOI

Olaisen B, et al. DNA recommendations 1997 of the International Society for Forensic Genetics. Vox Sang. 1998;74:61–63. doi: 10.1046/j.1423-0410.1998.7410061.x. PubMed DOI

Gusmão L, et al. DNA commission of the International Society of Forensic Genetics (ISFG): an update of the recommendations on the use of Y-STRs in forensic analysis. Forensic Sci. Int. 2006;157:187–197. doi: 10.1016/j.forsciint.2005.04.002. PubMed DOI

Butler JM. Advanced Topics in Forensic DNA Typing: Methodology. Elsevier Academic Press; 2011.

Young B, Faris T, Armogida L. A nomenclature for sequence-based forensic DNA analysis. Forensic Sci. Int. Genet. 2019;42:14–20. doi: 10.1016/j.fsigen.2019.06.001. PubMed DOI

Houston R, Birck M, Hughes-Stamm S, Gangitano D. Developmental and internal validation of a novel 13 loci STR multiplex method for Cannabis sativa DNA profiling. Leg. Med. 2017;26:33–40. doi: 10.1016/j.legalmed.2017.03.001. PubMed DOI

Ludeman MJ, et al. Developmental validation of GlobalFilerTM PCR amplification kit: a 6-dye multiplex assay designed for amplification of casework samples. Int. J. Legal Med. 2018;132:1555–1573. doi: 10.1007/s00414-018-1817-5. PubMed DOI PMC

Debernardi A, et al. One year variability of peak heights, heterozygous balance and inter-locus balance for the DNA positive control of AmpFSTR© Identifiler© STR kit. Forensic Sci. Int. Genet. 2011;5:43–49. doi: 10.1016/j.fsigen.2010.01.020. PubMed DOI

Kelly H, Bright J-A, Curran JM, Buckleton J. Modelling heterozygote balance in forensic DNA profiles. Forensic Sci. Int. Genet. 2012;6:729–734. doi: 10.1016/j.fsigen.2012.08.002. PubMed DOI

Leclair B, Frégeau CJ, Bowen KL, Fourney RM. Systematic analysis of stutter percentages and allele peak height and peak area ratios at heterozygous STR loci for forensic casework and database samples. J. Forensic Sci. 2004;49:13. PubMed

Brookes C, Bright J-A, Harbison S, Buckleton J. Characterising stutter in forensic STR multiplexes. Forensic Sci. Int. Genet. 2012;6:58–63. doi: 10.1016/j.fsigen.2011.02.001. PubMed DOI

Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007;16:1099–1106. doi: 10.1111/j.1365-294X.2007.03089.x. PubMed DOI

Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–1405. doi: 10.1093/bioinformatics/btn129. PubMed DOI

Chessel D, Dufour AB, Thioulouse J. The ade4 package—I: one-table methods. R News. 2004;4:6.

Dray S, Dufour A-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Soft. 2007;22:1–20. doi: 10.18637/jss.v022.i04. DOI

Lucas, A. amap: Another Multidimensional Analysis Package (2019).

Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–2849. doi: 10.1093/bioinformatics/btw313. PubMed DOI

Linacre A, et al. ISFG: recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations. Forensic Sci. Int. Genet. 2011;5:501–505. doi: 10.1016/j.fsigen.2010.10.017. PubMed DOI

Ott A, Trautschold B, Sandhu D. Using microsatellites to understand the physical distribution of recombination on soybean chromosomes. PLoS ONE. 2011;6:e22306. doi: 10.1371/journal.pone.0022306. PubMed DOI PMC

Henderson IR. Control of meiotic recombination frequency in plant genomes. Curr. Opin. Plant Biol. 2012;15:6. doi: 10.1016/j.pbi.2012.09.002. PubMed DOI

Mieulet D, et al. Unleashing meiotic crossovers in crops. Nat. Plants. 2018;4:1010–1016. doi: 10.1038/s41477-018-0311-x. PubMed DOI

Valverde L, et al. Nomenclature proposal and SNPSTR haplotypes for 7 new Cannabis sativa L. STR loci. Forensic Sci. Int. Genet. 2014;13:185–186. doi: 10.1016/j.fsigen.2014.08.002. PubMed DOI

Eichmann C, Berger B, Parson W. A proposed nomenclature for 15 canine-specific polymorphic STR loci for forensic purposes. Int. J. Legal Med. 2004;118:249–266. doi: 10.1007/s00414-004-0452-5. PubMed DOI

Lavania UC, Srivastava S. Quantitative delineation of karyotype variation in Papaver as a measure of phylogenetic differentiation and origin. Curr. Sci. 1999;77:7.

Guo F. Development of a 24-locus multiplex system to incorporate the core loci in the Combined DNA Index System (CODIS) and the European Standard Set (ESS) Forensic Sci. Int. 2014 doi: 10.1016/j.fsigen.2013.07.007. PubMed DOI

Gill P, Sparkes R, Kimpton C. Development of guidelines to designate alleles using an STR multiplex system. Forensic Sci. Int. 1997;89:185–197. doi: 10.1016/S0379-0738(97)00131-X. PubMed DOI

Ciavaglia S, Linacre A. OzPythonPlex_An optimised forensic STR multiplex assay set for the Australasian carpet python (Morelia spilota) Forensic Sci. Int. Genet. 2018;34:231–248. doi: 10.1016/j.fsigen.2018.03.002. PubMed DOI

Budowle B, Eisenberg AJ, van Daal A. Validity of low copy number typing and applications to forensic science. Croat. Med. J. 2009;50:207–217. doi: 10.3325/cmj.2009.50.207. PubMed DOI PMC

Caragine T, et al. Validation of testing and interpretation protocols for low template DNA samples using AmpFℓSTR® identifiler®. Croat. Med. J. 2009;50:250–267. doi: 10.3325/cmj.2009.50.250. PubMed DOI PMC

Kelly H, Bright J-A, Buckleton JS, Curran JM. Identifying and modelling the drivers of stutter in forensic DNA profiles. Aust. J. Forensic Sci. 2014;46:194–203. doi: 10.1080/00450618.2013.808697. DOI

Butler JM. Advanced Topics in Forensic DNA Typing: Interpretation. Elsevier Academic Press; 2014.

DUS Guidance. https://www.upov.int/resource/en/dus_guidance.html.

Kameníková L. Poppy variety sokol (white-seed type) Czech J. Genet. Plant Breed. 2005;41:79–80. doi: 10.17221/6077-CJGPB. DOI

Kameníková L, Vrbovský V. White-seeded poppy varieties Orel and Racek. Czech J. Genet. Plant Breed. 2009;45:37–38. doi: 10.17221/5/2009-CJGPB. DOI

Li Q, et al. Gene clustering and copy number variation in alkaloid metabolic pathways of opium poppy. Nat. Commun. 2020;11:1190. doi: 10.1038/s41467-020-15040-2. PubMed DOI PMC

Meos A, Saks L, Raal A. Content of alkaloids in ornamental Papaver somniferum L. cultivars growing in Estonia. <bibarticledoi></bibarticledoi>. P. EST. ACAD. SCI. 2017;66(1):34–39. doi: 10.3176/proc.2017.1.04. DOI

Vrbovský V. Poppy variety Orfeus. Czech Journal of Genetics and Plant Breeding. 2009;45(No. 1):35–36. doi: 10.17221/3/2009-CJGPB. DOI

Vrbovský, V. New registered variety of poppy ‘Opex’. In: Collection of conference Prosperující olejniny, 228-229 (2015).

Matyášová, E. Variabilita genových zdrojů máku (Papaver somniferum L.) (Czech University of Life Sciences Prague, 2010).

Central Institute for Supervising and Testing in Agriculture. Recommended List of Plant Varieties 2006-2021. http://eagri.cz/public/web/en/ukzuz/portal/plant-varieties/publications/recommended-list-of-plant-varieties/.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

cor1 Gene: A Suitable Marker for Identification of Opium Poppy (Papaver somniferum L.)

. 2024 May 07 ; 13 (10) : . [epub] 20240507

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...