Effects of climate variation on bird escape distances modulate community responses to global change
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34145317
PubMed Central
PMC8213824
DOI
10.1038/s41598-021-92273-1
PII: 10.1038/s41598-021-92273-1
Knihovny.cz E-zdroje
- MeSH
- klimatické změny * MeSH
- lidé MeSH
- migrace zvířat * MeSH
- podnebí * MeSH
- populační dynamika MeSH
- ptáci * fyziologie MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Climate and land use are rapidly changing environmental conditions. Behavioral responses to such global perturbations can be used to incorporate interspecific interactions into predictive models of population responses to global change. Flight initiation distance (FID) reflects antipredator behaviour defined as the distance at which an individual takes flight when approached by a human, under standardized conditions. This behavioural trait results from a balance between disturbance, predation risk, food availability and physiological needs, and it is related to geographical range and population trends in European birds. Using 32,145 records of flight initiation distances for 229 bird species during 2006-2019 in 24 European localities, we show that FIDs decreased with increasing temperature and precipitation, as expected if foraging success decreased under warm and humid conditions. Trends were further altered by latitude, urbanisation and body mass, as expected if climate effects on FIDs were mediated by food abundance and need, differing according to position in food webs, supporting foraging models. This provides evidence for a role of behavioural responses within food webs on how bird populations and communities are affected by global change.
Department of Zoology and Laboratory of Ornithology Palacky University 77146 Olomouc Czech Republic
Department of Zoology Faculty of Sciences University of Granada 18071 Granada Spain
Ecologie Systématique et Evolution Université Paris Saclay CNRS AgroParisTech 91405 Orsay France
Institute of Zoology Poznań University of Life Sciences Wojska Polskiego 71C 60625 Poznań Poland
Zobrazit více v PubMed
Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017). PubMed
Pearson RG, Dawson TE. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003;12:361–371. doi: 10.1046/j.1466-822X.2003.00042.x. DOI
Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with high levels of climate warming. Science. 2011;333:1024–1026. doi: 10.1126/science.1206432. PubMed DOI
Dunn, P. O. Changes in timing of breeding and reproductive success in birds. in Effects of Climate Change on Birds, 2nd edn. (eds. Dunn, P. O. & Møller, A. P.). 108–119 (Oxford University Press, 2019).
Peterson, A. T. et al. Ecological Niches and Geographic Distributions (Princeton University Press, 2011).
Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD. A framework for community interactions under climate change. Trends Ecol. Evol. 2010;25:325–331. doi: 10.1016/j.tree.2010.03.002. PubMed DOI
Staniczenko PPA, Sivasubramaniam P, Suttle KB, Pearson RG. Linking macroecology and community ecology: Refining predictions of species distributions using biotic interaction networks. Ecol. Lett. 2017;20:693–707. doi: 10.1111/ele.12770. PubMed DOI PMC
Mendoza M, Araújo MB. Climate shapes mammal community trophic structures and humans simplify them. Nature Commun. 2019;10:1–9. doi: 10.1038/s41467-019-12995-9. PubMed DOI PMC
Bartley TJ, et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 2019;3:345–354. doi: 10.1038/s41559-018-0772-3. PubMed DOI
Beever EA, et al. Behavioral flexibility as a mechanism for coping with climate change. Front. Ecol. Environ. 2017;15:299–308. doi: 10.1002/fee.1502. DOI
Blois JL, Williams JW, Fitzpatrick MC, Jackson ST, Ferrier S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Nat. Acad. Sci. USA. 2013;110:9374–9379. doi: 10.1073/pnas.1220228110. PubMed DOI PMC
Blumstein DT. Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 2006;71:389–399. doi: 10.1016/j.anbehav.2005.05.010. DOI
Díaz M. et al. The geography of fear: A latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS One8, e64634 (2013). PubMed PMC
Samia DS, Nakagawa S, Nomura F, Rangel TF, Blumstein DT. Increased tolerance to humans among disturbed wildlife. Nat. Commun. 2015;6:8877. doi: 10.1038/ncomms9877. PubMed DOI PMC
Samia DSM, et al. Rural-urban difference in escape behavior of European birds across a latitudinal gradient. Front. Ecol. Evol. 2017;55:6.
Møller AP. Urban areas as refuges from predators and flight distance of prey. Behav. Ecol. 2012;23:1030–1035. doi: 10.1093/beheco/ars067. DOI
Møller AP. The value of a mouthful: Flight initiation distance as an opportunity cost. Eur. J. Ecol. 2015;1:43–51. doi: 10.1515/eje-2015-0006. DOI
Møller AP, et al. Urban habitats and feeders both contribute to flight initiation distance reduction in birds. Behav. Ecol. 2015;26:861–865. doi: 10.1093/beheco/arv024. DOI
Møller AP, Grim T, Ibáñez-Álamo JD, Markó G, Tryjanowski P. Change in flight distance between urban and rural habitats following a cold winter. Behav. Ecol. 2013;24:1211–1217. doi: 10.1093/beheco/art054. DOI
Møller AP. Life history, predation and flight initiation distance in a migratory bird. J. Evol. Biol. 2014;27:1105–1113. doi: 10.1111/jeb.12399. PubMed DOI
Carrete M. Heritability of fear of humans in urban and rural populations of a bird species. Sci. Rep. 2016;6:1–6. doi: 10.1038/srep31060. PubMed DOI PMC
Díaz M, et al. Interactive effects of fearfulness and geographical location on bird population trends. Behav. Ecol. 2015;26:716–721. doi: 10.1093/beheco/aru211. DOI
Møller AP, Díaz M. Avian preference for close proximity to human habitation and its ecological consequences. Curr. Zool. 2018;64:623–630. doi: 10.1093/cz/zox073. PubMed DOI PMC
Møller AP, Díaz M. Niche segregation, competition and urbanization. Curr Zool. 2018;64:145–152. doi: 10.1093/cz/zox025. PubMed DOI PMC
Cox AR, Robertson RJ, Lendvai ÁZ, Everitt K, Bonier F. Rainy springs linked to poor nestling growth in a declining avian aerial insectivore (Tachycineta bicolor) Proc. R. Soc. B. 2019;286:20190018. doi: 10.1098/rspb.2019.0018. PubMed DOI PMC
Sergio F. From individual behaviour to population pattern: weather-dependent foraging and breeding performance in black kites. Anim. Behav. 2003;66:1109–1117. doi: 10.1006/anbe.2003.2303. DOI
Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 2009;40:245–269. doi: 10.1146/annurev.ecolsys.39.110707.173430. DOI
Sol D, et al. Risk-taking behavior, urbanization and the pace of life in birds. Behav. Ecol. Sociobiol. 2018;72:59. doi: 10.1007/s00265-018-2463-0. DOI
Møller AP, et al. Effects of urbanization on animal phenology: A continental study of paired urban and rural avian populations. Clim. Res. 2015;66:185–199. doi: 10.3354/cr01344. DOI
Winter Y, Von Helversen O. The energy cost of flight: Do small bats fly more cheaply than birds? J. Comp. Physiol. B. 1998;168:105–111. doi: 10.1007/s003600050126. PubMed DOI
Møller AP, Erritzøe J, Nielsen JT. Causes of interspecific variation in susceptibility to cat predation on birds. Chin. Birds. 2010;1:97–111. doi: 10.5122/cbirds.2010.0001. DOI
Møller AP, Solonen T, Byholm P, Huhta E, Nielsen JT, Tornberg R. Spatial consistency in susceptibility of prey species to predation by two Accipiter hawks. J. Avian Biol. 2012;43:390–396. doi: 10.1111/j.1600-048X.2012.05723.x. DOI
Creel S, Christianson D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 2008;23:194–201. doi: 10.1016/j.tree.2007.12.004. PubMed DOI
Morelli F, et al. Insurance for the future? Potential avian community resilience in cities across Europe. Clim. Change. 2020;159:195–214. doi: 10.1007/s10584-019-02583-7. DOI
Storchová L, Hořák D. Life-history characteristics of European birds. Glob. Ecol. Biogeogr. 2018;27:400–406. doi: 10.1111/geb.12709. DOI
Garamszegi LZ, Møller AP. Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol. Rev. 2010;85:797–805. PubMed
Bell G. A comparative method. Am. Nat. 1989;133:553–571. doi: 10.1086/284935. DOI
Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 2010;1:103–113. doi: 10.1111/j.2041-210X.2010.00012.x. DOI
Lipsey, M. W. & Wilson, D. B. Practical Meta-Analysis. https://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-Home.php (Sage, 2001).
Cohen, J. Statistical Power Analysis for the Behavioral Sciences (L. Erlbaum Associates, 1988).