Effects of climate variation on bird escape distances modulate community responses to global change

. 2021 Jun 18 ; 11 (1) : 12826. [epub] 20210618

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34145317
Odkazy

PubMed 34145317
PubMed Central PMC8213824
DOI 10.1038/s41598-021-92273-1
PII: 10.1038/s41598-021-92273-1
Knihovny.cz E-zdroje

Climate and land use are rapidly changing environmental conditions. Behavioral responses to such global perturbations can be used to incorporate interspecific interactions into predictive models of population responses to global change. Flight initiation distance (FID) reflects antipredator behaviour defined as the distance at which an individual takes flight when approached by a human, under standardized conditions. This behavioural trait results from a balance between disturbance, predation risk, food availability and physiological needs, and it is related to geographical range and population trends in European birds. Using 32,145 records of flight initiation distances for 229 bird species during 2006-2019 in 24 European localities, we show that FIDs decreased with increasing temperature and precipitation, as expected if foraging success decreased under warm and humid conditions. Trends were further altered by latitude, urbanisation and body mass, as expected if climate effects on FIDs were mediated by food abundance and need, differing according to position in food webs, supporting foraging models. This provides evidence for a role of behavioural responses within food webs on how bird populations and communities are affected by global change.

Erratum v

PubMed

Zobrazit více v PubMed

Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017). PubMed

Pearson RG, Dawson TE. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003;12:361–371. doi: 10.1046/j.1466-822X.2003.00042.x. DOI

Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with high levels of climate warming. Science. 2011;333:1024–1026. doi: 10.1126/science.1206432. PubMed DOI

Dunn, P. O. Changes in timing of breeding and reproductive success in birds. in Effects of Climate Change on Birds, 2nd edn. (eds. Dunn, P. O. & Møller, A. P.). 108–119 (Oxford University Press, 2019).

Peterson, A. T. et al. Ecological Niches and Geographic Distributions (Princeton University Press, 2011).

Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD. A framework for community interactions under climate change. Trends Ecol. Evol. 2010;25:325–331. doi: 10.1016/j.tree.2010.03.002. PubMed DOI

Staniczenko PPA, Sivasubramaniam P, Suttle KB, Pearson RG. Linking macroecology and community ecology: Refining predictions of species distributions using biotic interaction networks. Ecol. Lett. 2017;20:693–707. doi: 10.1111/ele.12770. PubMed DOI PMC

Mendoza M, Araújo MB. Climate shapes mammal community trophic structures and humans simplify them. Nature Commun. 2019;10:1–9. doi: 10.1038/s41467-019-12995-9. PubMed DOI PMC

Bartley TJ, et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 2019;3:345–354. doi: 10.1038/s41559-018-0772-3. PubMed DOI

Beever EA, et al. Behavioral flexibility as a mechanism for coping with climate change. Front. Ecol. Environ. 2017;15:299–308. doi: 10.1002/fee.1502. DOI

Blois JL, Williams JW, Fitzpatrick MC, Jackson ST, Ferrier S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Nat. Acad. Sci. USA. 2013;110:9374–9379. doi: 10.1073/pnas.1220228110. PubMed DOI PMC

Blumstein DT. Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 2006;71:389–399. doi: 10.1016/j.anbehav.2005.05.010. DOI

Díaz M. et al. The geography of fear: A latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS One8, e64634 (2013). PubMed PMC

Samia DS, Nakagawa S, Nomura F, Rangel TF, Blumstein DT. Increased tolerance to humans among disturbed wildlife. Nat. Commun. 2015;6:8877. doi: 10.1038/ncomms9877. PubMed DOI PMC

Samia DSM, et al. Rural-urban difference in escape behavior of European birds across a latitudinal gradient. Front. Ecol. Evol. 2017;55:6.

Møller AP. Urban areas as refuges from predators and flight distance of prey. Behav. Ecol. 2012;23:1030–1035. doi: 10.1093/beheco/ars067. DOI

Møller AP. The value of a mouthful: Flight initiation distance as an opportunity cost. Eur. J. Ecol. 2015;1:43–51. doi: 10.1515/eje-2015-0006. DOI

Møller AP, et al. Urban habitats and feeders both contribute to flight initiation distance reduction in birds. Behav. Ecol. 2015;26:861–865. doi: 10.1093/beheco/arv024. DOI

Møller AP, Grim T, Ibáñez-Álamo JD, Markó G, Tryjanowski P. Change in flight distance between urban and rural habitats following a cold winter. Behav. Ecol. 2013;24:1211–1217. doi: 10.1093/beheco/art054. DOI

Møller AP. Life history, predation and flight initiation distance in a migratory bird. J. Evol. Biol. 2014;27:1105–1113. doi: 10.1111/jeb.12399. PubMed DOI

Carrete M. Heritability of fear of humans in urban and rural populations of a bird species. Sci. Rep. 2016;6:1–6. doi: 10.1038/srep31060. PubMed DOI PMC

Díaz M, et al. Interactive effects of fearfulness and geographical location on bird population trends. Behav. Ecol. 2015;26:716–721. doi: 10.1093/beheco/aru211. DOI

Møller AP, Díaz M. Avian preference for close proximity to human habitation and its ecological consequences. Curr. Zool. 2018;64:623–630. doi: 10.1093/cz/zox073. PubMed DOI PMC

Møller AP, Díaz M. Niche segregation, competition and urbanization. Curr Zool. 2018;64:145–152. doi: 10.1093/cz/zox025. PubMed DOI PMC

Cox AR, Robertson RJ, Lendvai ÁZ, Everitt K, Bonier F. Rainy springs linked to poor nestling growth in a declining avian aerial insectivore (Tachycineta bicolor) Proc. R. Soc. B. 2019;286:20190018. doi: 10.1098/rspb.2019.0018. PubMed DOI PMC

Sergio F. From individual behaviour to population pattern: weather-dependent foraging and breeding performance in black kites. Anim. Behav. 2003;66:1109–1117. doi: 10.1006/anbe.2003.2303. DOI

Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 2009;40:245–269. doi: 10.1146/annurev.ecolsys.39.110707.173430. DOI

Sol D, et al. Risk-taking behavior, urbanization and the pace of life in birds. Behav. Ecol. Sociobiol. 2018;72:59. doi: 10.1007/s00265-018-2463-0. DOI

Møller AP, et al. Effects of urbanization on animal phenology: A continental study of paired urban and rural avian populations. Clim. Res. 2015;66:185–199. doi: 10.3354/cr01344. DOI

Winter Y, Von Helversen O. The energy cost of flight: Do small bats fly more cheaply than birds? J. Comp. Physiol. B. 1998;168:105–111. doi: 10.1007/s003600050126. PubMed DOI

Møller AP, Erritzøe J, Nielsen JT. Causes of interspecific variation in susceptibility to cat predation on birds. Chin. Birds. 2010;1:97–111. doi: 10.5122/cbirds.2010.0001. DOI

Møller AP, Solonen T, Byholm P, Huhta E, Nielsen JT, Tornberg R. Spatial consistency in susceptibility of prey species to predation by two Accipiter hawks. J. Avian Biol. 2012;43:390–396. doi: 10.1111/j.1600-048X.2012.05723.x. DOI

Creel S, Christianson D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 2008;23:194–201. doi: 10.1016/j.tree.2007.12.004. PubMed DOI

Morelli F, et al. Insurance for the future? Potential avian community resilience in cities across Europe. Clim. Change. 2020;159:195–214. doi: 10.1007/s10584-019-02583-7. DOI

Storchová L, Hořák D. Life-history characteristics of European birds. Glob. Ecol. Biogeogr. 2018;27:400–406. doi: 10.1111/geb.12709. DOI

Garamszegi LZ, Møller AP. Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol. Rev. 2010;85:797–805. PubMed

Bell G. A comparative method. Am. Nat. 1989;133:553–571. doi: 10.1086/284935. DOI

Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 2010;1:103–113. doi: 10.1111/j.2041-210X.2010.00012.x. DOI

Lipsey, M. W. & Wilson, D. B. Practical Meta-Analysis. https://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-Home.php (Sage, 2001).

Cohen, J. Statistical Power Analysis for the Behavioral Sciences (L. Erlbaum Associates, 1988).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Species' urbanization time but not present urban tolerance predicts avian fear responses towards human

. 2025 Oct 02 ; 23 (1) : 295. [epub] 20251002

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...