Species' urbanization time but not present urban tolerance predicts avian fear responses towards human
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
REES003
Faculty of Environmental Sciences CZU Prague
166423
Charles University Grant Agency
PubMed
41039540
PubMed Central
PMC12492597
DOI
10.1186/s12915-025-02427-0
PII: 10.1186/s12915-025-02427-0
Knihovny.cz E-resources
- Keywords
- Birds, Flight initiation distance, Monitoring, Urban habitats, Urban tolerance, Urbanization time,
- MeSH
- Bayes Theorem MeSH
- Time Factors MeSH
- Flight, Animal MeSH
- Humans MeSH
- Birds * physiology MeSH
- Fear * MeSH
- Urbanization * MeSH
- Cities MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Cities MeSH
BACKGROUND: Urban environments exert strong pressures on animal behavior, leading to altered fear responses to humans. Species with a longer history of urban presence and greater tolerance to urban environments are expected to show reduced fear responses towards humans. Here, we examined whether avian flight initiation distance (a proxy of fear)-the distance at which a bird flees from an approaching human-is associated with a species' timing of urban colonization (i.e., when it has started to breed in urban areas) and with present-day urban tolerance (i.e., how common it is in the city). Unlike previous studies which paired avian fear responses and urbanization timing from different regions, we collected both in the same city (Prague, Czechia), minimizing regional differences in urban history and providing a more rigorous test of the link between urbanization timing and avian fear responses. RESULTS: Using standardized data from 4420 flight initiation distance observations across 68 species, we applied Bayesian phylogenetic mixed models while controlling for ecological and contextual variables. We found that species with a longer urban history (i.e., earlier timing of urban colonization) showed significantly shorter flight initiation distances, suggesting reduced fear responses. In contrast, present-day urban tolerance based on breeding commonness was not related to flight initiation distance variation. CONCLUSIONS: We found that the timing of urban colonization better predicts reduced fear of humans in birds than present-day urban tolerance, emphasizing the role of long-term behavioral filtering and/or selection in shaping urban wildlife behavior. By explicitly separating urbanization time from contemporary urban commonness within a single city and analyzing individual-level fear responses, our study shows that earlier urban colonizers exhibit consistently shorter escape distances, reflecting cumulative long-term processes rather than short-term plasticity alone. These findings highlight the importance of incorporating urban colonization history into behavioral ecology and urban wildlife management frameworks.
See more in PubMed
Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, et al. Global change and the ecology of cities. Science. 2008;319(5864):756–60. PubMed
Seto KC, Güneralp B, Hutyra LR. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci. 2012;109(40):16083–8. PubMed PMC
Díaz M, Møller AP, Flensted-Jensen E, Grim T, Ibáñez-Álamo JD, Jokimäki J, et al. The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe. PLOS ONE. 2013;8(5):e64634. PubMed PMC
Møller AP. Successful city dwellers: a comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia. 2009;159(4):849–58. PubMed
Partecke J, Schwabl I, Gwinner E. Stress and the city: urbanization and its effects on the stress physiology in European blackbirds. Ecology. 2006;87(8):1945–52. PubMed
Sepp T, McGraw KJ, Kaasik A, Giraudeau M. A review of urban impacts on avian life-history evolution: does city living lead to slower pace of life? Glob Change Biol. 2018;24(4):1452–69. PubMed
Blumstein DT, Anthony LL, Harcourt R, Ross G. Testing a key assumption of wildlife buffer zones: is flight initiation distance a species-specific trait? Biol Cons. 2003;110(1):97–100.
Weston MA, McLeod EM, Blumstein DT, Guay PJ. A review of flight-initiation distances and their application to managing disturbance to Australian birds. Emu - Austral Ornithol. 2012;112(4):269–86.
Mikula P, Tomášek O, Romportl D, Aikins TK, Avendaño JE, Braimoh-Azaki BDA, et al. Bird tolerance to humans in open tropical ecosystems. Nat Commun. 2023;14(1):2146. PubMed PMC
Samia DSM, Nakagawa S, Nomura F, Rangel TF, Blumstein DT. Increased tolerance to humans among disturbed wildlife. Nat Commun. 2015;6(1):8877. PubMed PMC
Sih A, Bell AM, Johnson JC, Ziemba RE. Behavioral syndromes: an integrative overview. Q Rev Biol. 2004;79(3):241–77. PubMed
Evans J, Boudreau K, Hyman J. Behavioural syndromes in urban and rural populations of song sparrows. Ethology. 2010;116(7):588–95.
Scales J, Hyman J, Hughes M. Behavioral syndromes break down in urban song sparrow populations. Ethology. 2011;117(10):887–95.
Sol D, Lapiedra O, González-Lagos C. Behavioural adjustments for a life in the city. Anim Behav. 2013;85(5):1101–12.
Blumstein DT. Attention, habituation, and antipredator behaviour: implications for urban birds. In: Gil D, Brumm H, (eds). Avian urban ecology. Oxford: Oxford University Press; 2013. p. 240.
Fossett TE, Hyman J. The effects of habituation on boldness of urban and rural song sparrows (
Vincze E, Papp S, Preiszner B, Seress G, Bókony V, Liker A. Habituation to human disturbance is faster in urban than rural house sparrows. Behav Ecol. 2016;27(5):1304–13.
Carrete M, Tella JL. Individual consistency in flight initiation distances in burrowing owls: a new hypothesis on disturbance-induced habitat selection. Biol Let. 2009;6(2):167–70. PubMed PMC
Carrete M, Tella JL. High individual consistency in fear of humans throughout the adult lifespan of rural and urban burrowing owls. Sci Rep. 2013;3(1):3524. PubMed PMC
Carrete M, Tella JL. Behavioral correlations associated with fear of humans differ between rural and urban burrowing owls. Front Ecol Evol. 2017;5.
Møller AP. Flight distance of urban birds, predation, and selection for urban life. Behav Ecol Sociobiol. 2008;63(1):63–75.
Møller AP. Interspecific variation in fear responses predicts urbanization in birds. Behav Ecol. 2010;21(2):365–71.
Symonds MRE, Weston MA, van Dongen WFD, Lill A, Robinson RW, Guay PJ. Time since urbanization but not encephalisation is associated with increased tolerance of human proximity in birds. Front Ecol Evol. 2016;4.
Grünwald J, Auniņš A, Brambilla M, Escandell V, Eskildsen DP, Chodkiewicz T, et al. Ecological traits predict population trends of urban birds in Europe. Ecol Ind. 2024;1(160):111926.
Møller AP, Diaz M, Flensted-Jensen E, Grim T, Ibáñez-Álamo JD, Jokimäki J, et al. High urban population density of birds reflects their timing of urbanization. Oecologia. 2012;170(3):867–75. PubMed
Yang S, Liu Y, Liang W. The duration of urbanization influences avian escape behaviour. Appl Anim Behav Sci. 2025;292(1):106747.
Lowry H, Lill A, Wong BBM. Behavioural responses of wildlife to urban environments. Biol Rev. 2013;88(3):537–49. PubMed
Eötvös CB, Magura T, Lövei GL. A meta-analysis indicates reduced predation pressure with increasing urbanization. Landsc Urban Plan. 2018;1(180):54–9.
Carrete M, Martínez-Padilla J, Rodríguez-Martínez S, Rebolo-Ifrán N, Palma A, Tella JL. Heritability of fear of humans in urban and rural populations of a bird species. Sci Rep. 2016;6(1):31060. PubMed PMC
Tryjanowski P, Kosicki JZ, Hromada M, Mikula P. The emergence of tolerance of human disturbance in neotropical birds. J Trop Ecol. 2020;36(1):1–5.
Neate-Clegg MHC, Tonelli BA, Youngflesh C, Wu JX, Montgomery GA, Şekercioğlu ÇH, et al. Traits shaping urban tolerance in birds differ around the world. Curr Biol. 2023;33(9):1677-1688.e6. PubMed
Callaghan CT, Cornwell WK, Poore AGB, Benedetti Y, Morelli F. Urban tolerance of birds changes throughout the full annual cycle. J Biogeogr. 2021;48(6):1503–17.
Callaghan CT, Palacio FX, Benedetti Y, Morelli F, Bowler DE. Large-scale spatial variability in urban tolerance of birds. J Anim Ecol. 2023;92(2):403–16. PubMed
Sayol F, Sol D, Pigot AL. Brain size and life history interact to predict urban tolerance in birds. Front Ecol Evol. 2020;8.
Callaghan CT, Major RE, Wilshire JH, Martin JM, Kingsford RT, Cornwell WK. Generalists are the most urban-tolerant of birds: a phylogenetically controlled analysis of ecological and life history traits using a novel continuous measure of bird responses to urbanization. Oikos. 2019;128(6):845–58.
Grünwald J, Hanzelka J, Voříšek P, Reif J. Long-term population trends of 48 urban bird species correspond between urban and rural areas. iScience. 2024;27(5):109717. PubMed PMC
Inger R, Gregory R, Duffy JP, Stott I, Voříšek P, Gaston KJ. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol Lett. 2015;18(1):28–36. PubMed
Neate-Clegg MHC, Tonelli BA, Tingley MW. Advances in breeding phenology outpace latitudinal and elevational shifts for North American birds tracking temperature. Nat Ecol Evol. 2024;8(11):2027–36. PubMed
Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC, Smith PA, et al. Decline of the North American avifauna. Science. 2019;366(6461):120–4. PubMed
Blumstein DT. Flight-initiation distance in birds is dependent on intruder starting distance. J Wildl Manage. 2003;67(4):852–7.
Blumstein DT. Flush early and avoid the rush: a general rule of antipredator behavior? Behav Ecol. 2010;21(3):440–2.
Dumont F, Pasquaretta C, Réale D, Bogliani G, von Hardenberg A. Flight initiation distance and starting distance: biological effect or mathematical artefact? Ethology. 2012;118(11):1051–62.
Williams DM, Samia DSM, Cooper WE Jr, Blumstein DT. The flush early and avoid the rush hypothesis holds after accounting for spontaneous behavior. Behav Ecol. 2014;25(5):1136–47.
Piratelli AJ, Favoretto GR, Maximiano MFdeA. Factors affecting escape distance in birds. Zoologia (Curitiba). 2015;32:438–44.
Díaz M, Grim T, Markó G, Morelli F, Ibáñez-Alamo JD, Jokimäki J, et al. Effects of climate variation on bird escape distances modulate community responses to global change. Sci Rep. 2021;11(1):12826. PubMed PMC
Mikula P, Díaz M, Albrecht T, Jokimäki J, Kaisanlahti-Jokimäki ML, Kroitero G, et al. Adjusting risk-taking to the annual cycle of long-distance migratory birds. Sci Rep. 2018;8(1):13989. PubMed PMC
Adams CE. Ecological principles in an urban context. In: Urban wildlife management. 3rd edn. Boca Raton: CRC Press; 2016. p. 617.
Stankowich T, Blumstein DT. Fear in animals: a meta-analysis and review of risk assessment. Proc Biol Sci. 2005;272(1581):2627–34. PubMed PMC
Blumstein DT, Anthony LL, Harcourt R, Ross G. Testing a key assumption of wildlife buffer zones: is flight initiation distance a species-specific trait? Biol Cons. 2003;110(1):97–100.
Mikula P, Jokimäki J, Kaisanlahti-Jokimäki ML, Markó G, Morelli F, Møller AP, et al. Face mask-wear did not affect large-scale patterns in escape and alertness of urban and rural birds during the COVID-19 pandemic. Sci Total Environ. 2021;1(793):148672. PubMed PMC
Mikula P, Bulla M, Blumstein DT, Benedetti Y, Floigl K, Jokimäki J, et al. Urban birds’ tolerance towards humans was largely unaffected by COVID-19 shutdown-induced variation in human presence. Commun Biol. 2024;7(1):1–13. PubMed PMC
Frič A. Ptactvo města Prahy. Praha: A. Frič; 1866.
Fuchs R, Škopek jaroslav, Formánek J, Exnerová A. Atlas hnízdního rozšíření ptáků Prahy. Praha: Consult & Česká společnost ornitologická; 2002.
Wahl V, Voříšek P, Cepák J, Ebelová K, Hora J, Hošek J, et al. Pražské ptactvo 1800–2020. 1st edn. Praha: Revolver Revue & Česká společnost ornitologická; 2024.
Keller V, Herrando S, Voříšek P, Franch M, Kipson M, Milanesi P, et al. European breeding bird atlas 2: distribution, abundance and change. Barcelona: European Bird Census Council & Lynx Edicions; 2020.
Ferenc M, Sedláček O, Fuchs R, Hořák D, Storchová L, Fraissinet M, et al. Large-scale commonness is the best predictor of bird species presence in European cities. Urban Ecosyst. 2018;21(2):369–77.
Callaghan CT, Benedetti Y, Wilshire JH, Morelli F. Avian trait specialization is negatively associated with urban tolerance. Oikos. 2020;129(10):1541–51.
Cox DTC, Sánchez de Miguel A, Dzurjak SA, Bennie J, Gaston KJ. National scale spatial variation in artificial light at night. Remote Sensing. 2020;12(10):1591.
Zheng Q, Seto KC, Zhou Y, You S, Weng Q. Nighttime light remote sensing for urban applications: progress, challenges, and prospects. ISPRS J Photogramm Remote Sens. 2023;1(202):125–41.
Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W. Eltontraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology. 2014;95(7):2027–2027.
Bulla M, Valcu M, Dokter AM, Dondua AG, Kosztolányi A, Rutten AL, et al. Unexpected diversity in socially synchronized rhythms of shorebirds. Nature. 2016;540(7631):109–13. PubMed
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2024. Available from: https://www.R-project.org/.
Hadfield JD. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw. 2010;2(33):1–22.
Hadfield JD, Nakagawa S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol. 2010;23(3):494–508. PubMed
Peterson BG, Carl P, Boudt K, Bennett R, Ulrich J, Zivot E, et al. PerformanceAnalytics: econometric tools for performance and risk analysis. 2024. Available from: https://cran.r-project.org/web/packages/PerformanceAnalytics/index.html.
Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol. 2010;1(2):103–13.
Mikula P, Grünwald J, Reif J. Primary data for ‘species urbanization time but not present urban tolerance predicts avian fear responses towards human’. figshare. 2025. Available from: 10.6084/m9.figshare.30135715. PubMed PMC
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491(7424):444–8. PubMed
Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27(4):592–3. PubMed PMC
Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7(4):457–72.