One Health: EAACI Position Paper on coronaviruses at the human-animal interface, with a specific focus on comparative and zoonotic aspects of SARS-CoV-2
Jazyk angličtina Země Dánsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
European Academy of Allergy and Clinical Immunology (EAACI)
PubMed
34180546
PubMed Central
PMC8441637
DOI
10.1111/all.14991
Knihovny.cz E-zdroje
- Klíčová slova
- (reverse) zoonosis, One Health, companion animals and pets, coronavirus, disease transmission,
- MeSH
- COVID-19 * MeSH
- kvalita života MeSH
- lidé MeSH
- One Health * MeSH
- pandemie MeSH
- SARS-CoV-2 MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The latest outbreak of a coronavirus disease in 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), evolved into a worldwide pandemic with massive effects on health, quality of life, and economy. Given the short period of time since the outbreak, there are several knowledge gaps on the comparative and zoonotic aspects of this new virus. Within the One Health concept, the current EAACI position paper dwells into the current knowledge on SARS-CoV-2's receptors, symptoms, transmission routes for human and animals living in close vicinity to each other, usefulness of animal models to study this disease and management options to avoid intra- and interspecies transmission. Similar pandemics might appear unexpectedly and more frequently in the near future due to climate change, consumption of exotic foods and drinks, globe-trotter travel possibilities, the growing world population, the decreasing production space, declining room for wildlife and free-ranging animals, and the changed lifestyle including living very close to animals. Therefore, both the society and the health authorities need to be aware and well prepared for similar future situations, and research needs to focus on prevention and fast development of treatment options (medications, vaccines).
Department of Paediatric Allergy and Pulmonology The Medical University of Warsaw Warsaw Poland
Faculty of Science Charles University Prague Czech Republic
Medizinische Kleintierklinik Zentrum für Klinische Tiermedizin LMU Munich Germany
Swiss Institute of Allergy and Asthma Research University of Zurich Zurich Switzerland
Zobrazit více v PubMed
Mackenzie JS, Smith DW. COVID‐19: a novel zoonotic disease caused by a coronavirus from China: what we know and what we don't. Microbiol Aust. 2020;17:MA20013. PubMed PMC
WHO . WHO coronavirus disease (COVID‐19) dashboard. [Web page]. 2020;Accessed 7 June 2021 https://covid19.who.int/.
Tiwari R, Dhama K, Sharun K, et al. COVID‐19: animals, veterinary and zoonotic links. Vet Q. 2020;40(1):169‐182. PubMed PMC
Ahmad T, Khan M, Haroon N, et al. COVID‐19: zoonotic aspects. Travel Med Infect Dis. 2020;36:101607. PubMed PMC
Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814‐1820. PubMed
WHO . Middle East respiratory syndrome coronavirus (MERS‐CoV). [Web page]. 2020; https://covid19.who.int/. Accessed 7 June 2021.
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418‐423. PubMed PMC
International Committee on Taxonomy of Viruses I . ICTV Master Species List 2019.v1. [Excel sheet]. 2020; https://talk.ictvonline.org/files/ictv_official_taxonomy_updates_since_the_8th_report/m/vertebrate‐official/1230. Accessed 7 June, 2021.
Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. 2020;383(4):334‐346. PubMed PMC
Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID‐19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020;26(6):729‐734. PubMed PMC
Chen B, Tian EK, He B, et al. Overview of lethal human coronaviruses. Signal Transduct Target Ther. 2020;5(1):89. PubMed PMC
Malik YA. Properties of Coronavirus and SARS‐CoV‐2. Malays J Pathol. 2020;42(1):3‐11. PubMed
Hoffmann M, Kleine‐Weber H, Schroeder S, et al. SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271‐280 e278. PubMed PMC
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS‐CoV‐2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562‐569. PubMed PMC
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS‐CoV‐2 spike glycoprotein. Cell. 2020;181(2):281‐292.e286. PubMed PMC
Liu P, Jiang JZ, Wan XF, et al. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS‐CoV‐2)? PLoS Pathog. 2020;16(5):e1008421. PubMed PMC
Zhou Y, Vedantham P, Lu K, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res. 2015;116:76‐84. PubMed PMC
Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS‐CoV‐2. Proc Natl Acad Sci USA. 2020;117(21):11727‐11734. PubMed PMC
Daly JL, Simonetti B, Klein K, et al. Neuropilin‐1 is a host factor for SARS‐CoV‐2 infection. Science. 2020;370(6518):861‐865. PubMed PMC
Cantuti‐Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin‐1 facilitates SARS‐CoV‐2 cell entry and infectivity. Science. 2020;370(6518):856‐860. PubMed PMC
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS‐CoV‐2 by full‐length human ACE2. Science. 2020;367(6485):1444‐1448. PubMed PMC
Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147, cyclophilins, CD26 and other SARS‐CoV‐2 associated molecules in various human tissues and immune cells in health and disease. Allergy. 2020;75:2829. PubMed PMC
Sungnak W, Huang N, Bécavin C, et al. SARS‐CoV‐2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681‐687. PubMed PMC
Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS‐CoV‐2 receptor ACE2 is an interferon‐stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181:1061. PubMed PMC
Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020;526(1):135‐140. PubMed PMC
Chen Z, Mi L, Xu J, et al. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J Infect Dis. 2005;191(5):755‐760. PubMed PMC
Gao C, Zeng J, Jia N, et al. SARS‐CoV‐2 spike protein interacts with multiple innate immune receptors. bioRxiv. 2020;32:722.
Amraie R, Napoleon MA, Yin W, et al. CD209L/L‐SIGN and CD209/DC‐SIGN act as receptors for SARS‐CoV‐2 and are differentially expressed in lung and kidney epithelial and endothelial cells. bioRxiv. 2020;23:22.
Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019‐nCoV) originating in China. Cell Host Microbe. 2020;27(3):325‐328. PubMed PMC
Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147, CD26, and other SARS‐CoV‐2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID‐19 risk factors. Allergy. 2020;75(11):2829‐2845. PubMed PMC
Helal MA, Shouman S, Abdelwaly A, et al. Molecular basis of the potential interaction of SARS‐CoV‐2 spike protein to CD147 in COVID‐19 associated‐lymphopenia. J Biomol Struct Dyn. 2020;15:1‐11. PubMed PMC
Shilts J, Wright GJ. No evidence for basigin/CD147 as a direct SARS‐CoV‐2 spike binding receptor. bioRxiv. 2020;2020:2020. PubMed PMC
Sokolowska M, Lukasik ZM, Agache I, et al. Immunology of COVID‐19: Mechanisms, clinical outcome, diagnostics, and perspectives‐A report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy. 2020;75(10):2445‐2476. PubMed PMC
Clausen TM, Sandoval DR, Spliid CB, et al. SARS‐CoV‐2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell. 2020;183(4):1043‐1057.e1015. PubMed PMC
Park YJ, Walls AC, Wang Z, et al. Structures of MERS‐CoV spike glycoprotein in complex with sialoside attachment receptors. Nat Struct Mol Biol. 2019;26(12):1151‐1157. PubMed PMC
Li W, Hulswit RJG, Widjaja I, et al. Identification of sialic acid‐binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc Natl Acad Sci. 2017;114(40):E8508‐E8517. PubMed PMC
Millet JK, Jaimes JA, Whittaker GR. Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiol Rev. 2021;45(3):3211. PubMed PMC
Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS‐CoV‐2 on virus entry and its immune cross‐reactivity with SARS‐CoV. Nat Commun. 2020;11(1):1620. PubMed PMC
Tiwari V, Tandon R, Sankaranarayanan NV, et al. Preferential recognition and antagonism of SARS‐CoV‐2 spike glycoprotein binding to 3‐O‐sulfated heparan sulfate. bioRxiv. 2010;2020(2020):2008.
Tandon R, Sharp JS, Zhang F, et al. Effective inhibition of SARS‐CoV‐2 entry by heparin and enoxaparin derivatives. J Virol. 2020;8:36. PubMed PMC
Zhao X, Chen D, Szabla R, et al. Broad and differential animal angiotensin‐converting enzyme 2 receptor usage by SARS‐CoV‐2. J Virol. 2020;94(18):e00940‐e920. PubMed PMC
Luan J, Lu Y, Jin X, Zhang L. Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS‐CoV‐2 infection. Biochem Biophys Res Commun. 2020;526(1):165‐169. PubMed PMC
Hayashi T, Abiko K, Mandai M, Yaegashi N, Konishi I. Highly conserved binding region of ACE2 as a receptor for SARS‐CoV‐2 between humans and mammals. Vet Q. 2020;40(1):243‐249. PubMed PMC
Zhai X, Sun J, Yan Z, et al. Comparison of severe acute respiratory syndrome coronavirus 2 spike protein binding to ACE2 receptors from human, pets, farm animals, and putative intermediate hosts. J Virol. 2020;94(15). PubMed PMC
Alexander MR, Schoeder CT, Brown JA, et al. Predicting susceptibility to SARS‐CoV‐2 infection based on structural differences in ACE2 across species. FASEB J. 2020;34(12):15946‐15960. PubMed PMC
Damas J, Hughes GM, Keough KC, et al. Broad host range of SARS‐CoV‐2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc Natl Acad Sci USA. 2020;117(36):22311‐22322. PubMed PMC
Chen L, Lin Y‐L, Peng G, Li F. Structural basis for multifunctional roles of mammalian aminopeptidase N. Proc Natl Acad Sci. 2012;109(44):17966‐17971. PubMed PMC
Dveksler GS, Pensiero MN, Cardellichio CB, et al. Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. J Virol. 1991;65(12):6881‐6891. PubMed PMC
Li Y, Zhang Z, Yang L, et al. The MERS‐CoV receptor DPP4 as a candidate binding target of the SARS‐CoV‐2 spike. iScience. 2020;23(6):101160. PubMed PMC
Wang N, Shi X, Jiang L, et al. Structure of MERS‐CoV spike receptor‐binding domain complexed with human receptor DPP4. Cell Res. 2013;23(8):986‐993. PubMed PMC
Assiri A, McGeer A, Perl TM, et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369(5):407‐416. PubMed PMC
Centers for Disease, Prevention . Preliminary clinical description of severe acute respiratory syndrome. MMWR Morb Mortal Wkly Rep. 2003;52(12):255‐256. PubMed
Peiris JS, Yuen KY, Osterhaus AD, Stohr K. The severe acute respiratory syndrome. N Engl J Med. 2003;349(25):2431‐2441. PubMed
Drosten C, Seilmaier M, Corman VM, et al. Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis. 2013;13(9):745‐751. PubMed PMC
Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy. 2020;75(7):1564‐1581. PubMed PMC
Gao Z, Xu Y, Sun C, et al. A systematic review of asymptomatic infections with COVID‐19. J Microbiol Immunol Infect. 2020. PubMed PMC
Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID‐19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020;172(9):577‐582. PubMed PMC
Rodriguez‐Morales AJ, Cardona‐Ospina JA, Gutierrez‐Ocampo E, et al. Clinical, laboratory and imaging features of COVID‐19: A systematic review and meta‐analysis. Travel Med Infect Dis. 2020;34:101623. PubMed PMC
Lovato A, de Filippis C. Clinical presentation of COVID‐19: a systematic review focusing on upper airway symptoms. Ear Nose Throat J. 2020;99(9):569‐576. PubMed
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus‐infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061. PubMed PMC
Xu XW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS‐Cov‐2) outside of Wuhan, China: retrospective case series. BMJ. 2020;368:m606. PubMed PMC
Pan L, Mu M, Yang P, et al. Clinical characteristics of COVID‐19 patients with digestive symptoms in Hubei, China: a descriptive, cross‐sectional, Multicenter Study. Am J Gastroenterol. 2020;115(5):766‐773. PubMed PMC
Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID‐19‐associated acute hemorrhagic necrotizing encephalopathy: imaging features. Radiology. 2020;296(2):E119‐E120. PubMed PMC
Chang TS, Ding Y, Freund MK, et al. Prior diagnoses and medications as risk factors for COVID‐19 in a Los Angeles Health System. medRxiv. 2020.
Patel AP, Paranjpe MD, Kathiresan NP, Rivas MA, Khera AV. Race, socioeconomic deprivation, and hospitalization for COVID‐19 in English participants of a national biobank. Int J Equity Health. 2020;19(1):114. PubMed PMC
Rajpal A, Rahimi L, Ismail‐Beigi F. Factors leading to high morbidity and mortality of covid‐19 in patients with type 2 diabetes. J Diabetes. 2020;12:895‐908. PubMed PMC
Sarin SK, Choudhury A, Lau GK, et al. Pre‐existing liver disease is associated with poor outcome in patients with SARS CoV2 infection; The APCOLIS Study (APASL COVID‐19 Liver Injury Spectrum Study). Hepatol Int. 2020;14(5):690‐700. PubMed PMC
Kudose S, Batal I, Santoriello D, et al. Kidney biopsy findings in patients with COVID‐19. J Am Soc Nephrol. 2020;31(9):1959‐1968. PubMed PMC
Garassino MC, Whisenant JG, Huang LC, et al. COVID‐19 in patients with thoracic malignancies (TERAVOLT): first results of an international, registry‐based, cohort study. Lancet Oncol. 2020;21(7):914‐922. PubMed PMC
Shah V, Ko Ko T, Zuckerman M, et al. Poor outcome and prolonged persistence of SARS‐CoV‐2 RNA in COVID‐19 patients with haematological malignancies; King's College Hospital experience. Br J Haematol. 2020;190(5):e279‐e282. PubMed PMC
Venkatesulu BP, Chandrasekar VT, Girdhar P, et al. A systematic review and meta‐analysis of cancer patients affected by a novel coronavirus. medRxiv. 2020. PubMed PMC
Derespina KR, Kaushik S, Plichta A, et al. Clinical manifestations and outcomes of critically Ill children and adolescents with COVID‐19 in New York City. J Pediatr. 2020. PubMed PMC
Riggioni C, Comberiati P, Giovannini M, et al. A compendium answering 150 questions on COVID‐19 and SARS‐CoV‐2. Allergy. 2020;75(10):2503‐2541. PubMed PMC
Hartmann K. Coronavirus infections (canine and feline), including feline infectious peritonitis. In: Ettinger SJ, Feldman EC, Cùtè E (Eds). Textbook of veterinary internal medicine : diseases of the dog and the cat. St. Louis, Missouri: Elsevier; 2017: pp 983‐991.
Addie DD, Hartmann K, Tasker S, Hofmann‐Lehmann R, Egberink H, Möstl K. Feline infectious peritonitis. 2019; http://www.abcdcatsvets.org/feline‐infectious‐peritonitis/. Accessed 05.08.2020.
Jaimes JA, Whittaker GR. Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function. Virology. 2018;517:108‐121. PubMed PMC
Klein‐Richers U, Hartmann K, Hofmann‐Lehmann R, et al. Prevalence of feline coronavirus shedding in German catteries and associated risk factors. Viruses. 2020;12(9). PubMed PMC
Sabshin SJ, Levy JK, Tupler T, Tucker SJ, Greiner EC, Leutenegger CM. Enteropathogens identified in cats entering a Florida animal shelter with normal feces or diarrhea. J Am Vet Med Assoc. 2012;241(3):331‐337. PubMed
Addie DD, Toth S, Murray GD, Jarrett O. Risk of feline infectious peritonitis in cats naturally infected with feline coronavirus. Am J Vet Res. 1995;56(4):429‐434. PubMed
Ritz S, Egberink H, Hartmann K. Effect of feline interferon‐omega on the survival time and quality of life of cats with feline infectious peritonitis. J Vet Intern Med. 2007;21(6):1193‐1197. PubMed PMC
Vennema H, Poland A, Foley J, Pedersen NC. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology. 1998;243(1):150‐157. PubMed PMC
Chang HW, Egberink HF, Halpin R, Spiro DJ, Rottier PJ. Spike protein fusion peptide and feline coronavirus virulence. Emerg Infect Dis. 2012;18(7):1089‐1095. PubMed PMC
Dewerchin HL, Cornelissen E, Nauwynck HJ. Replication of feline coronaviruses in peripheral blood monocytes. Arch Virol. 2005;150(12):2483‐2500. PubMed PMC
Rottier PJ, Nakamura K, Schellen P, Volders H, Haijema BJ. Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein. J Virol. 2005;79(22):14122‐14130. PubMed PMC
Regan AD, Cohen RD, Whittaker GR. Activation of p38 MAPK by feline infectious peritonitis virus regulates pro‐inflammatory cytokine production in primary blood‐derived feline mononuclear cells. Virology. 2009;384(1):135‐143. PubMed PMC
Kipar A, Bellmann S, Gunn‐Moore DA, et al. Histopathological alterations of lymphatic tissues in cats without feline infectious peritonitis after long‐term exposure to FIP virus. Vet Microbiol. 1999;69(1–2):131‐137. PubMed PMC
Hoskins JD. Coronavirus infection in cats. Vet Clin North Am Small Anim Pract. 1993;23(1):1‐16. PubMed PMC
Sharun K, Sircar S, Malik YS, Singh RK, Dhama K. How close is SARS‐CoV‐2 to canine and feline coronaviruses? J Small Anim Pract. 2020;61(8):523‐526. PubMed PMC
Stout AE, Andre NM, Jaimes JA, Millet JK, Whittaker GR. Coronaviruses in cats and other companion animals: Where does SARS‐CoV‐2/COVID‐19 fit? Vet Microbiol. 2020;247:108777. PubMed PMC
Hosie MJ, Hartmann K, Hofmann‐Lehmann R, et al. SARS‐Coronavirus (CoV)‐2 and cats. Guidelines 2020; http://www.abcdcatsvets.org/sars‐coronavirus‐2‐and‐cats/ Accessed 05.08.2020.
American Veterinary Medical Association . SARS‐CoV‐2 in animals. 2020; https://www.avma.org/resources‐tools/animal‐health‐and‐welfare/covid‐19/sars‐cov‐2‐animals‐including‐pets. Accessed 28 September, 2020.
World Organisation for Animal Health . Events in animals. 2020; https://www.oie.int/scientific‐expertise/specific‐information‐and‐recommendations/questions‐and‐answers‐on‐2019novel‐coronavirus/events‐in‐animals/. Accessed 23 December, 2020.
Lefebvre HP, Brown SA, Chetboul V, King JN, Pouchelon JL, Toutain PL. Angiotensin‐converting enzyme inhibitors in veterinary medicine. Curr Pharm Des. 2007;13(13):1347‐1361. PubMed
Kawaguchi T, Hashimoto R, Yasukawa Y, et al. The effect of telmisartan on the ventricular systolic function in dogs with experimental supraventricular tachyarrhythmia. J Vet Med Sci. 2019;81(5):717‐722. PubMed PMC
IDEXX . IDEXX SARS‐CoV‐2 (COVID‐19) RealPCR Test. 2020; www.IDEXX.com/en/veterinary/reference‐laboratories/overview‐idexx‐sars‐cov‐2‐covid‐19‐realpcr‐test/. Accessed 28 September, 2020.
Zhang Q, Zhang H, Gao J, et al. A serological survey of SARS‐CoV‐2 in cat in Wuhan. Emerg Microbes Infect. 2020;9(1):2013‐2019. PubMed PMC
ProMED International Society for Infectious Diseases . Coronavirus disease 2019 update (382): Netherlands, animal, farmed mink, spread. control. 2020; https://promedmail.org/promed‐post/?id=7730463. Accessed 28 September, 2020.
Patterson EI, Elia G, Grassi A, et al. Evidence of exposure to SARS‐CoV‐2 in cats and dogs from households in Italy. Nat Commun 2020;11(1):6231. PubMed PMC
Temmam S, Barbarino A, Maso D, et al. Absence of SARS‐CoV‐2 infection in cats and dogs in close contact with a cluster of COVID‐19 patients in a veterinary campus. One Health. 2020;10:100164. PubMed PMC
Calvet GA, Pereira SA, Ogrzewalska M, et al. Investigation of SARS‐CoV‐2 infection in dogs and cats of humans diagnosed with COVID‐19 in Rio de Janeiro, Brazil. PLoS One. 2021;16(4):e0250853. PubMed PMC
Herrewegh AA, Smeenk I, Horzinek MC, Rottier PJ, de Groot RJ. Feline coronavirus type II strains 79–1683 and 79–1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol. 1998;72(5):4508‐4514. PubMed PMC
Terada Y, Matsui N, Noguchi K, et al. Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses. PLoS One. 2014;9(9):e106534. PubMed PMC
Tusell SM, Schittone SA, Holmes KV. Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range. J Virol. 2007;81(3):1261‐1273. PubMed PMC
Tekes G, Hofmann‐Lehmann R, Bank‐Wolf B, Maier R, Thiel HJ, Thiel V. Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage. J Virol. 2010;84(3):1326‐1333. PubMed PMC
Dye C, Temperton N, Siddell SG. Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines. J Gen Virol. 2007;88(Pt 6):1753‐1760. PubMed PMC
Van Hamme E, Desmarets L, Dewerchin HL, Nauwynck HJ. Intriguing interplay between feline infectious peritonitis virus and its receptors during entry in primary feline monocytes. Virus Res. 2011;160(1–2):32‐39. PubMed PMC
Pedersen NC, Perron M, Bannasch M, et al. Efficacy and safety of the nucleoside analog GS‐441524 for treatment of cats with naturally occurring feline infectious peritonitis. J Feline Med Surg. 2019;21(4):271‐281. PubMed PMC
Murphy BG, Perron M, Murakami E, et al. The nucleoside analog GS‐441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Vet Microbiol. 2018;219:226‐233. PubMed PMC
Dickinson PJ, Bannasch M, Thomasy SM, et al. Antiviral treatment using the adenosine nucleoside analogue GS‐441524 in cats with clinically diagnosed neurological feline infectious peritonitis. J Vet Intern Med. 2020. PubMed PMC
Bafna K, White K, Harish B, et al. Hepatitis C virus drugs that inhibit the SARS‐CoV‐2 papain‐like protease synergize with remdesivir to suppress viral replication in cell culture. CELREP Cell Reports. 2021. PubMed PMC
Woods RD, Pedersen NC. Cross‐protection studies between feline infectious peritonitis and porcine transmissible gastroenteritis viruses. VETMIC. Vete Microbiol. 1979;4(1):11‐16.
Vennema H, Heijnen L, Zijderveld A, Horzinek MC, Spaan WJ. Intracellular transport of recombinant coronavirus spike proteins: implications for virus assembly. J Virol. 1990;64(1):339‐346. PubMed PMC
Weiss RC, Scott FW. Pathogenesis of feline infectious peritonitis: nature and development of viremia. Am J Vet Res. 1981;42(3):382‐390. PubMed
Vennema H, de Groot RJ, Harbour DA, et al. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J Virol. 1990;64(3):1407‐1409. PubMed PMC
McArdle F, Tennant B, Bennett M, Kelly DF, Gaskell CJ, Gaskell RM. Independent evaluation of a modified live FIPV vaccine under experimental conditions (University of Liverpool experience). Feline Pract. 1995;23(3).
Scott FW, Corapi WV, Olsen CW. Independent evaluation of a modified live FIPV vaccine under experimental conditions (Cornell experience). Feline practice. 1995;23(3):74‐76.
Scott FW, Olsen CW, Corapi WV. Antibody‐dependent enhancement of feline infectious peritonitis virus infection. Feline Practice. 1995;23(3):77‐80.
Postorino RN. Vaccination against naturally‐occurring FIP in a single large cat shelter. Feline Practice. 1995;23:81‐82.
Fehr D, Holznagel E, Bolla S, et al. Evaluation of the safety and efficacy of a modified‐Live FIPV vaccine under field conditions. Feline Practice. 1995;23:83‐88. PubMed PMC
Fehr D, Holznagel E, Bolla S, et al. Placebo‐controlled evaluation of a modified life virus vaccine against feline infectious peritonitis: Safety and efficacy under field conditions. Vaccine. 1997;15:1101‐1109. PubMed PMC
Addie DD, Schaap IAT, Nicolson L, Jarrett O. Persistence and transmission of natural type I feline coronavirus infection. J Gen Virol 2003;84(Pt 10):2735‐2744. PubMed
Foley JE, Poland A, Carlson J, Pedersen NC. Patterns of feline coronavirus infection and fecal shedding from cats in multiple‐cat environments. J Am Vet Med Assoc. 1997;210(9):1307‐1312. PubMed
Schulz BS, Strauch C, Mueller RS, Eichhorn W, Hartmann K. Comparison of the prevalence of enteric viruses in healthy dogs and those with acute haemorrhagic diarrhoea by electron microscopy. J Small Anim Pract. 2008;49(2):84‐88. PubMed PMC
Decaro N, Martella V, Elia G, et al. Molecular characterisation of the virulent canine coronavirus CB/05 strain. Virus Res. 2007;125(1):54‐60. PubMed PMC
Buonavoglia C, Decaro N, Martella V, et al. Canine coronavirus highly pathogenic for dogs. Emerg Infect Dis. 2006;12(3):492‐494. PubMed PMC
Erles K, Toomey C, Brooks HW, Brownlie J. Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease. Virology. 2003;310(2):216‐223. PubMed PMC
Erles K, Shiu KB, Brownlie J. Isolation and sequence analysis of canine respiratory coronavirus. Virus Res. 2007;124(1–2):78‐87. PubMed PMC
Schulz B, Klinkenberg C, Fux R, Anderson T, de Benedictis P, Hartmann K. Prevalence of canine influenza virus A (H3N8) in dogs in Germany. Vet J. 2014;202(1):184‐185. PubMed
Buonavoglia C, Martella V. Canine respiratory viruses. Vet Res. 2007;38(2):355‐373. PubMed
Szczepanski A, Owczarek K, Bzowska M, et al. Canine respiratory coronavirus. Bovine coronavirus, and human coronavirus OC43: receptors and attachment factors. Viruses. 2019;11(4). PubMed PMC
Pardo MC, Mackowiak M. Efficacy of a new canine origin, modified live virus vaccine against canine coronavirus. Canine Practice. 1999;24:6‐8.
Decaro N, Buonavoglia C. An update on canine coronaviruses: viral evolution and pathobiology. Vet Microbiol. 2008;132(3–4):221‐234. PubMed PMC
Winter C, Schwegmann‐Wessels C, Cavanagh D, Neumann U, Herrler G. Sialic acid is a receptor determinant for infection of cells by avian Infectious bronchitis virus. J Gen Virol. 2006;87(Pt 5):1209‐1216. PubMed
Cavanagh D. Coronaviruses in poultry and other birds. Avian Pathol. 2005;34(6):439‐448. PubMed
Khataby K, Fellahi S, Loutfi C, Mustapha EM. Avian infectious bronchitis virus in Africa: a review. Vet Q. 2016;36(2):71‐75. PubMed
Jackwood MW. Review of infectious bronchitis virus around the world. Avian Dis. 2012;56(4):634‐641. PubMed
Awad F, Chhabra R, Baylis M, Ganapathy K. An overview of infectious bronchitis virus in chickens. Worlds Poult Sci J. 2014;70(2):375‐384.
Bande F, Arshad SS, Omar AR, Bejo MH, Abubakar MS, Abba Y. Pathogenesis and diagnostic approaches of avian infectious bronchitis. Adv Virol. 2016;2016:4621659. PubMed PMC
Caron LF. Etiology and immunology of infectious bronchitis virus. Brazilian J Poult Sci. 2010;12(2):115‐119.
Cavanagh D. Coronavirus avian infectious bronchitis virus. Vet Res. 2007;38(2):281‐297. PubMed
Smialek M, Tykalowski B, Dziewulska D, Stenzel T, Koncicki A. Immunological aspects of the efficiency of protectotype vaccination strategy against chicken infectious bronchitis. BMC Vet Res. 2017;13(1):44. PubMed PMC
Ambepitiya Wickramasinghe IN, de Vries RP, Weerts EA, et al. Novel receptor specificity of avian gammacoronaviruses that cause enteritis. J Virol. 2015;89(17):8783‐8792. PubMed PMC
Suarez DL, Pantin‐Jackwood MJ, Swayne DE, Lee SA, DeBlois SM, Spackman E. Lack of susceptibility to SARS‐CoV‐2 and MERS‐CoV in poultry. Emerg Infect Dis. 2020;26(12):3074‐3076. PubMed PMC
Zanaty A, Naguib MM, El‐Husseiny MH, Mady W, Hagag N, Arafa AS. The sequence of the full spike S1 glycoprotein of infectious bronchitis virus circulating in Egypt reveals evidence of intra‐genotypic recombination. Arch Virol. 2016;161(12):3583‐3587. PubMed
Ali A, Kilany WH, Zain El‐Abideen MA, Sayed ME, Elkady M. Safety and efficacy of attenuated classic and variant 2 infectious bronchitis virus candidate vaccines. Poult Sci. 2018;97(12):4238‐4244. PubMed PMC
Wickramasinghe IN, de Vries RP, Grone A, de Haan CA, Verheije MH. Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity. J Virol. 2011;85(17):8903‐8912. PubMed PMC
Decaro N, Campolo M, Desario C, et al. Respiratory disease associated with bovine coronavirus infection in cattle herds in Southern Italy. J Vet Diagn Invest. 2008;20(1):28‐32. PubMed
Valarcher J, Hägglund S. Bovine coronavirus. In: Lefèvre PC, Blancou J, Chermette R, (Eds). Infectious and Parasitic Diseases of Livestock. France: Lavoisier; 2010: pp 545‐552.
Saif LJ. Bovine respiratory coronavirus. Vet Clin North Am Food Anim Pract. 2010;26(2):349‐364. PubMed PMC
Burimuah V, Sylverken A, Owusu M, et al. Sero‐prevalence, cross‐species infection and serological determinants of prevalence of Bovine Coronavirus in Cattle, Sheep and Goats in Ghana. Vet Microbiol. 2020;241:108544. PubMed PMC
Amer HM. Bovine‐like coronaviruses in domestic and wild ruminants. Anim Health Res Rev. 2018;19(2):113‐124. PubMed PMC
Schultze B, Herrler G. Bovine coronavirus uses N‐acetyl‐9‐O‐acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J Gen Virol. 1992;73(Pt 4):901‐906. PubMed
Decaro N, Mari V, Desario C, et al. Severe outbreak of bovine coronavirus infection in dairy cattle during the warmer season. Vet Microbiol. 2008;126(1–3):30‐39. PubMed PMC
Boileau MJ, Kapil S. Bovine coronavirus associated syndromes. Vet Clin North Am Food Anim Pract. 2010;26(1):123‐146. PubMed PMC
Vlasak R, Luytjes W, Spaan W, Palese P. Human and bovine coronaviruses recognize sialic acid‐containing receptors similar to those of influenza C viruses. Proc Natl Acad Sci USA. 1988;85(12):4526‐4529. PubMed PMC
Oma VS, Traven M, Alenius S, Myrmel M, Stokstad M. Bovine coronavirus in naturally and experimentally exposed calves; viral shedding and the potential for transmission. Virol J. 2016;13:100. PubMed PMC
Bok M, Alassia M, Frank F, Vega CG, Wigdorovitz A, Parreno V. Passive immunity to control Bovine coronavirus diarrhea in a dairy herd in Argentina. Rev Argent Microbiol. 2018;50(1):23‐30. PubMed PMC
Ulrich L, Wernike K, Hoffmann D, Mettenleiter TC, Beer M. Experimental infection of cattle with SARS‐CoV‐2. Emerg Infect Dis. 2020;26(12):2979‐2981. PubMed PMC
Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol. 2016;3(1):237‐261. PubMed PMC
Guy JS, Breslin JJ, Breuhaus B, Vivrette S, Smith LG. Characterization of a coronavirus isolated from a diarrheic foal. J Clin Microbiol. 2000;38(12):4523‐4526. PubMed PMC
Bass EP, Sharpee RL. Coronavirus and gastroenteritis in foals. Lancet. 1975;2(7939):822. PubMed PMC
Huang JC, Wright SL, Shipley WD. Isolation of coronavirus‐like agent from horses suffering from acute equine diarrhoea syndrome. Vet Rec. 1983;113(12):262‐263. PubMed
Mair TS, Taylor FG, Harbour DA, Pearson GR. Concurrent cryptosporidium and coronavirus infections in an Arabian foal with combined immunodeficiency syndrome. Vet Rec. 1990;126(6):127‐130. PubMed
Oue Y, Ishihara R, Edamatsu H, et al. Isolation of an equine coronavirus from adult horses with pyrogenic and enteric disease and its antigenic and genomic characterization in comparison with the NC99 strain. Vet Microbiol. 2011;150(1–2):41‐48. PubMed PMC
Oue Y, Morita Y, Kondo T, Nemoto M. Epidemic of equine coronavirus at Obihiro Racecourse, Hokkaido, Japan in 2012. J Vet Med Sci. 2013;75(9):1261‐1265. PubMed
Pusterla N, Mapes S, Wademan C, et al. Emerging outbreaks associated with equine coronavirus in adult horses. Vet Microbiol. 2013;162(1):228‐231. PubMed PMC
Miszczak F, Tesson V, Kin N, et al. First detection of equine coronavirus (ECoV) in Europe. Vet Microbiol. 2014;171(1–2):206‐209. PubMed PMC
Nemoto M, Oue Y, Morita Y, et al. Experimental inoculation of equine coronavirus into Japanese draft horses. Arch Virol. 2014;159(12):3329‐3334. PubMed PMC
Berryhill EH, Magdesian KG, Aleman M, Pusterla N. Clinical presentation, diagnostic findings, and outcome of adult horses with equine coronavirus infection at a veterinary teaching hospital: 33 cases (2012–2018). Vet J. 2019;248:95‐100. PubMed PMC
Fielding CL, Higgins JK, Higgins JC, et al. Disease associated with equine coronavirus infection and high case fatality rate. J Vet Intern Med. 2015;29(1):307‐310. PubMed PMC
Pusterla N, Vin R, Leutenegger C, Mittel LD, Divers TJ. Equine coronavirus: an emerging enteric virus of adult horses. Equine Vet Educ. 2016;28(4):216‐223. PubMed PMC
Nemoto M, Kanno T, Bannai H, Tsujimura K, Yamanaka T, Kokado H. Antibody response to equine coronavirus in horses inoculated with a bovine coronavirus vaccine. J Vet Med Sci. 2017;79(11):1889‐1891. PubMed PMC
[173]Vlasova AN, Wang Q, Jung K, Langel SN, Malik YS, Saif LJ. Porcine Coronaviruses. 2020;79‐110.
Gong L, Li J, Zhou Q, et al. A New Bat‐HKU2‐like Coronavirus in Swine, China, 2017. Emerg Infect Dis. 2017;23(9):1607‐1609. PubMed PMC
Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS‐coronavirus 2. Science. 2020;368(6494):1016‐1020. PubMed PMC
Schlottau K, Rissmann M, Graaf A, et al. SARS‐CoV‐2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe. 2020;1(5):e218‐e225. PubMed PMC
Pickering BS, Smith G, Pinette MM, et al. Susceptibility of domestic swine to experimental infection with severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2021;27(1):104‐112. PubMed PMC
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270‐273. PubMed PMC
Haagmans BL, Al Dhahiry SH, Reusken CB, et al. Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect Dis. 2014;14(2):140‐145. PubMed PMC
Koley T, Madaan S, Chowdhury SR, et al. Structural analysis of COVID‐19 spike protein in recognizing the ACE2 receptor of different mammalian species and its susceptibility to viral infection. 3 Biotech. 2021;11(2):109. PubMed PMC
European Food Safety, European Centre for Disease and Control . Monitoring of SARS‐CoV‐2 infection in mustelids. EFSA J. 2021;19(3):e06459. PubMed PMC
Munoz‐Fontela C, Dowling WE, Funnell SGP, et al. Animal models for COVID‐19. Nature. 2020;586(7830):509‐515. PubMed PMC
Kumar S, Yadav PK, Srinivasan R, Perumal N. Selection of animal models for COVID‐19 research. Virusdisease. 2020;31(4):453‐458. PubMed PMC
Munster VJ, Feldmann F, Williamson BN, et al. Respiratory disease in rhesus macaques inoculated with SARS‐CoV‐2. Nature. 2020;585(7824):268‐272. PubMed PMC
Sia SF, Yan LM, Chin AWH, et al. Pathogenesis and transmission of SARS‐CoV‐2 in golden hamsters. Nature. 2020;583(7818):834‐838. PubMed PMC
Miao J, Chard LS, Wang Z, Wang Y. Syrian hamster as an animal model for the study on infectious diseases. Front Immunol. 2019;10:2329. PubMed PMC
Sreenivasan CC, Thomas M, Wang D, Li F. Susceptibility of livestock and companion animals to COVID‐19. J Med Virol. 2020;93(3):1351‐1360. PubMed
Gaudreault NN, Trujillo JD, Carossino M, et al. SARS‐CoV‐2 infection, disease and transmission in domestic cats. Emerg Microbes Infect. 2020;9(1):2322‐2332. PubMed PMC
Chan JF, Zhang AJ, Yuan S, et al. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID‐19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis. 2020. PubMed PMC
Richard M, Kok A, de Meulder D, et al. SARS‐CoV‐2 is transmitted via contact and via the air between ferrets. Nat Commun 2020;11(1):3496. PubMed PMC
Bosco‐Lauth AM, Hartwig AE, Porter SM, et al. Pathogenesis, transmission and response to re‐exposure of SARS‐1 CoV‐2 in domestic cats. bioRxiv. 2020. PubMed
Leroy EM, Ar Gouilh M, Brugere‐Picoux J. The risk of SARS‐CoV‐2 transmission to pets and other wild and domestic animals strongly mandates a one‐health strategy to control the COVID‐19 pandemic. One Health. 2020;10:133. PubMed PMC
Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al‐Nasser AD. SARS‐CoV‐2 and Coronavirus Disease 2019: What We Know So Far. Pathogens. 2020;9(3). PubMed PMC
Contini C, Di Nuzzo M, Barp N, et al. The novel zoonotic COVID‐19 pandemic: an expected global health concern. J Infect Dev Ctries. 2020;14(3):254‐264. PubMed
Hu B, Zeng LP, Yang XL, et al. Discovery of a rich gene pool of bat SARS‐related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017;13(11):e1006698. PubMed PMC
van Boheemen S, de Graaf M, Lauber C, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio. 2012;3(6). PubMed PMC
Zhang G, Li B, Yoo D, et al. Animal coronaviruses and SARS‐CoV‐2. Transbound Emerg Dis. 2020. PubMed PMC
Davidson M. SARS‐CoV‐2/COVID‐19, United States of America. 2020; https://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=33885. Accessed 28 September, 2020.
Enserink M. Coronavirus rips through Dutch mink farms, triggering culls. Science. 2020;368(6496):1169. PubMed
Oreshkova N, Molenaar RJ, Vreman S, et al. SARS‐CoV‐2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill. 2020;25:23. PubMed PMC
Molenaar RJ, Vreman S, Hakze‐van der Honing RW, et al. Clinical and pathological findings in SARS‐CoV‐2 disease outbreaks in farmed mink (Neovison vison). Vet Pathol. 2020;57(5):653‐657. PubMed
Boklund A, Hammer AS, Quaade ML, et al. SARS‐CoV‐2 in Danish Mink Farms: course of the epidemic and a descriptive analysis of the outbreaks in 2020. Animals (Basel). 2021;11(1). PubMed PMC
Patel KP, Vunnam SR, Patel PA, et al. Transmission of SARS‐CoV‐2: an update of current literature. Eur J Clin Microbiol Infect Dis. 2020;39(11):2005‐2011. PubMed PMC
Cowling BJ, Leung GM. Epidemiological research priorities for public health control of the ongoing global novel coronavirus (2019‐nCoV) outbreak. Eurosurveillance. 2020;25(6). PubMed PMC
Hussein M, Toraih E, Elshazli R, et al. Meta‐analysis on serial intervals and reproductive rates for SARS‐CoV‐2. Ann Surg. 2020;273(3):416‐423. PubMed
Wang H, Li X, Li T, et al. The genetic sequence, origin, and diagnosis of SARS‐CoV‐2. Eur J Clin Microbiol Infect Dis. 2020;39(9):1629‐1635. PubMed PMC
Tian Y, Rong L, Nian W, He Y. Review article: gastrointestinal features in COVID‐19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020;51(9):843‐851. PubMed PMC
Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929‐936. PubMed PMC
Halfmann PJ, Hatta M, Chiba S, et al. Transmission of SARS‐CoV‐2 in domestic cats. N Engl J Med. 2020;383(6):592‐594. PubMed PMC
Decaro N, Vaccari G, Lorusso A, et al. Possible Human‐to‐Dog Transmission of SARS‐CoV‐2, Italy, 2020. Emerg Infec Dis. 2021;27(7):1981‐1984. PubMed PMC
Hamer SA, Ghai RR, Zecca IB, et al. SARS‐CoV‐2 B.1.1.7 variant of concern detected in a pet dog and cat after exposure to a person with COVID‐19, USA. Transbound Emerg Dis. 2021. PubMed PMC
Cox‐Witton K, Baker ML, Edson D, Peel AJ, Welbergen JA, Field H. Risk of SARS‐CoV‐2 transmission from humans to bats ‐ An Australian assessment. One Health. 2021;13:100247. PubMed PMC
Villar M, Fernandez de Mera IG, Artigas‐Jeronimo S, Contreras M, Gortazar C, de la Fuente J. Coronavirus in cat flea: findings and questions regarding COVID‐19. Parasit Vectors. 2020;13(1):409. PubMed PMC
Watson KM, Zhang Y, Towns K, Kahe K. Owner concerns that pets have Covid‐19. Vet Rec. 2020;186(18):608‐609. PubMed PMC
Hartmann K. Can pets transfer Corona onto their owners? SARS‐CoV‐2 in dogs and cats (Können Haustiere Corona auf ihre Besitzer bertragen?: SARS‐CoV‐2 bei Hunden und Katzen). MMW Fortschritte der Medizin. 2020;162(11):10‐11. PubMed PMC
Gao T, Pan X, Pan C. The fate of house cats during the COVID‐19 pandemic. Microbes Infect. 2020;22(4–5):157. PubMed PMC
Guan Y, Zheng BJ, He YQ, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302(5643):276‐278. PubMed
Azhar EI, El‐Kafrawy SA, Farraj SA, et al. Evidence for camel‐to‐human transmission of MERS coronavirus. N Engl J Med. 2014;370(26):2499‐2505. PubMed
Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS‐CoV‐2 associated with the COVID‐19 outbreak. Curr Biol. 2020;30(8):1578. PubMed PMC
Li X, Zai J, Zhao Q, et al. Evolutionary history, potential intermediate animal host, and cross‐species analyses of SARS‐CoV‐2. J Med Virol. 2020;92(6):602‐611. PubMed PMC
Liu Z, Xiao X, Wei X, et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS‐CoV‐2. J Med Virol. 2020;92(6):595‐601. PubMed PMC
AVMA . SARS‐CoV‐2 in animals. 2020; www.AVMA.org/resources‐tools/animal‐health‐and‐welfare/covid‐19/sars‐cov‐2‐animals‐including‐pets. Accessed 30.10.2020, 2020.