Immunology of COVID-19: Mechanisms, clinical outcome, diagnostics, and perspectives-A report of the European Academy of Allergy and Clinical Immunology (EAACI)
Jazyk angličtina Země Dánsko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
32584441
PubMed Central
PMC7361752
DOI
10.1111/all.14462
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19 comorbidity, COVID-19 immunity, COVID-19 multimorbidity, COVID-19 prevention, COVID-19 treatment, SARS, SARS-CoV-2 receptors,
- MeSH
- akademie a ústavy MeSH
- Betacoronavirus imunologie MeSH
- COVID-19 MeSH
- klinické laboratorní techniky metody MeSH
- koronavirové infekce diagnóza imunologie patologie MeSH
- lidé MeSH
- pandemie MeSH
- SARS-CoV-2 MeSH
- testování na COVID-19 MeSH
- virová pneumonie diagnóza imunologie patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
With the worldwide spread of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulting in declaration of a pandemic by the World Health Organization (WHO) on March 11, 2020, the SARS-CoV-2-induced coronavirus disease-19 (COVID-19) has become one of the main challenges of our times. The high infection rate and the severe disease course led to major safety and social restriction measures worldwide. There is an urgent need of unbiased expert knowledge guiding the development of efficient treatment and prevention strategies. This report summarizes current immunological data on mechanisms associated with the SARS-CoV-2 infection and COVID-19 development and progression to the most severe forms. We characterize the differences between adequate innate and adaptive immune response in mild disease and the deep immune dysfunction in the severe multiorgan disease. The similarities of the human immune response to SARS-CoV-2 and the SARS-CoV and MERS-CoV are underlined. We also summarize known and potential SARS-CoV-2 receptors on epithelial barriers, immune cells, endothelium and clinically involved organs such as lung, gut, kidney, cardiovascular, and neuronal system. Finally, we discuss the known and potential mechanisms underlying the involvement of comorbidities, gender, and age in development of COVID-19. Consequently, we highlight the knowledge gaps and urgent research requirements to provide a quick roadmap for ongoing and needed COVID-19 studies.
ALL MED Medical Research Institute Wroclaw Poland
Allergy and Clinical Immunology Transylvania University Brasov Romania
ARADyAL RD16 0006 0015 Thematic Network and Cooperative Research Centers ISCIII Madrid Spain
Center for Allergy and Environment Technical University and Helmholtz Center Munich Munich Germany
Centre for Inflammation Research and Child Life and Health The University of Edinburgh Edinburgh UK
Christine Kühne Center for Allergy Research and Education Davos Switzerland
Department of Allergology and Internal Medicine Medical University of Bialystok Poland
Department of Clinical Immunology Wroclaw Medical University Wrocław Poland
Department of Immunology and Oncology Centro Nacional de Biotecnología Madrid Spain
Department of Immunology Motol University Hospital 2nd Faculty of Medicine Charles University Prague
Department of Immunology University of Toronto Toronto ON Canada
Department of Paediatric Medicine Franciscus Gasthuis and Vlietland Rotterdam the Netherlands
Department of Pathology and Molecular Medicine McMaster University Hamilton ON Canada
Department of Pediatric Basic Sciences Institute of Child Health Istanbul University Istanbul Turkey
Department of Pediatric Pneumonology and Allergy Medical University of Warsaw Warsaw Poland
Department of Rheumatology Medical University of Lodz Lodz Poland
Departments of Medicine and Microbiology APC Microbiome Ireland University College Cork Cork Ireland
Faculty of Science Charles University Prague Czech Republic
Genetics of Cognition laboratory Istituto Italiano di Tecnologia Genova Italy
Institute of Applied Molecular Medicine Hospitals Madrid Group San Pablo CEU University Madrid Spain
Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
Translational Medicine Program Research Institute The Hospital for Sick Children Toronto ON Canada
University Heart Center Zurich University Hospital Zurich Zurich Switzerland
Zobrazit více v PubMed
Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS‐like coronaviruses. Science. 2005;310(5748):676‐679. PubMed
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181‐192. PubMed PMC
Zhang YZ, Holmes EC. A genomic perspective on the origin and emergence of SARS‐CoV‐2. Cell. 2020;181(2):223‐227. PubMed PMC
Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019‐nCoV) originating in China. Cell Host Microbe. 2020;27(3):325‐328. PubMed PMC
Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS‐CoV‐2 entry by using human ACE2. Cell. 2020;181(4):894‐904.e9. PubMed PMC
van de Veerdonk FL, Netea MG, van Deuren M, et al. Kallikrein‐kinin blockade in patients with COVID‐19 to prevent acute respiratory distress syndrome. eLife. 2020;9. PubMed PMC
Hoffmann M, Kleine‐Weber H, Schroeder S, et al. SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271‐280.e8. PubMed PMC
Zhou Y, Vedantham P, Lu K, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res. 2015;116:76‐84. PubMed PMC
Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS‐CoV‐2. Proc Natl Acad Sci USA. 2020;117(21):11727‐11734. PubMed PMC
Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147, CD26 and other SARS‐CoV‐2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID‐19 risk factors. Allergy. 2020. 10.1111/all.14429 PubMed DOI PMC
Sungnak W, Huang NI, Bécavin C, et al. SARS‐CoV‐2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681‐687. PubMed PMC
Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS‐CoV‐2 receptor ACE2 is an interferon‐stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016–1035.e19. 10.1016/j.cell.2020.04.035 PubMed DOI PMC
Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020;526(1):135‐140. PubMed PMC
Wang K, Chen W, Zhou YS, et al. SARS‐CoV‐2 invades host cells via a novel route: CD147‐spike protein. bioRxiv. 2020;preprint:2020.2003.2014.988345.
Chen Z, Mi LI, Xu J, et al. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J Infect Dis. 2005;191(5):755‐760. PubMed PMC
Pushkarsky T, Zybarth G, Dubrovsky L, et al. CD147 facilitates HIV‐1 infection by interacting with virus‐associated cyclophilin A. Proc Natl Acad Sci USA. 2001;98(11):6360‐6365. PubMed PMC
Watanabe A, Yoneda M, Ikeda F, Terao‐Muto Y, Sato H, Kai C. CD147/EMMPRIN acts as a functional entry receptor for measles virus on epithelial cells. J Virol. 2010;84(9):4183‐4193. PubMed PMC
Akkus MN, Ormam A, Seyis S, Baran C, Gorur A, Bilen MN. Plasma EMMPRIN levels in acute myocardial infarction and stable coronary artery disease. Clin Invest Med. 2016;39(3):E79‐87. PubMed
Yurchenko V, Constant S, Eisenmesser E, Bukrinsky M. Cyclophilin‐CD147 interactions: a new target for anti‐inflammatory therapeutics. Clin Exp Immunol. 2010;160(3):305‐317. PubMed PMC
Hibino T, Sakaguchi M, Miyamoto S, et al. S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis. Cancer Res. 2013;73(1):172‐183. PubMed
Kato N, Yuzawa Y, Kosugi T, et al. The E‐selectin ligand basigin/CD147 is responsible for neutrophil recruitment in renal ischemia/reperfusion. J Am Soc Nephrol. 2009;20(7):1565‐1576. PubMed PMC
Seizer P, Borst O, Langer H, et al. EMMPRIN (CD147) is a novel receptor for platelet GPVI and mediates platelet rolling via GPVI‐EMMPRIN interaction. Thromb Haemost. 2009;101(4):682‐686. PubMed
Huang W, Luo W‐J, Zhu P, et al. Modulation of CD147‐induced matrix metalloproteinase activity: role of CD147 N‐glycosylation. Biochem J. 2013;449(2):437‐448. PubMed
Slomiany MG, Grass GD, Robertson AD, et al. Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells. Cancer Res. 2009;69(4):1293‐1301. PubMed PMC
Wathelet MG, Orr M, Frieman MB, Baric RS. Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol. 2007;81(21):11620‐11633. PubMed PMC
Tanaka Y, Sato Y, Sasaki T. Suppression of coronavirus replication by cyclophilin inhibitors. Viruses. 2013;5(5):1250‐1260. PubMed PMC
Whitworth KM, Rowland RRR, Petrovan V, et al. Resistance to coronavirus infection in amino peptidase N‐deficient pigs. Transgenic Res. 2019;28(1):21‐32. PubMed PMC
Holmes RS, Spradling‐Reeves KD, Cox LA. Mammalian glutamyl aminopeptidase genes (ENPEP) and proteins: Comparative studies of a major contributor to arterial hypertension. J Data Mining Genomics Proteomics. 2017;8(2). PubMed PMC
Yang Z‐Y, Huang Y, Ganesh L, et al. pH‐dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC‐SIGN. J Virol. 2004;78(11):5642‐5650. PubMed PMC
Wu C, Zheng M. Single‐cell RNA expression profiling shows that ACE2, the putative receptor for COVID‐2019, has significant expression in nasal and mounth tissue and is co‐expressed with TMPRSS2 and not co‐expressed with SLC6A19 in the tissues. PREPRINT (Version 1) available at Research Square. 12 March 2020.
Yan R, Zhang Y, Li Y, Xia L, Zhou Q. Structure of dimeric full‐length human ACE2 in complex with B0AT1. bioRxiv. 2020;preprint:2020.2002.2017.951848.
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1‐23. PubMed PMC
Gordon DE, Jang GM, Bouhaddou M, et al. A SARS‐CoV‐2 protein interaction map reveals targets for drug repurposing. Nature. 2020. 10.1038/s41586-020-2286-9 PubMed DOI PMC
Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID‐19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1‐9. PubMed
Zissler UM, Chaker AM, Effner R, et al. Interleukin‐4 and interferon‐γ orchestrate an epithelial polarization in the airways. Mucosal Immunol. 2016;9(4):917‐926. PubMed
Finlay BB, McFadden G. Anti‐immunology: Evasion of the host immune system by bacterial and viral pathogens. Cell. 2006;124(4):767‐782. PubMed
DeDiego ML, Nieto‐Torres JL, Jimenez‐Guardeño JM, et al. Coronavirus virulence genes with main focus on SARS‐CoV envelope gene. Virus Res. 2014;194:124‐137. PubMed PMC
Schoggins JW. Interferon‐stimulated genes: What do they all do? Annu Rev Virol. 2019;6(1):567‐584. PubMed
Prokunina‐Olsson L, Alphonse N, Dickenson RE, et al. COVID‐19 and emerging viral infections: The case for interferon lambda. J Exp Med. 2020;217(5). PubMed PMC
Chu H, Chan JF‐W, Wang Y, et al. Comparative replication and immune activation profiles of SARS‐CoV‐2 and SARS‐CoV in human lungs: An ex vivo study with implications for the pathogenesis of COVID‐19. Clin Infect Dis. 2020. 10.1093/cid/ciaa410 PubMed DOI PMC
Channappanavar R, Fehr A, Vijay R, et al. Dysregulated type I interferon and inflammatory monocyte‐macrophage responses cause lethal pneumonia in SARS‐CoV‐infected mice. Cell Host Microbe. 2016;19(2):181‐193. PubMed PMC
Kindler E, Thiel V, Weber F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res. 2016;96:219‐243. PubMed PMC
Menachery VD, Debbink K, Baric RS. Coronavirus non‐structural protein 16: Evasion, attenuation, and possible treatments. Virus Res. 2014;194:191‐199. PubMed PMC
Versteeg GA, Bredenbeek PJ, van den Worm SH, Spaan WJ. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition. Virology. 2007;361(1):18‐26. PubMed PMC
Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631‐637. PubMed PMC
Zhang H, Kang Z, Gong H, et al. Digestive system is a potential route of COVID‐ 19: an analysis of single‐cell coexpression pattern of key proteins in viral entry process. Gut. 2020;69(6):1010‐1018.
Zang R, Castro MFG, McCune BT, et al. TMPRSS2 and TMPRSS4 mediate SARS‐CoV‐2 infection of human small intestinal enterocytes. bioRxiv. 2020; preprint:2020.2004.2021.054015. PubMed PMC
Zheng H‐C, Takahashi H, Murai Y, et al. Upregulated EMMPRIN/CD147 might contribute to growth and angiogenesis of gastric carcinoma: a good marker for local invasion and prognosis. Br J Cancer. 2006;95(10):1371‐1378. PubMed PMC
Darmoul D, Voisin T, Couvineau A, et al. Regional expression of epithelial dipeptidyl peptidase IV in the human intestines. Biochem Biophys Res Commun. 1994;203(2):1224‐1229. PubMed
Pan L, Mu MI, Yang P, et al. Clinical characteristics of COVID‐19 patients with digestive symptoms in Hubei, China: A descriptive, cross‐sectional. Multicenter Study. Am J Gastroenterol. 2020;115(5):766‐773. PubMed PMC
Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID‐19 patients. Proc Natl Acad Sci USA. 2020;117(17):9490‐9496. PubMed PMC
D'Amico F, Baumgart DC, Danese S, Peyrin‐Biroulet L. Diarrhea during COVID‐19 infection: Pathogenesis, epidemiology, prevention and management. Clin Gastroenterol Hepatol. 2020;18(8):1663‐1672. PubMed PMC
Leung WK, To KF, Chan PK, et al. Enteric involvement of severe acute respiratory syndrome‐associated coronavirus infection. Gastroenterology. 2003;125(4):1011‐1017. PubMed PMC
Zhang B, Liu S, Tan T, et al. Treatment with convalescent plasma for critically Ill patients with severe acute respiratory syndrome coronavirus 2 infection. Chest. 2020;158(1):e9–e13. 10.1016/j.chest.2020.03.039 PubMed DOI PMC
Zhou J, Li C, Zhao G, et al. Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. Sci Adv. 2017;3(11):eaao4966. PubMed PMC
Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID‐2019. Nature. 2020;581(7809):465‐469. PubMed
Li LY, Wu W, Chen S, et al. Digestive system involvement of novel coronavirus infection: prevention and control infection from a gastroenterology perspective. J Dig Dis. 2020;21(4):199‐204. PubMed PMC
Recalcati S. Cutaneous manifestations in COVID‐19: A first perspective. J Eur Acad Dermatol Venereol. 2020;34(5). PubMed
Bouaziz JD, Duong T, Jachiet M, et al. Vascular skin symptoms in COVID‐19: A french observational study. J Eur Acad Dermatol Venereol. 2020. 10.1111/jdv.16544 PubMed DOI PMC
Marzano AV, Genovese G, Fabbrocini G, et al. Varicella‐like exanthem as a specific COVID‐19–associated skin manifestation: Multicenter case series of 22 patients. J Eur Acad Dermatol Venereol. 2020;83(1):280–285. 10.1016/j.jaad.2020.04.044 PubMed DOI PMC
Mazzotta FT, Troccoli T. Acute acro‐ischemia in the child at the time of COVID‐19. Eur J Pediat Dermatol. 2020;30(2):71–74.
Yan Y, Chen H, Chen L, et al. Consensus of Chinese experts on protection of skin and mucous membrane barrier for health‐care workers fighting against coronavirus disease. Dermatol Ther. 2019;2020:e13310. PubMed PMC
Prescott SL, Larcombe D‐L, Logan AC, et al. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J. 2017;10(1):29. PubMed PMC
Wang A, Chiou J, Poirion OB, et al. Nucleus multiomic profiling reveals age‐dynamic regulation of host genes associated with SARS‐CoV‐2 infection. bioRxiv. 2020; preprint:2020.2004.2012.037580.
Blanco‐Melo D, Nilsson‐Payant BE, Liu W‐C, et al. Imbalanced host response to SARS‐CoV‐2 drives development of COVID‐19. Cell. 2020;181(5):1036–1045.e9. 10.1016/j.cell.2020.04.026. PubMed DOI PMC
Liao M, Liu Y, Yuan J, et al. The landscape of lung bronchoalveolar immune cells in COVID‐19 revealed by single‐cell RNA sequencing. medRxiv. 2020; preprint: 2020.2002.2023.20026690.
Yilla M, Harcourt BH, Hickman CJ, et al. SARS‐coronavirus replication in human peripheral monocytes/macrophages. Virus Res. 2005;107(1):93‐101. PubMed PMC
Chen Y, Feng Z, Diao B, et al. The novel severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) directly decimates human spleens and lymph nodes . medRxiv. 2020; preprint: 2020.2003.2027.20045427.
Lozach PY, Burleigh L, Staropoli I, Amara A. The C type lectins DC‐SIGN and L‐SIGN: receptors for viral glycoproteins. Methods Mol Biol. 2007;379:51‐68. PubMed PMC
Cai G, Cui X, Zhu X, Zhou J. A hint on the COVID‐19 Risk: population disparities in gene expression of three receptors of SARS‐CoV. In. www.preprints.org, 10.20944/preprints202002.0408.v12020 DOI
Park MD. Macrophages: a Trojan horse in COVID‐19? Nat Rev Immunol. 2020;20(6):351. PubMed PMC
Ratajczak MZ, Kucia M. SARS‐CoV‐2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine "storm" and risk factor for damage of hematopoietic stem cells. Leukemia. 2020;1‐4. PubMed PMC
Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol. 2019;10:50. PubMed PMC
Zhou Y, Fu B, Zheng X, et al. Pathogenic T‐cells and inflammatory monocytes incite inflammatory storms in severe COVID‐19 patients. National Sci Rev. 2020;7(6):998–1002. 10.1093/nsr/nwaa041 PubMed DOI PMC
He L, Ding Y, Zhang Q, et al. Expression of elevated levels of pro‐inflammatory cytokines in SARS‐CoV‐infected ACE2+ cells in SARS patients: Relation to the acute lung injury and pathogenesis of SARS. J Pathol. 2006;210(3):288‐297. PubMed PMC
Liu LI, Wei Q, Lin Q, et al. Anti‐spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS‐CoV infection. JCI Insight. 2019;4(4). PubMed PMC
McGonagle D, Sharif K, O'Regan A, Bridgewood C. The role of cytokines including interleukin‐6 in COVID‐19 induced pneumonia and macrophage activation syndrome‐like disease. Autoimmun Rev. 2020;19(6):102537. PubMed PMC
Zhou M, Zhang X, Qu J. Coronavirus disease 2019 (COVID‐19): A clinical update. Front Med. 2020;14(2):126‐135. PubMed PMC
Nairz M, Theurl I, Swirski FK, Weiss G. "Pumping iron"‐how macrophages handle iron at the systemic, microenvironmental, and cellular levels. Pflugers Arch. 2017;469(3–4):397‐418. PubMed PMC
Soares MP, Hamza I. Macrophages and iron metabolism. Immunity. 2016;44(3):492‐504. PubMed PMC
Velavan TP, Meyer CG. Mild versus severe COVID‐19: Laboratory markers. Int J Infect Dis. 2020;95:304‐307. PubMed PMC
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061. PubMed PMC
Barnes BJ, Adrover JM, Baxter‐Stoltzfus A, et al. Targeting potential drivers of COVID‐ 19: Neutrophil extracellular traps. J Exp Med. 2020;217(6). PubMed PMC
Fox SE, Akmatbekov A, Harbert JL, Li G, Brown JQ, Vander Heide RS. Pulmonary and cardiac pathology in Covid‐19: The first autopsy series from new orleans. medRxiv. 2020; preprint: 2020.2004.2006.20050575.
Jesenak M, Banovcin P, Diamant Z. COVID‐19, chronic inflammatory respiratory diseases and eosinophils – Observationsfrom reported clinical case series. Allergy. 2020;75:1819‐1822. 10.1111/all.14353 PubMed DOI
Zhang J‐J, Dong X, Cao Y‐Y, et al. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy. 2020;75:1730‐1741. 10.1111/all.14238 PubMed DOI
Du Y, Tu L, Zhu P, et al. Clinical features of 85 fatal cases of COVID‐19 from Wuhan. A retrospective observational study. American Journal of Respiratory and Critical Care Medicine. 2020;201(11):1372–1379. 10.1164/rccm.202003-0543oc PubMed DOI PMC
Lippi G, Henry BM. Eosinophil count in severe coronavirus disease 2019. QJM: An International Journal of Medicine. 2020. 10.1093/qjmed/hcaa137 PubMed DOI PMC
Lindsley AW, Schwartz JT, Rothenberg ME. Eosinophil responses during COVID‐19 infections and coronavirus vaccination. J Allergy Clin Immuno. 2020;146(1):1–7. 10.1016/j.jaci.2020.04.021 PubMed DOI PMC
Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID‐19 Autopsies, Oklahoma, USA. Am J Clin Pathol. 2020;153(6):725‐733. PubMed PMC
Kortekaas Krohn I, Shikhagaie MM, Golebski K, et al. Emerging roles of innate lymphoid cells in inflammatory diseases: Clinical implications. Allergy. 2018;73(4):837‐850. PubMed
Morita H, Moro K, Koyasu S. Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol. 2016;138(5):1253‐1264. PubMed
Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS‐CoV‐2 infected patients. EBioMedicine. 2020;55:102763. PubMed PMC
Wang F, Nie J, Wang H, et al. Characteristics of peripheral lymphocyte subset alteration in COVID‐19 pneumonia. J Infect Dis. 2020;221(11):1762‐1769. PubMed PMC
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2(‐) mesenchymal stem cells improves the outcome of patients with COVID‐19 pneumonia. Aging Dis. 2020;11(2):216‐228. PubMed PMC
Thevarajan I, Nguyen THO, Koutsakos M, et al. Breadth of concomitant immune responses prior to patient recovery: A case report of non‐severe COVID‐19. Nat Med. 2020;26(4):453‐455. PubMed PMC
Giamarellos‐Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID‐19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992‐1000.e3. PubMed PMC
Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID‐19) in Wuhan, China. Clinical Infectious Diseases. 2020. 10.1093/cid/ciaa248 PubMed DOI PMC
Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID‐19 patients. Cell Mol Immunol. 2020;17(5):533‐535. PubMed PMC
van Montfoort N, Borst L, Korrer MJ, et al. NKG2A Blockade Potentiates CD8 T Cell Immunity Induced by Cancer Vaccines. Cell 2018;175(7):1744‐1755.e1715. PubMed PMC
Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID‐19 infection: a report of five cases. Transl Res. 2020;220:1‐13. PubMed PMC
Gralinski LE, Sheahan TP, Morrison TE, et al. complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio. 2018;9(5). PubMed PMC
Mulvey JJ, Magro CM, Ma LX, Nuovo GJ, Baergen RN. Analysis of complement deposition and viral RNA in placentas of COVID‐19 patients. Ann Diagn Pathol. 2020;46:151530. PubMed PMC
Netea MG, Quintin J, van der Meer JW. Trained immunity: a memory for innate host defense. Cell Host Microbe. 2011;9(5):355‐361. PubMed
Sanchez‐Ramon S, Conejero L, Netea MG, Sancho D, Palomares O, Subiza JL. Trained immunity‐based vaccines: A new paradigm for the development of broad‐spectrum anti‐infectious formulations. Front Immunol. 2018;9:2936. PubMed PMC
Kleinnijenhuis J, Quintin J, Preijers F, et al. Long‐lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J Innate Immun. 2014;6(2):152‐158. PubMed PMC
Jensen KJ, Larsen N, Biering‐Sørensen S, et al. Heterologous immunological effects of early BCG vaccination in low‐birth‐weight infants in Guinea‐Bissau: A randomized‐controlled trial. J Infect Dis. 2015;211(6):956‐967. PubMed PMC
Gursel M, Gursel I. Is global BCG vaccination‐induced trained immunity relevant to the progression of SARS‐CoV‐2 pandemic?. Allergy. 2020;75:1815‐1819. 10.1111/all.14345 PubMed DOI PMC
Ozdemir C, Kucuksezer UC, Tamay ZU. Is BCG vaccination affecting the spread and severity of COVID‐19?. Allergy. 2020;75:1824‐1827. 10.1111/all.14344 PubMed DOI
O'Neill LAJ, Netea MG. BCG‐induced trained immunity: Can it offer protection against COVID‐19? Nat Rev Immunol. 2020;20(6):335‐337. PubMed PMC
Retamal‐Díaz A, Covián C, Pacheco GA, et al. Contribution of resident memory CD8(+) T cells to protective immunity against respiratory syncytial virus and their impact on vaccine design. Pathogens. 2019;8(3):147. PubMed PMC
Murali‐Krishna K, Altman JD, Suresh M, et al. Counting antigen‐specific CD8 T cells: A reevaluation of bystander activation during viral infection. Immunity. 1998;8(2):177‐187. PubMed
Libraty DH, O'Neil KM, Baker LM, Acosta LP, Olveda RM. Human CD4(+) memory T‐lymphocyte responses to SARS coronavirus infection. Virology. 2007;368(2):317‐321. PubMed PMC
Ng O‐W, Chia A, Tan AT, et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post‐infection. Vaccine. 2016;34(17):2008‐2014. PubMed PMC
Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell responses to SARS‐CoV‐2 coronavirus in humans with COVID‐19 disease and unexposed individuals. Cell. 2020;181(7):1489–1501.e15. 10.1016/j.cell.2020.05.015 PubMed DOI PMC
Braun J, Loyal L, Frentsch M, et al. Presence of SARS‐CoV‐2 reactive T cells in COVID‐19 patients and healthy donors. medRxiv. 2020:2020.2004.2017.20061440.
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID‐19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420‐422. PubMed PMC
Cameron MJ, Bermejo‐Martin JF, Danesh A, Muller MP, Kelvin DJ. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res. 2008;133(1):13‐19. PubMed PMC
Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID‐19 patients. Emerg Microbes Infect. 2020;9(1):761‐770. PubMed PMC
Zhao J, Zhao J, Legge K, Perlman S. Age‐related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Invest. 2011;121(12):4921‐4930. PubMed PMC
Yoshikawa T, Hill T, Li K, Peters CJ, Tseng CT. Severe acute respiratory syndrome (SARS) coronavirus‐induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte‐derived macrophages and dendritic cells. J Virol. 2009;83(7):3039‐3048. PubMed PMC
Zhao J, Zhao J, Van Rooijen N, Perlman S. Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS‐CoV‐infected mice. PLoS Pathog. 2009;5(10):e1000636. PubMed PMC
Bahl K, Kim SK, Calcagno C, et al. IFN‐induced attrition of CD8 T cells in the presence or absence of cognate antigen during the early stages of viral infections. J Immunol. 2006;176(7):4284‐4295. PubMed
Bermejo‐Martin JF, Almansa R, Menendez R, Mendez R, Kelvin DJ, Torres A. Lymphopenic community acquired pneumonia as signature of severe COVID‐19 infection. J Infect. 2020;80(5):e23‐e24. PubMed PMC
Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID‐19). medRxiv. 2020;preprint. PubMed PMC
Diao B, Wang C, Tan Y, et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID‐19). Frontiers Immunol. 2020;11(827). PubMed PMC
McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. T‐cell exhaustion, co‐stimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523(7562):612‐616. PubMed PMC
Huang AT, Garcia‐Carreras B, Hitchings MDT, et al. A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv. 2020; preprint: 2020.2004.2014.20065771. PubMed PMC
Breedveld A, van Egmond M. IgA and FcαRI: Pathological roles and therapeutic opportunities. Front Immunol. 2019;10:553. PubMed PMC
Tan YJ, Goh PY, Fielding BC, et al. Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers. Clin Diagn Lab Immunol. 2004;11(2):362‐371. PubMed PMC
Temperton NJ, Chan PK, Simmons G, et al. Longitudinally profiling neutralizing antibody response to SARS coronavirus with pseudotypes. Emerg Infect Dis. 2005;11(3):411‐416. PubMed PMC
Casadevall A, Pirofski L‐A. The convalescent sera option for containing COVID‐19. J Clin Investig. 2020;130(4):1545‐1548. PubMed PMC
Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically Ill patients with COVID‐19 with convalescent plasma. JAMA. 2020;323(16):1582. PubMed PMC
Ahn JY, Sohn Y, Lee SH, et al. Use of convalescent plasma therapy in two COVID‐19 patients with acute respiratory distress syndrome in Korea. J Korean Med Sci. 2020;35(14):e149. PubMed PMC
Iwasaki A, Yang Y. The potential danger of suboptimal antibody responses in COVID‐19. Nat Rev Immunol. 2020;20(6):339–‐41. PubMed PMC
Wilk AJ, Rustagi A, Zhao NQ, et al. A single‐cell atlas of the peripheral immune response to severe COVID‐19. medRxiv. 2020:2020.2004.2017.20069930. PubMed PMC
Corcoran LM, Tarlinton DM. Regulation of germinal center responses, memory B cells and plasma cell formation‐an update. Curr Opin Immunol. 2016;39:59‐67. PubMed
Pan Y, Zhang D, Yang P, Poon LLM, Wang Q. Viral load of SARS‐CoV‐2 in clinical samples. Lancet Infect Dis. 2020;20(4):411‐412. PubMed PMC
Zou L, Ruan F, Huang M, et al. SARS‐CoV‐2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382(12):1177‐1179. PubMed PMC
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID‐19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363‐374. PubMed PMC
Xu Y‐H, Dong J‐H, An W‐M, et al. Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS‐CoV‐2. J Infect. 2020;80(4):394‐400. PubMed PMC
Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary pathology of early‐phase 2019 novel coronavirus (COVID‐19) pneumonia in two patients with lung cancer. J Thorac Oncol. 2020;15(5):700‐704. PubMed PMC
Vardhana SA, Wolchok JD. The many faces of the anti‐COVID immune response. J Exp Med. 2020;217(6). PubMed PMC
George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID‐19: The potential role for antifibrotic therapy. Lancet Respir Med. 2020. 10.1016/s2213-2600(20)30225-3 PubMed DOI PMC
Spagnolo P, Balestro E, Aliberti S, et al. Pulmonary fibrosis secondary to COVID‐ 19: a call to arms? Lancet Respir Med. 2020. PubMed PMC
Liu PP, Blet A, Smyth D, Li H. The science underlying COVID‐19: Implications for the cardiovascular system. Circulation. 2020. 10.1161/circulationaha.120.047549 PubMed DOI
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID‐19. Lancet. 2020;395(10234):1417‐1418. PubMed PMC
Oudit GY, Kassiri Z, Jiang C, et al. SARS‐coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618‐625. PubMed PMC
Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako‐Tsubo syndrome in a patient with SARS‐CoV‐2 respiratory infection. Eur Heart J. 2020;41(19):1861‐1862. PubMed PMC
Deng Q, Hu BO, Zhang Y, et al. Suspected myocardial injury in patients with COVID‐ 19: Evidence from front‐line clinical observation in Wuhan, China. Int J Cardiol. 2020;19:116‐121. PubMed PMC
Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS‐CoV‐2. N Engl J Med. 2020. 10.1056/nejmc2011400 PubMed DOI PMC
Bikdeli B, Madhavan MV, Jimenez D, et al. COVID‐19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow‐up. J Am Coll Cardiol. 2020;75(23):2950‐2973. PubMed PMC
Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID‐19, SARS‐CoV‐1, MERS‐CoV and lessons from the past. J Clin Virol. 2020;127:104362. PubMed PMC
Lippi G, Plebani M. Laboratory abnormalities in patients with COVID‐2019 infection. Clin Chem Lab Med. 2020;58(7):1131‐1134. PubMed
Liu Y, Sun W, Guo Y, et al. Retrospective cohort study. Platelets. 2020;31(4):490‐496. PubMed PMC
Lippi G, Favaloro EJ. D‐dimer is associated with severity of coronavirus disease 2019: A pooled analysis. Thromb Haemost. 2020;120(05):876‐ 878. PubMed PMC
Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID‐19): A meta‐analysis. Clin Chim Acta. 2020;505:190‐191. PubMed PMC
Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094‐1099. PubMed PMC
Ito T. PAMPs and DAMPs as triggers for DIC. J Intensive Care. 2014;2(1):67. PubMed PMC
Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID‐19 acute respiratory distress syndrome. J Thromb Haemost. 2020. PubMed PMC
Chen R, Sang L, Jiang M, et al. Longitudinal hematologic and immunologic variations associated with the progression of COVID‐19 patients in China. J Allergy Clin Immunol. 2020;146(1):89–100. 10.1016/j.jaci.2020.05.003 PubMed DOI PMC
Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: Leukocyte recruitment via the choroid plexus. EMBO J. 2014;33(1):7‐22. PubMed PMC
Michalicová A, Bhide K, Bhide M, Kováč A. How viruses infiltrate the central nervous system. Acta Virol. 2017;61(4):393‐400. PubMed
Archibald LK, Quisling RG. Central nervous system infections. In: Layon JA, Gabrielli A, Friedman WA, eds. Textbook of Neurointensive Care. London, UK: Springer; 2013:427‐517.
Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID‐19 and other coronaviruses. Brain Behav Immun. 2020;87:18‐22. PubMed PMC
Ding Y, He LI, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS‐CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203(2):622‐630. PubMed PMC
Gu J, Gong E, Zhang BO, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415‐424. PubMed PMC
Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264‐7275. PubMed PMC
Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID‐19‐associated Acute Hemorrhagic Necrotizing Encephalopathy: CT and MRI Features. Radiology. 2020;201187. PubMed PMC
Zhou B, She J, Wang Y, Ma X. A case of coronavirus disease 2019 with concomitant acute cerebral infarction and deep vein thrombosis. Frontiers Neurol. 2020;11. PubMed PMC
China. NHCotPsRo . Diagnosis and treatment protocol for novel coronavirus pneumonia (7th Interim Edition). 2020. China NHCOTPSRO. http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989/files/ce3e6945832a438eaae415350a8ce964.pdf
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683. PubMed PMC
Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and Ageusia: Common Findings in COVID‐19 Patients. Laryngoscope. 2020. PubMed PMC
Giacomelli A, Pezzati L, Conti F, et al. Self‐reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: A cross‐sectional study. Clin Infect Dis. 2020. 10.1093/cid/ciaa330 PubMed DOI PMC
Lechien JR, Chiesa‐Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild‐to‐moderate forms of the coronavirus disease (COVID‐19): A multicenter European study. Eur Arch Otorhinolaryngol. 2020. 10.1007/s00405-020-05965-1 PubMed DOI PMC
Pei G, Zhang Z, Peng J, et al. Renal Involvement and early prognosis in patients with COVID‐19 pneumonia. J Am Soc Nephrol. 2020;31(6):1157‐1165. PubMed PMC
Rovin BH, Ronco P, Editors A, Kidney TEE. International and the COVID‐19 infection. Kidney Int. 2020;97(5):823. PubMed PMC
Magrone T, Magrone M, Jirillo E. Focus on receptors for coronaviruses with special reference to angiotensin‐converting enzyme 2 as a potential drug target ‐ A perspective. Endocr Metab Immune Disord Drug Targets. 2020. PubMed
Monteil V, Kwon H, Prado P, et al. Inhibition of SARS‐CoV‐2 infections in engineered human tissues using clinical‐grade soluble human ACE2. Cell. 2020;181(4):905‐913.e7. PubMed PMC
Qu X, Wang C, Zhang J, Qie G, Zhou J. The roles of CD147 and/or cyclophilin A in kidney diseases. Mediators Inflamm. 2014;2014:728673. PubMed PMC
Pfefferle S, Schöpf J, Kögl M, et al. The SARS‐coronavirus‐host interactome: Identification of cyclophilins as target for pan‐coronavirus inhibitors. PLoS Pathog. 2011;7(10):e1002331. PubMed PMC
Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID‐19: Evidence from meta‐analysis. Aging (Albany NY). 2020;12(7):6049‐6057. PubMed PMC
Dong X, Cao Y‐Y, Lu X‐X, et al. Eleven faces of coronavirus disease 2019. Allergy. 2020. Jul;75(7):1699‐1709. 10.1111/all.14289. PubMed DOI PMC
Guan W‐J, Liang W‐H, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID‐19 in China: A nationwide analysis. Eur Respir J. 2020;55(5):2000547. 10.1183/13993003.00547-2020 PubMed DOI PMC
Chen X, Hu W, Ling J, et al. Hypertension and diabetes delay the viral clearance in COVID‐19 patients. medRxiv. 2020;preprint.
Kulcsar KA, Coleman CM, Beck SE, Frieman MB. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS‐CoV infection. JCI Insight. 2019;4(20). PubMed PMC
Michalovich D, Rodriguez‐Perez N, Smolinska S, et al. Obesity and disease severity magnify disturbed microbiome‐immune interactions in asthma patients. Nat Commun. 2019;10(1):5711. PubMed PMC
Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193‐199. PubMed PMC
Chakrabarty B, Das D, Bulusu G, Roy A. Network‐based analysis of fatal comorbidities of COVID‐19 and potential therapeutics. ChemRxiv. preprint. 10.26434/chemrxiv.12136470.v1 PubMed DOI PMC
Bao W, Min D, Twigg SM, et al. Monocyte CD147 is induced by advanced glycation end products and high glucose concentration: Possible role in diabetic complications. Am J Physiol Cell Physiol. 2010;299(5):C1212‐1219. PubMed
Wang J, Luo Q, Chen R, Chen T, Li J. Susceptibility Analysis of COVID‐19 in Smokers Based on ACE2. Preprintsorg. 2020;preprint.
Leung JM, Yang CX, Tam A, et al. ACE‐2 expression in the small airway epithelia of smokers and COPD patients: implications for COVID‐19. European Respiratory Journal. 2020;55(5). 10.1183/13993003.00688-2020 PubMed DOI PMC
Ji HL, Zhao R, Matalon S, Matthay MA. Elevated Plasmin(ogen) as a COMMON RISK FACTOR for COVID‐19 susceptibility. Physiol Rev. 2020;100(3):1065‐1075. PubMed PMC
Wambier CG, Goren A. Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection is likely to be androgen mediated. J Am Acad Dermatol. 2020;83(1):308‐309. PubMed PMC
Wang LS, Williamson SR, Zhang SB, et al. Increased androgen receptor gene copy number is associated with TMPRSS2‐ERG rearrangement in prostatic small cell carcinoma. Mol Carcinogen. 2015;54(9):900‐907. PubMed
Kwetkat A, Heppner HJ. Comorbidities in the elderly and their possible influence on vaccine response. Interdiscip Top Gerontol Geriatr. 2020;43:73‐85. PubMed
Samson LD, Boots AMH, Verschuren WMM, Picavet HSJ, Engelfriet P, Buisman AM. Frailty is associated with elevated CRP trajectories and higher numbers of neutrophils and monocytes. Exp Gerontol. 2019;125. PubMed
Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: A new immune‐metabolic viewpoint for age‐related diseases. Nat Rev Endocrinol. 2018;14(10):576‐590. PubMed
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395(10223):507‐513. PubMed PMC
Guan W‐J, Ni Z‐Y, Hu YU, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708‐1720. PubMed PMC
Huang C, Wang Y, Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet. 2020;395(10223):496. PubMed PMC
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID‐19) outbreak in China: Summary of a report of 72314 cases from the chinese center for disease control and prevention. JAMA. 2020;323(13):1239. PubMed
CDC . Coronavirus Disease 2019 in Children — United States, February 12–April 2, 2020. 2020; https://www.cdc.gov/mmwr/volumes/69/wr/mm6914e4.htm. Accessed May 7, 2020 PubMed PMC
Bousquet J, Akdis C, Jutel M, et al. Intranasal corticosteroids in allergic rhinitis in COVID‐19 infected patients: An ARIA‐EAACI statement. Allergy 2020;75:2511‐2515. PubMed
Klimek L, Jutel M, Akdis C, et al. Handling of allergen immunotherapy in the COVID‐19 pandemic: An ARIA‐EAACI statement. Allergy. 2020;75(7):1546‐1554. 10.1111/all.14336 PubMed DOI PMC
Johnston SL. Asthma and COVID‐19: is asthma a risk factor for severe outcomes? Allergy 2020. PubMed PMC
Jackson DJ, Busse WW, Bacharier LB, et al. Association of respiratory allergy, asthma and expression of the SARS‐CoV‐2 receptor, ACE2. J Allergy Clin Immunol. 2020. PubMed PMC
Mehta P, McAuley DF, Brown M, et al. COVID‐19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033‐1034. PubMed PMC
Sotgiu G, Gerli AG, Centanni S, et al. Advanced forecasting of SARS‐CoV‐2‐related deaths in Italy, Germany, Spain, and New York State. Allergy. 2020;75:1813‐1815. PubMed PMC
Yang Y, Shen C, Li J, et al. Exuberant elevation of IP‐10, MCP‐3, and IL‐1ra during SARS‐CoV‐2 infection is associated with disease severity and fatal outcomes. med Rxiv preprint. 2020.
Liu M, Song Z, Xiao K. High‐resolution computed tomography manifestations of 5 pediatric patients with 2019 novel coronavirus. J Comput Assist Tomogr. 2020;44(3):311‐ 313. PubMed PMC
Jones TC, Mühlemann B, Veith T, et al. An analysis of SARS‐CoV‐2 viral load by patient age. submitted. 2020. 10.1101/2020.06.08.20125484 DOI
Maddux AB, Douglas IS. Is the developmentally immature immune response in paediatric sepsis a recapitulation of immune tolerance? Immunology 2015;145(1):1‐10. PubMed PMC
Riphagen S, Gomez X, Gonzalez‐Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID‐19 pandemic. Lancet. 2020;395(10237):1607‐1608. PubMed PMC
WHO . Multisystem inflammatory syndrome in children and adolescents temporally related to COVID‐19. https://www.who.int/news‐room/commentaries/detail/multisystem‐inflammatory‐syndrome‐in‐children‐and‐adolescents‐with‐covid‐19: WHO; 2020.
WHO . Report of the WHO‐China Joint Mission on Coronavirus Disease 2019 (COVID‐19). https://www.who.int/publications‐detail/report‐of‐the‐who‐china‐joint‐mission‐on‐coronavirus‐disease‐2019‐(covid‐19): WHO; 2020.
Vogel G. These are answers we need. WHO plans global study to discover true extent of coronavirus infections. Science. 2020.
Alberici F, Delbarba E, Manenti C, et al. A single center observational study of the clinical characteristics and short‐term outcome of 20 kidney transplant patients admitted for SARS‐CoV2 pneumonia. Kidney International. 2020;97(6):1083–1088. 10.1016/j.kint.2020.04.002 PubMed DOI PMC
Capra R, De Rossi N, Mattioli F, et al. Impact of low dose tocilizumab on mortality rate in patients with COVID‐19 related pneumonia. Eur J Intern Med. 2020;76:31‐35. PubMed PMC
Colaneri M, Bogliolo L, Valsecchi P, et al. Tocilizumab for treatment of severe COVID‐19 patients: Preliminary Results from SMAtteo COvid19 REgistry (SMACORE). Microorganisms. 2020;8(5):695. PubMed PMC
Di Giambenedetto S, Ciccullo A, Borghetti A, et al. Off‐label use of tocilizumab in patients with SARS‐CoV‐2 infection. J Med Virol. 2020. PubMed PMC
Jacobs JP, Stammers AH, St. Louis J, et al. Extracorporeal membrane oxygenation in the treatment of severe pulmonary and cardiac compromise in COVID‐19: Experience with 32 patients. ASAIO J. 2020. PubMed PMC
Klopfenstein T, Zayet S, Lohse A, et al. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID‐19 patients. Med Mal Infect. 2020. PubMed PMC
Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID‐19: A single center experience. J Med Virol. 2020;92(7):814‐818. PubMed PMC
Mazzitelli M, Arrighi E, Serapide F, et al. Use of subcutaneous tocilizumab in patients with COVID‐19 pneumonia. J Med Virol. 2020. PubMed PMC
Pereira MR, Mohan S, Cohen DJ, et al. COVID‐19 in solid organ transplant recipients: Initial report from the US Epicenter. Am J Transplant. 2020. PubMed PMC
Piva S, Filippini M, Turla F, et al. Clinical presentation and initial management critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection in Brescia. Italy. J Crit Care. 2020;58:29‐33. PubMed PMC
Kuypers DRJ, de Jonge H, Naesens M, Vanrenterghem Y. A prospective, open‐label, observational clinical cohort study of the association between delayed renal allograft function, tacrolimus exposure, and CYP3A5 genotype in adult recipients. Clinical Therapeutics. 2010;32(12):2012–2023. 10.1016/j.clinthera.2010.11.010 PubMed DOI
Toniati P, Piva S, Cattalini M, et al. Tocilizumab for the treatment of severe COVID‐19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia. Italy. Autoimmun Rev. 2020:102568. PubMed PMC
Xu X, Han M, Li T, et al. Effective treatment of severe COVID‐19 Patients with tocilizumab. Proc Natl Acad Sci. 2020;117(20):10970‐10975. PubMed PMC
Zhang X, Song K, Tong F, et al. First case of COVID‐19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv. 2020;4(7):1307‐1310. PubMed PMC
Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS‐coronavirus 2. Science. 2020. PubMed PMC
Morrison AR, Johnson JM, Ramesh M, Bradley P, Jennings J, Smith ZR. Letter to the Editor: Acute hypertriglyceridemia in patients with COVID‐19 receiving tocilizumab. J Med Virol. 2020. PubMed PMC
Michot J‐M, Albiges L, Chaput N, et al. Tocilizumab, an anti‐IL6 receptor antibody, to treat Covid‐19‐related respiratory failure: A case report. Ann Oncol. 2020. PubMed PMC
Fontana F, Alfano G, Mori G, et al. Covid‐19 pneumonia in a kidney transplant recipient successfully treated with Tocilizumab and Hydroxychloroquine. Am J Transplant. 2020. PubMed PMC
De Luna G, Habibi A, Deux J‐F, et al. Rapid and SEvere Covid‐19 pneumonia with severe acute chest syndrome in a sickle cell patient successfully treated with tocilizumab. Am J Hematol. 2020;95(7):876‐878. PubMed PMC
Cellina M, Orsi M, Bombaci F, Sala M, Marino P, Oliva G. Favorable changes of CT findings in a patient with COVID‐19 pneumonia after treatment with tocilizumab. Diagn Interv Imaging. 2020;101(5):323‐324. PubMed PMC
Aouba A, Baldolli A, Geffray L, et al. Targeting the inflammatory cascade with anakinra in moderate to severe COVID‐19 pneumonia: Case series. Ann Rheum Dis. 2020. PubMed
Cavalli G, De Luca G, Campochiaro C, et al. Interleukin‐1 blockade with high‐dose anakinra in patients with COVID‐19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2(6):e325‐e331. PubMed PMC
Dimopoulos G, de Mast Q, Markou N, et al. Favorable anakinra responses in severe covid‐19 patients with secondary hemophagocytic lymphohistiocytosis. Cell Host Microbe. 2020. 10.1016/j.chom.2020.05.007 PubMed DOI PMC
Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID‐19: A pilot study on safety and clinical impact. J Infect. 2020. PubMed PMC
Ye M, Fu D, Ren YI, et al. Treatment with convalescent plasma for COVID‐19 patients in Wuhan, China. J Med Virol. 2020. PubMed PMC
Diurno F, Numis FG, Porta G, et al. Eculizumab treatment in patients with COVID‐19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci. 2020;24(7):4040‐4047. PubMed
Andreakos E, Tsiodras S. COVID‐19: lambda interferon against viral load and hyperinflammation. EMBO Mol Med. 2020. PubMed PMC
Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer‐Smadja N. Type 1 interferons as a potential treatment against COVID‐19. Antiviral Res. 2020;178:104791. PubMed PMC
Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682‐687. PubMed
Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3–potential mechanisms of action. Nat Rev Immunol. 2015;15(1):45‐56. PubMed
Lunjani N, Satitsuksanoa P, Lukasik Z, Sokolowska M, Eiwegger T, O'Mahony L. Recent developments and highlights in mechanisms of allergic diseases: Microbiome. Allergy. 2018;73(12):2314‐2327. PubMed
Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health. Nat Immunol. 2019;20(10):1279‐1290. PubMed
Barcik W, Boutin RCT, Sokolowska M, Finlay BB. The role of lung and gut microbiota in the pathology of asthma. Immunity. 2020;52(2):241‐255. PubMed PMC
Roduit C, Frei R, Ferstl R, et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019;74(4):799‐809. PubMed
Trompette A, Gollwitzer ES, Pattaroni C, et al. Dietary Fiber Confers Protection against Flu by Shaping Ly6c(‐) Patrolling Monocyte Hematopoiesis and CD8(+) T Cell Metabolism. Immunity. 2018;48(5):992‐1005.e8. PubMed
Gou W, Fu Y, Yue L, et al. Gut microbiota may underlie the predisposition of healthy individuals to COVID‐19. medRxiv. 2020;preprint.
WHO . Strategic and Technical Advisory Group for Infectious Hazards (STAG‐IH). 2020; https://www.who.int/emergencies/diseases/strategic‐and‐technical‐advisory‐group‐for‐infectious‐hazards/en/. Accessed May 7, 2020
Bedford J, Enria D, Giesecke J, et al. COVID‐19: towards controlling of a pandemic. Lancet. 2020;395(10229):1015‐1018. PubMed PMC
Lurie N, Saville M, Hatchett R, Halton J. Developing Covid‐19 vaccines at pandemic speed. N Engl J Med. 2020;382(21):1969‐1973. PubMed
WHO . DRAFT landscape of COVID‐19candidate vaccines – 20 April 2020. 2020; https://www.who.int/blueprint/priority‐diseases/key‐action/novel‐coronavirus‐landscape‐ncov.pdf?ua=1
El Zowalaty ME, Jarhult JD. From SARS to COVID‐19: A previously unknown SARS‐ related coronavirus (SARS‐CoV‐2) of pandemic potential infecting humans ‐ Call for a One Health approach. One Health. 2020;9:100124. PubMed PMC
Bian H, Zheng ZH, Wei D, et al. Meplazumab treats COVID‐19 pneumonia: an open‐labelled, concurrent controlled add‐on clinical trial. medRxiv. 2020.