Effects of non-steroidal anti-inflammatory drugs and other eicosanoid pathway modifiers on antiviral and allergic responses: EAACI task force on eicosanoids consensus report in times of COVID-19

. 2022 Aug ; 77 (8) : 2337-2354. [epub] 20220225

Jazyk angličtina Země Dánsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35174512

Grantová podpora
G0900536 Medical Research Council - United Kingdom
G1000758 Medical Research Council - United Kingdom
MC_PC_15031 Medical Research Council - United Kingdom

Non-steroidal anti-inflammatory drugs (NSAIDs) and other eicosanoid pathway modifiers are among the most ubiquitously used medications in the general population. Their broad anti-inflammatory, antipyretic, and analgesic effects are applied against symptoms of respiratory infections, including SARS-CoV-2, as well as in other acute and chronic inflammatory diseases that often coexist with allergy and asthma. However, the current pandemic of COVID-19 also revealed the gaps in our understanding of their mechanism of action, selectivity, and interactions not only during viral infections and inflammation, but also in asthma exacerbations, uncontrolled allergic inflammation, and NSAIDs-exacerbated respiratory disease (NERD). In this context, the consensus report summarizes currently available knowledge, novel discoveries, and controversies regarding the use of NSAIDs in COVID-19, and the role of NSAIDs in asthma and viral asthma exacerbations. We also describe here novel mechanisms of action of leukotriene receptor antagonists (LTRAs), outline how to predict responses to LTRA therapy and discuss a potential role of LTRA therapy in COVID-19 treatment. Moreover, we discuss interactions of novel T2 biologicals and other eicosanoid pathway modifiers on the horizon, such as prostaglandin D2 antagonists and cannabinoids, with eicosanoid pathways, in context of viral infections and exacerbations of asthma and allergic diseases. Finally, we identify and summarize the major knowledge gaps and unmet needs in current eicosanoid research.

Allergy Unit Málaga Regional University Hospital IBIMA UMA Málaga Spain

Asthma UK Centre in Allergic Mechanisms of Asthma School of Immunology and Microbial Sciences King's College London London UK

Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK

Christine Kühne Center for Allergy Research and Education Davos Switzerland

Department Microbiology Immunology and Transplantation Ku Leuven Catholic University of Leuven Belgium

Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain

Department of Medicine Jagiellonian University Medical College Krakow Poland

Department of Otorhinolaryngology Head and Neck Surgery Section of Rhinology and Allergy University Hospital Marburg Philipps Universität Marburg Marburg Germany

Department of Pharmaceutical Sciences Section of Pharmacology and Biosciences University of Milan Milano Italy

Department of Pulmonology and Phthisiology Department of Allergology and Clinical Immunology Department of Pediatrics Jessenius Faculty of Medicine in Martin Comenius University in Bratislava University Teaching Hospital in Martin Slovakia

Department of Respiratory Medicine 1st Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic

Department of Respiratory Medicine and Allergology Skane University Hospital Lund Sweden

Departments of Medicine and Microbiology APC Microbiome Ireland University College Cork Cork Ireland

Institute of Environmental Medicine and the Centre for Allergy Research Karolinska Institute and the Department of Respiratory Medicine Karolinska University Hospital Stockholm Sweden

Institute of Pathophysiology and Allergy Research Center for Pathophysiology Infectiology and Immunology Medical University of Vienna Vienna Austria

London North Genomic Laboratory Hub Great Ormond Street Hospital for Children NHS Foundation Trust London UK

Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland

VIB Center for Inflammation Research Ghent University Ghent Belgium

Zobrazit více v PubMed

Sokolowska M, Rovati GE, Diamant Z, et al. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy. 2021;76(1):114‐130. PubMed

Sheehan WJ, Mauger DT, Paul IM, et al. Acetaminophen versus Ibuprofen in Young Children with Mild Persistent Asthma. N Engl J Med. 2016;375(7):619‐630. PubMed PMC

Papadopoulos NG, Christodoulou I, Rohde G, et al. Viruses and bacteria in acute asthma exacerbations–a GA(2) LEN‐DARE systematic review. Allergy. 2011;66(4):458‐468. PubMed PMC

Turunen R, Koistinen A, Vuorinen T, et al. The first wheezing episode: respiratory virus etiology, atopic characteristics, and illness severity. Pediatr Allergy Immunol. 2014;25(8):796‐803. PubMed PMC

Christensen A, Kesti O, Elenius V, et al. Human bocaviruses and paediatric infections. Lancet Child Adoles Health. 2019;3(6):418‐426. PubMed

Simoes EA, Carbonell‐Estrany X, Rieger CH, et al. The effect of respiratory syncytial virus on subsequent recurrent wheezing in atopic and nonatopic children. J Allergy Clin Immunol. 2010;126(2):256‐262. PubMed PMC

Blanken MO, Rovers MM, Molenaar JM, et al. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. N Engl J Med. 2013;368(19):1791‐1799. PubMed

McCarthy MK, Weinberg JB. Eicosanoids and respiratory viral infection: coordinators of inflammation and potential therapeutic targets. Mediators Inflamm. 2012;2012:236345. PubMed PMC

Jakiela B, Gielicz A, Plutecka H, et al. Th2‐type cytokine‐induced mucus metaplasia decreases susceptibility of human bronchial epithelium to rhinovirus infection. Am J Respir Cell Mol Biol. 2014;51(2):229‐241. PubMed

Seymour ML, Gilby N, Bardin PG, et al. Rhinovirus infection increases 5‐lipoxygenase and cyclooxygenase‐2 in bronchial biopsy specimens from nonatopic subjects. J Infect Dis. 2002;185(4):540‐544. PubMed

Bancos S, Bernard MP, Topham DJ, Phipps RP. Ibuprofen and other widely used non‐steroidal anti‐inflammatory drugs inhibit antibody production in human cells. Cell Immunol. 2009;258(1):18‐28. PubMed PMC

Ryan EP, Pollock SJ, Murant TI, Bernstein SH, Felgar RE, Phipps RP. Activated human B lymphocytes express cyclooxygenase‐2 and cyclooxygenase inhibitors attenuate antibody production. J Immunol. 2005;174(5):2619‐2626. PubMed

Graham NM, Burrell CJ, Douglas RM, Debelle P, Davies L. Adverse effects of aspirin, acetaminophen, and ibuprofen on immune function, viral shedding, and clinical status in rhinovirus‐infected volunteers. J Infect Dis. 1990;162(6):1277‐1282. PubMed

Shirey KA, Lai W, Pletneva LM, et al. Role of the lipoxygenase pathway in RSV‐induced alternatively activated macrophages leading to resolution of lung pathology. Mucosal Immunol. 2014;7(3):549‐557. PubMed PMC

Tam VC, Quehenberger O, Oshansky CM, et al. Lipidomic profiling of influenza infection identifies mediators that induce and resolve inflammation. Cell. 2013;154(1):213‐227. PubMed PMC

Shirey KA, Pletneva LM, Puche AC, et al. Control of RSV‐induced lung injury by alternatively activated macrophages is IL‐4R alpha‐, TLR4‐, and IFN‐beta‐dependent. Mucosal Immunol. 2010;3(3):291‐300. PubMed PMC

Buckley CD, Gilroy DW, Serhan CN, Stockinger B, Tak PP. The resolution of inflammation. Nat Rev Immunol. 2013;13(1):59‐66. PubMed

Coulombe F, Jaworska J, Verway M, et al. Targeted prostaglandin E2 inhibition enhances antiviral immunity through induction of type I interferon and apoptosis in macrophages. Immunity. 2014;40(4):554‐568. PubMed

Tate MD, Ong JDH, Dowling JK, et al. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition. Sci Rep. 2016;6:27912. PubMed PMC

Zhao J, Legge K, Perlman S. Age‐related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Investig. 2011;121(12):4921‐4930. PubMed PMC

Andreakos E, Papadaki M, Serhan CN. Dexamethasone, pro‐resolving lipid mediators and resolution of inflammation in COVID‐19. Allergy. 2021;76(3):626‐628. PubMed PMC

Moore N, Bosco‐Levy P, Thurin N, Blin P, Droz‐Perroteau C. NSAIDs and COVID‐19: a systematic review and meta‐analysis. Drug Saf. 2021;44(9):929‐938. PubMed PMC

Qiao W, Wang C, Chen B, et al. Ibuprofen attenuates cardiac fibrosis in streptozotocin‐induced diabetic rats. Cardiology. 2015;131(2):97‐106. PubMed

Miyoshi H, VanDussen KL, Malvin NP, et al. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. Embo J. 2017;36(1):5‐24. PubMed PMC

Alfajaro MM, Choi JS, Kim DS, et al. Activation of COX‐2/PGE2 promotes sapovirus replication via the inhibition of nitric oxide production. J Virol. 2017;91(3). PubMed PMC

Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147, CD26, and other SARS‐CoV‐2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID‐19 risk factors. Allergy. 2020;75(11):2829‐2845. PubMed PMC

Zhao J, Zhao J, Legge K, Perlman S. Age‐related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Investig. 2011;121(12):4921‐4930. PubMed PMC

Theken KN, Tang SY, Sengupta S, FitzGerald GA. The roles of lipids in SARS‐CoV‐2 viral replication and the host immune response. J Lipid Res. 2021;62:100129. PubMed PMC

Sokolowska M, Chen LY, Liu Y, et al. Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular Cyclic AMP in human macrophages. J Immunol. 2015;194(11):5472‐5487. PubMed PMC

Vijay R, Fehr AR, Janowski AM, et al. Virus‐induced inflammasome activation is suppressed by prostaglandin D2/DP1 signaling. Proc Natl Acad Sci. 2017;114(27):E5444‐E5453. PubMed PMC

Martha JW, Pranata R, Lim MA, Wibowo A, Akbar MR. Active prescription of low‐dose aspirin during or prior to hospitalization and mortality in COVID‐19: a systematic review and meta‐analysis of adjusted effect estimates. Int J Infect Dis. 2021;108:6‐12. PubMed PMC

Sokolowska M, Lukasik ZM, Agache I, et al. Immunology of COVID‐19: mechanisms, clinical outcome, diagnostics, and perspectives‐a report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy. 2020;75(10):2445‐2476. PubMed PMC

Chen JS, Alfajaro MM, Chow RD, et al. Non‐steroidal anti‐inflammatory drugs dampen the cytokine and antibody response to SARS‐CoV‐2 infection. J Virol. 2021;95(7). PubMed PMC

Archambault AS, Zaid Y, Rakotoarivelo V, et al. High levels of eicosanoids and docosanoids in the lungs of intubated COVID‐19 patients. Faseb J. 2021;35(6):e21666. PubMed PMC

Schwarz B, Sharma L, Roberts L, et al. Cutting edge: severe SARS‐CoV‐2 infection in humans is defined by a shift in the serum lipidome, resulting in dysregulation of eicosanoid immune mediators. J Immunol. 2021;206(2):329‐334. PubMed PMC

Buchheit KM, Hacker JJ, Gakpo DH, Mullur J, Sohail A, Laidlaw TM. Influence of daily aspirin therapy on ACE2 expression and function—implications for SARS‐CoV‐2 and patients with aspirin‐exacerbated respiratory disease. Clin Exp Allergy. 2021;51(7):968‐971. PubMed PMC

Terrier O, Dilly S, Pizzorno A, et al. Antiviral properties of the NSAID drug naproxen targeting the nucleoprotein of SARS‐CoV‐2 coronavirus. Molecules (Basel, Switzerland). 2021;26(9):2593. PubMed PMC

Anderson BJ. Paracetamol (Acetaminophen): mechanisms of action. Paediatr Anaesth. 2008;18(10):915‐921. PubMed

Graham GG, Davies MJ, Day RO, Mohamudally A, Scott KF. The modern pharmacology of paracetamol: therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology. 2013;21(3):201‐232. PubMed

Reese JT, Coleman B, Chan L, et al. NSAID use and clinical outcomes in COVID‐19 patients: A 38‐center retrospective cohort study. medRxiv. 2021. doi:10.1101/2021.04.13.21255438 PubMed DOI PMC

Rinott E, Kozer E, Shapira Y, Bar‐Haim A, Youngster I. Ibuprofen use and clinical outcomes in COVID‐19 patients. Clin Microbiol Infect. 2020;26(9):1259.e1255‐1259.e1257. PubMed PMC

Abu Esba LC, Alqahtani RA, Thomas A, Shamas N, Alswaidan L, Mardawi G. Ibuprofen and NSAID use in COVID‐19 infected patients is not associated with worse outcomes: a prospective cohort study. Infect Dis Ther. 2021;10(1):253‐268. PubMed PMC

Drake TM, Fairfield CJ, Pius R, et al. Non‐steroidal anti‐inflammatory drug use and outcomes of COVID‐19 in the ISARIC Clinical Characterisation Protocol UK cohort: a matched, prospective cohort study. Lancet Rheumatol. 2021;3(7):e498–e506. doi:10.1016/S2665-9913(21)00104-1 PubMed DOI PMC

Park J, Lee SH, You SC, Kim J, Yang K. Non‐steroidal anti‐inflammatory agent use may not be associated with mortality of coronavirus disease 19. Sci Rep. 2021;11(1):5087. PubMed PMC

Ricke‐Hoch M, Stelling E, Lasswitz L, et al. Impaired immune response mediated by prostaglandin E2 promotes severe COVID‐19 disease. PLoS One. 2021;16(8):e0255335. PubMed PMC

Peters‐Golden M, Henderson WR Jr. Leukotrienes. N Engl J Med. 2007;357(18):1841‐1854. PubMed

Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE. Cysteinyl‐leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev. 2007;27(4):469‐527. PubMed

Diamant Z, Mantzouranis E, Bjermer L. Montelukast in the treatment of asthma and beyond. Expert Rev Clin Immunol. 2009;5(6):639‐658. PubMed

Langlois A, Ferland C, Tremblay GM, Laviolette M. Montelukast regulates eosinophil protease activity through a leukotriene‐independent mechanism. J Allergy Clin Immunol. 2006;118(1):113‐119. PubMed

Tahan F, Jazrawi E, Moodley T, Rovati GE, Adcock IM. Montelukast inhibits tumour necrosis factor‐alpha‐mediated interleukin‐8 expression through inhibition of nuclear factor‐kappaB p65‐associated histone acetyltransferase activity. Clin Exp Allergy. 2008;38(5):805‐811. PubMed

Mamedova L, Capra V, Accomazzo MR, et al. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. Biochem Pharmacol. 2005;71(1–2):115‐125. PubMed PMC

Woszczek G, Chen LY, Alsaaty S, Nagineni S, Shelhamer JH. Concentration‐dependent noncysteinyl leukotriene type 1 receptor‐mediated inhibitory activity of leukotriene receptor antagonists. J Immunol. 2010;184(4):2219‐2225. PubMed PMC

Ichiyama T, Hasegawa S, Umeda M, Terai K, Matsubara T, Furukawa S. Pranlukast inhibits NF‐kappa B activation in human monocytes/macrophages and T cells. Clin Exp Allergy. 2003;33(6):802‐807. PubMed

Ishinaga H, Takeuchi K, Kishioka C, Suzuki S, Basbaum C, Majima Y. Pranlukast inhibits NF‐kappaB activation and MUC2 gene expression in cultured human epithelial cells. Pharmacology. 2005;73(2):89‐96. PubMed

Ciana P, Fumagalli M, Trincavelli ML, et al. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl‐leukotrienes receptor. EMBO J. 2006;25(19):4615‐4627. PubMed PMC

Ramires R, Caiaffa MF, Tursi A, Haeggstrom JZ, Macchia L. Novel inhibitory effect on 5‐lipoxygenase activity by the anti‐asthma drug montelukast. Biochem Biophys Res Comm. 2004;324(2):815‐821. PubMed

Rius M, Hummel‐Eisenbeiss J, Keppler D. ATP‐dependent transport of leukotrienes B4 and C4 by the multidrug resistance protein ABCC4 (MRP4). J Pharmacol Exp Ther. 2008;324(1):86‐94. PubMed

Ravasi S, Capra V, Panigalli T, Rovati GE, Nicosia S. Pharmacological differences among CysLT(1) receptor antagonists with respect to LTC(4) and LTD(4) in human lung parenchyma. Biochem Pharmacol. 2002;63(8):1537‐1546. PubMed

Lynch KR, O'Neill GP, Liu Q, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature. 1999;399:789‐793. PubMed

Sarau HM, Ames RS, Chambers J, et al. Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor. Mol Pharmacol. 1999;56(3):657‐663. PubMed

Reiss TF, Altman LC, Chervinsky P, et al. Effects of montelukast (MK‐0476), a new potent cysteinyl leukotriene (LTD4) receptor antagonist, in patients with chronic asthma. J Allergy Clin Immunol. 1996;98(3):528‐534. PubMed

Altman LC, Munk Z, Seltzer J, et al. A placebo‐controlled, dose‐ranging study of montelukast, a cysteinyl leukotriene‐receptor antagonist. Montelukast Asthma Study Group. J Allergy Clin Immunol. 1998;102(1):50‐56. PubMed

Malmstrom K, Rodriguez‐Gomez G, Guerra J, et al. Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma. A randomized, controlled trial. Montelukast/Beclomethasone Study Group. Ann Intern Med. 1999;130(6):487‐495. PubMed

Lazarinis N, Bood J, Gomez C, et al. Leukotriene E4 induces airflow obstruction and mast cell activation through the cysteinyl leukotriene type 1 receptor. J Allergy Clin Immunol. 2018;142(4):1080‐1089. PubMed

Drazen JM, Yandava CN, Dube L, et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti‐asthma treatment. Nat Genet. 1999;22(2):168‐170. PubMed

Mougey EB, Feng H, Castro M, Irvin CG, Lima JJ. Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response. Pharmacogenet Genomics. 2009;19(2):129‐138. PubMed PMC

Scott JP, Peters‐Golden M. Antileukotriene agents for the treatment of lung disease. Am J Respir Crit Care Med. 2013;188(5):538‐544. PubMed

Kolmert J, Gomez C, Balgoma D, et al. Urinary leukotriene E4 and prostaglandin D2 metabolites increase in adult and childhood severe asthma characterized by type 2 inflammation. a clinical observational study. Am J Respir Crit Care Med. 2021;203(1):37‐53. PubMed PMC

Gaber F, Daham K, Higashi A, et al. Increased levels of cysteinyl‐leukotrienes in saliva, induced sputum, urine and blood from patients with aspirin‐intolerant asthma. Thorax. 2008;63(12):1076‐1082. PubMed

Rabinovitch N, Graber NJ, Chinchilli VM, et al. Urinary leukotriene E4/exhaled nitric oxide ratio and montelukast response in childhood asthma. J Allergy Clin Immunol. 2010;126(3):545‐551.e4. PubMed PMC

Rabinovitch N, Mauger DT, Reisdorph N, et al. Predictors of asthma control and lung function responsiveness to step 3 therapy in children with uncontrolled asthma. J Allergy Clin Immunol. 2014;133(2):350‐356. PubMed PMC

Edelman JM, Turpin JA, Bronsky EA, et al. Oral montelukast compared with inhaled salmeterol to prevent exercise‐induced bronchoconstriction. A randomized, double‐blind trial. Exercise Study Group. Ann Intern Med. 2000;132(2):97‐104. PubMed

Price DB, Swern A, Tozzi CA, Philip G, Polos P. Effect of montelukast on lung function in asthma patients with allergic rhinitis: analysis from the COMPACT trial. Allergy. 2006;61(6):737‐742. PubMed

Dahlen SE, Malmstrom K, Nizankowska E, et al. Improvement of aspirin‐intolerant asthma by montelukast, a leukotriene antagonist: a randomized, double‐blind, placebo‐controlled trial. Am J Respir Crit Care Med. 2002;165(1):9‐14. PubMed

Bisgaard H, Zielen S, Garcia‐Garcia ML, et al. Montelukast reduces asthma exacerbations in 2‐ to 5‐year‐old children with intermittent asthma. Am J Respir Crit Care Med. 2005;171(4):315‐322. PubMed

Bozek A, Warkocka‐Szoltysek B, Filipowska‐Gronska A, Jarzab J. Montelukast as an add‐on therapy to inhaled corticosteroids in the treatment of severe asthma in elderly patients. J Asthma. 2012;49(5):530‐534. PubMed

Price D, Musgrave SD, Shepstone L, et al. Leukotriene antagonists as first‐line or add‐on asthma‐controller therapy. N Engl J Med. 2011;364(18):1695‐1707. PubMed

Chalmers GW, Macleod KJ, Little SA, Thomson LJ, McSharry CP, Thomson NC. Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma. Thorax. 2002;57(3):226‐230. PubMed PMC

Gaki E, Papatheodorou G, Ischaki E, Grammenou V, Papa I, Loukides S. Leukotriene E(4) in urine in patients with asthma and COPD–the effect of smoking habit. Respir Med. 2007;101(4):826‐832. PubMed

Lazarus SC, Chinchilli VM, Rollings NJ, et al. Smoking affects response to inhaled corticosteroids or leukotriene receptor antagonists in asthma. Am J Respir Crit Care Med. 2007;175(8):783‐790. PubMed PMC

Price D, Popov TA, Bjermer L, et al. Effect of montelukast for treatment of asthma in cigarette smokers. J Allergy Clin Immunol. 2013;131(3):763‐771. PubMed

Giouleka P, Papatheodorou G, Lyberopoulos P, et al. Body mass index is associated with leukotriene inflammation in asthmatics. Eur J Clin Invest. 2011;41(1):30‐38. PubMed

Peters‐Golden M, Swern A, Bird SS, Hustad CM, Grant E, Edelman JM. Influence of body mass index on the response to asthma controller agents. Eur Respir J. 2006;27(3):495‐503. PubMed

Kowalski ML, Makowska JS, Blanca M, et al. Hypersensitivity to nonsteroidal anti‐inflammatory drugs (NSAIDs) ‐ classification, diagnosis and management: review of the EAACI/ENDA(#) and GA2LEN/HANNA*. Allergy. 2011;66(7):818‐829. PubMed

Pace S, Sautebin L, Werz O. Sex‐biased eicosanoid biology: impact for sex differences in inflammation and consequences for pharmacotherapy. Biochem Pharmacol. 2017;145:1‐11. PubMed

Pergola C, Dodt G, Rossi A, et al. ERK‐mediated regulation of leukotriene biosynthesis by androgens: a molecular basis for gender differences in inflammation and asthma. Proc Natl Acad Sci USA. 2008;105(50):19881‐19886. PubMed PMC

Pace S, Pergola C, Dehm F, et al. Androgen‐mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. J Clin Investig. 2017;127(8):3167‐3176. PubMed PMC

Pergola C, Schaible AM, Nikels F, Dodt G, Northoff H, Werz O. Progesterone rapidly down‐regulates the biosynthesis of 5‐lipoxygenase products in human primary monocytes. Pharmacol Res. 2015;94:42‐50. PubMed

Rossi A, Roviezzo F, Sorrentino R, et al. Leukotriene‐mediated sex dimorphism in murine asthma‐like features during allergen sensitization. Pharmacol Res. 2019;139:182‐190. PubMed

Pace S, Werz O. Impact of androgens on inflammation‐related lipid mediator biosynthesis in innate immune cells. Front Immunol. 2020;11:1356. PubMed PMC

Esposito R, Spaziano G, Giannattasio D, et al. Montelukast improves symptoms and lung function in asthmatic women compared with men. Front Pharmacol. 2019;10:1094. PubMed PMC

Rabinovitch N, Strand M, Stuhlman K, Gelfand EW. Exposure to tobacco smoke increases leukotriene E4‐related albuterol usage and response to montelukast. J Allergy Clin Immunol. 2008;121(6):1365‐1371. PubMed

Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy. 2020;75(7):1564‐1581. PubMed PMC

Gao YD, Ding M, Dong X, et al. Risk factors for severe and critically ill COVID‐19 patients: a review. Allergy. 2021;76(2):428‐455. PubMed

Sisakht M, Solhjoo A, Mahmoodzadeh A, Fathalipour M, Kabiri M, Sakhteman A. Potential inhibitors of the main protease of SARS‐CoV‐2 and modulators of arachidonic acid pathway: Non‐steroidal anti‐inflammatory drugs against COVID‐19. Comput Biol Med. 2021;136: 104686. PubMed PMC

Fidan C, Aydogdu A. As a potential treatment of COVID‐19: montelukast. Med Hypotheses. 2020;142: 109828. PubMed PMC

Aigner L, Pietrantonio F, Bessa de Sousa DM, et al. The leukotriene receptor antagonist montelukast as a potential COVID‐19 therapeutic. Front Mol Biosci. 2020;7:610132. PubMed PMC

Barré J, Sabatier JM, Annweiler C. Montelukast drug may improve COVID‐19 prognosis: a review of evidence. Front Pharmacol. 2020;11:1344. PubMed PMC

Crimi N, Mastruzzo C, Pagano C, Lisitano N, Palermo F, Vancheri C. Montelukast protects against bradykinin‐induced bronchospasm. J Allergy Clin Immunol. 2005;115(4):870‐872. PubMed

England JT, Abdulla A, Biggs CM, et al. Weathering the COVID‐19 storm: lessons from hematologic cytokine syndromes. Blood Rev. 2021;45: 100707. PubMed PMC

Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med. 2020;383(23):2255‐2273. PubMed PMC

Sala A, Murphy RC, Voelkel NF. Direct airway injury results in elevated levels of sulfidopeptide leukotrienes, detectable in airway secretions. Prostaglandins. 1991;42(1):1‐7. PubMed

Sanghai N, Tranmer GK. Taming the cytokine storm: repurposing montelukast for the attenuation and prophylaxis of severe COVID‐19 symptoms. Drug Discov Today. 2020;25(12):2076‐2079. PubMed PMC

Maeba S, Ichiyama T, Ueno Y, Makata H, Matsubara T, Furukawa S. Effect of montelukast on nuclear factor kappaB activation and proinflammatory molecules. Ann Allergy Asthma Immunol. 2005;94(6):670‐674. PubMed

Ueda T, Takeno S, Furukido K, Hirakawa K, Yajin K. Leukotriene receptor antagonist pranlukast suppresses eosinophil infiltration and cytokine production in human nasal mucosa of perennial allergic rhinitis. Ann Otol Rhinol Laryngol. 2003;112(11):955‐961. PubMed

Almerie MQ, Kerrigan DD. The association between obesity and poor outcome after COVID‐19 indicates a potential therapeutic role for montelukast. Med Hypotheses. 2020;143: 109883. PubMed PMC

Khan AR, Misdary C, Yegya‐Raman N, et al. Montelukast in hospitalized patients diagnosed with COVID‐19. J Asthma. 2021;1‐7. PubMed PMC

Bozek A, Winterstein J. Montelukast's ability to fight COVID‐19 infection. J Asthma. 2021;58(10):1348‐1349. PubMed

Hoxha M, Tedesco CC, Quaglin S, et al. Montelukast use decreases cardiovascular events in asthmatics. Front Pharmacol. 2020;11:611561. PubMed PMC

Funk CD. Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat Rev Drug Discov. 2005;4(8):664‐672. PubMed

Camera M, Canzano P, Brambilla M, Rovati GE. Montelukast inhibits platelet activation induced by plasma from COVID‐19 patients. Front Pharmacol. 2022;13. PubMed PMC

Funk CD, Ardakani A. A novel strategy to mitigate the hyperinflammatory response to COVID‐19 by targeting leukotrienes. Front Pharmacol. 2020;11:1214. PubMed PMC

Pettipher R, Hansel TT, Armer R. Antagonism of the prostaglandin D2 receptors DP1 and CRTH2 as an approach to treat allergic diseases. Nat Rev Drug Discov. 2007;6(4):313‐325. PubMed

Claar D, Hartert TV, Peebles RS Jr. The role of prostaglandins in allergic lung inflammation and asthma. Expert Rev Respir Med. 2015;9(1):55‐72. PubMed PMC

Boonpiyathad T, Capova G, Duchna HW, et al. Impact of high‐altitude therapy on type‐2 immune responses in asthma patients. Allergy. 2020;75(1):84‐94. PubMed

Rudulier CD, Tonti E, James E, Kwok WW, Larché M. Modulation of CRTh2 expression on allergen‐specific T cells following peptide immunotherapy. Allergy. 2019;74(11):2157‐2166. PubMed PMC

Diamant Z, Aalders W, Parulekar A, Bjermer L, Hanania NA. Targeting lipid mediators in asthma: time for reappraisal. Curr Opin Pulm Med. 2019;25(1):121‐127. PubMed

Brightling CE, Brusselle G, Altman P. The impact of the prostaglandin D(2) receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy. 2020;75(4):761‐768. PubMed

Singh D, Cadden P, Hunter M, et al. Inhibition of the asthmatic allergen challenge response by the CRTH2 antagonist OC000459. Eur Respir J. 2013;41(1):46‐52. PubMed

Diamant Z, Sidharta PN, Singh D, et al. Setipiprant, a selective CRTH2 antagonist, reduces allergen‐induced airway responses in allergic asthmatics. Clin Exp Allergy. 2014;44(8):1044‐1052. PubMed

Xia J, Abdu S, Maguire TJA, Hopkins C, Till SJ, Woszczek G. Prostaglandin D(2) receptors in human mast cells. Allergy. 2020;75(6):1477‐1480. PubMed

Beasley R, Varley J, Robinson C, Holgate ST. Cholinergic‐mediated bronchoconstriction induced by prostaglandin D2, its initial metabolite 9 alpha,11 beta‐PGF2, and PGF2 alpha in asthma. Am Rev Respir Dis. 1987;136(5):1140‐1144. PubMed

Diamant Z, Timmers MC, van der Veen H, et al. The effect of MK‐0591, a novel 5‐lipoxygenase activating protein inhibitor, on leukotriene biosynthesis and allergen‐induced airway responses in asthmatic subjects in vivo. J Allergy Clin Immunol. 1995;95(1 Pt 1):42‐51. PubMed

Pettipher R, Hunter MG, Perkins CM, et al. Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist OC000459. Allergy. 2014;69(9):1223‐1232. PubMed

Ratner P, Andrews CP, Hampel FC, et al. Efficacy and safety of setipiprant in seasonal allergic rhinitis: results from Phase 2 and Phase 3 randomized, double‐blind, placebo‐ and active‐referenced studies. Allergy Asthma Clin Immunol. 2017;13:18. PubMed PMC

Saunders R, Kaul H, Berair R, et al. DP2 antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment. Sci Transl Med. 2019;11(479). PubMed

Fajt ML, Gelhaus SL, Freeman B, et al. Prostaglandin D(2) pathway upregulation: relation to asthma severity, control, and TH2 inflammation. J Allergy Clin Immunol. 2013;131(6):1504‐1512. PubMed PMC

Brightling CE, Brusselle G, Altman P. The impact of the prostaglandin D2 receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy. 2020;75(4):761‐768. PubMed

Shiraishi Y, Asano K, Niimi K, et al. Cyclooxygenase‐2/prostaglandin D2/CRTH2 pathway mediates double‐stranded RNA‐induced enhancement of allergic airway inflammation. J Immunol. 2008;180(1):541‐549. PubMed

Werder RB, Lynch JP, Simpson JC, et al. PGD2/DP2 receptor activation promotes severe viral bronchiolitis by suppressing IFN‐lambda production. Sci Transl Med. 2018;10(440). PubMed

Gupta A, Chander CK. Prostaglandin D2 as a mediator of lymphopenia and a therapeutic target in COVID‐19 disease. Med Hypotheses. 2020;143: 110122. PubMed PMC

Safholm J, Manson ML, Bood J, et al. Prostaglandin E2 inhibits mast cell‐dependent bronchoconstriction in human small airways through the E prostanoid subtype 2 receptor. J Allergy Clin Immunol. 2015;136(5):1232‐1239.e1231. PubMed

Lu HC, Mackie K. An introduction to the endogenous cannabinoid system. Biol Psychiatry. 2016;79(7):516‐525. PubMed PMC

Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov. 2018;17(9):623‐639. PubMed

Velasco G, Sanchez C, Guzman M. Towards the use of cannabinoids as antitumour agents. Nat Rev Cancer. 2012;12(6):436‐444. PubMed

Turcotte C, Chouinard F, Lefebvre JS, Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2‐arachidonoyl‐glycerol and arachidonoyl‐ethanolamide, and their metabolites. J Leukoc Biol. 2015;97(6):1049‐1070. PubMed

Deng H, Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm Sin B. 2020;10(4):582‐602. PubMed PMC

Celorrio M, Fernandez‐Suarez D, Rojo‐Bustamante E, et al. Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson's disease. Brain Behav Immun. 2016;57:94‐105. PubMed

Alhouayek M, Muccioli GG. COX‐2‐derived endocannabinoid metabolites as novel inflammatory mediators. Trends Pharmacol Sci. 2014;35(6):284‐292. PubMed

Fowler CJ. NSAIDs: eNdocannabinoid stimulating anti‐inflammatory drugs? Trends Pharmacol Sci. 2012;33(9):468‐473. PubMed

Angelina A, Perez‐Diego M, Lopez‐Abente J, Palomares O. The role of cannabinoids in allergic diseases: Collegium Internationale Allergologicum (CIA) update 2020. Int Arch Allergy Immunol. 2020;181(8):565‐584. PubMed

Sugawara K, Zakany N, Hundt T, et al. Cannabinoid receptor 1 controls human mucosal‐type mast cell degranulation and maturation in situ. J Allergy Clin Immunol. 2013;132(1):182‐193. PubMed

Sugawara K, Biro T, Tsuruta D, et al. Endocannabinoids limit excessive mast cell maturation and activation in human skin. J Allergy Clin Immunol. 2012;129(3):726‐738.e728. PubMed

Braun A, Engel T, Aguilar‐Pimentel JA, et al. Beneficial effects of cannabinoids (CB) in a murine model of allergen‐induced airway inflammation: role of CB1/CB2 receptors. Immunobiology. 2011;216(4):466‐476. PubMed

Vuolo F, Abreu SC, Michels M, et al. Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma. Eur J Pharmacol. 2019;843:251‐259. PubMed

Jan TR, Farraj AK, Harkema JR, Kaminski NE. Attenuation of the ovalbumin‐induced allergic airway response by cannabinoid treatment in A/J mice. Toxicol Appl Pharmacol. 2003;188(1):24‐35. PubMed

Giannini L, Nistri S, Mastroianni R, et al. Activation of cannabinoid receptors prevents antigen‐induced asthma‐like reaction in guinea pigs. J Cell Mol Med. 2008;12(6A):2381‐2394. PubMed PMC

Gaffal E, Glodde N, Jakobs M, Bald T, Tuting T. Cannabinoid 1 receptors in keratinocytes attenuate fluorescein isothiocyanate‐induced mouse atopic‐like dermatitis. Exp Dermatol. 2014;23(6):401‐406. PubMed

Kim HJ, Kim B, Park BM, et al. Topical cannabinoid receptor 1 agonist attenuates the cutaneous inflammatory responses in oxazolone‐induced atopic dermatitis model. Int J Dermatol. 2015;54(10):e401‐408. PubMed

Nam G, Jeong SK, Park BM, et al. Selective cannabinoid receptor‐1 agonists regulate mast cell activation in an oxazolone‐induced atopic dermatitis model. Ann Dermatol. 2016;28(1):22‐29. PubMed PMC

Petrosino S, Verde R, Vaia M, Allara M, Iuvone T, Di Marzo V. Anti‐inflammatory properties of cannabidiol, a nonpsychotropic cannabinoid, in experimental allergic contact dermatitis. J Pharmacol Exp Ther. 2018;365(3):652‐663. PubMed

Vaia M, Petrosino S, De Filippis D, et al. Palmitoylethanolamide reduces inflammation and itch in a mouse model of contact allergic dermatitis. Eur J Pharmacol. 2016;791:669‐674. PubMed

Petrosino S, Cristino L, Karsak M, et al. Protective role of palmitoylethanolamide in contact allergic dermatitis. Allergy. 2010;65(6):698‐711. PubMed

Bozkurt TE, Kaya Y, Durlu‐Kandilci NT, Onder S, Sahin‐Erdemli I. The effect of cannabinoids on dinitrofluorobenzene‐induced experimental asthma in mice. Respir Physiol Neurobiol. 2016;231:7‐13. PubMed

Angelina A, Martin‐Fontecha M, Ruckert B, et al. The cannabinoid WIN55212‐2 restores rhinovirus‐induced epithelial barrier disruption. Allergy. 2021;76(6):1900‐1902. PubMed

Angelina A, Pérez‐Diego M, López‐Abente J, et al. Cannabinoids induce functional Tregs by promoting tolerogenic DCs via autophagy and metabolic reprograming. Mucosal Immunol. 2022;15(1):96‐108. PubMed PMC

Esposito G, Pesce M, Seguella L, et al. The potential of cannabidiol in the COVID‐19 pandemic. Br J Pharmacol. 2020;177(21):4967‐4970. PubMed PMC

Tahamtan A, Tavakoli‐Yaraki M, Salimi V. Opioids/cannabinoids as a potential therapeutic approach in COVID‐19 patients. Expert Rev Respir Med. 2020;14(10):965‐967. PubMed PMC

Rossi F, Tortora C, Argenziano M, Di Paola A, Punzo F. Cannabinoid receptor type 2: a possible target in SARS‐CoV‐2 (CoV‐19) infection? Int J Mol Sci. 2020;21(11):3809. PubMed PMC

Frei RB, Luschnig P, Parzmair GP, et al. Cannabinoid receptor 2 augments eosinophil responsiveness and aggravates allergen‐induced pulmonary inflammation in mice. Allergy. 2016;71(7):944‐956. PubMed PMC

Mimura T, Ueda Y, Watanabe Y, Sugiura T. The cannabinoid receptor‐2 is involved in allergic inflammation. Life Sci. 2012;90(21–22):862‐866. PubMed

Ferrini ME, Hong S, Stierle A, et al. CB2 receptors regulate natural killer cells that limit allergic airway inflammation in a murine model of asthma. Allergy. 2017;72(6):937‐947. PubMed PMC

Martin‐Fontecha M, Eiwegger T, Jartti T, et al. The expression of cannabinoid receptor 1 is significantly increased in atopic patients. J Allergy Clin Immunol. 2014;133(3):926‐929.e922. PubMed

Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS‐24 and LIBERTY NP SINUS‐52): results from two multicentre, randomised, double‐blind, placebo‐controlled, parallel‐group phase 3 trials. Lancet (London, England). 2019;394(10209):1638‐1650. PubMed

Gevaert P, Omachi TA, Corren J, et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. J Allergy Clin Immunol. 2020;146(3):595‐605. PubMed

Dunican EM, Fahy JV. The role of type 2 inflammation in the pathogenesis of asthma exacerbations. Ann Am Thorac Soc. 2015;12(Suppl 2):S144‐S149. PubMed PMC

Bachert C, Zhang N, Cavaliere C, Weiping W, Gevaert E, Krysko O. Biologics for chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2020;145(3):725‐739. PubMed

Bourdin A, Bjermer L, Brightling C, et al. ERS/EAACI statement on severe exacerbations in asthma in adults: facts, priorities and key research questions. Eur Respir J. 2019;54(3). PubMed

Del Giacco SR, Bakirtas A, Bel E, et al. Allergy in severe asthma. Allergy. 2017;72(2):207‐220. PubMed

Dougherty RH, Fahy JV. Acute exacerbations of asthma: epidemiology, biology and the exacerbation‐prone phenotype. Clin Exp Allergy. 2009;39(2):193‐202. PubMed PMC

Calhoun WJ, Dick EC, Schwartz LB, Busse WW. A common cold virus, rhinovirus 16, potentiates airway inflammation after segmental antigen bronchoprovocation in allergic subjects. J Clin Investig. 1994;94(6):2200‐2208. PubMed PMC

Peters‐Golden M. Expanding roles for leukotrienes in airway inflammation. Curr Allergy Asthma Rep. 2008;8(4):367‐373. PubMed

Diamant Z, Hiltermann JT, van Rensen EL, et al. The effect of inhaled leukotriene D4 and methacholine on sputum cell differentials in asthma. Am J Respir Crit Care Med. 1997;155(4):1247‐1253. PubMed

Serrano‐Candelas E, Martinez‐Aranguren R, Valero A, et al. Comparable actions of omalizumab on mast cells and basophils. Clin Exp Allergy. 2016;46(1):92‐102. PubMed

Zhang HP, Jia CE, Lv Y, Gibson PG, Wang G. Montelukast for prevention and treatment of asthma exacerbations in adults: Systematic review and meta‐analysis. Allergy Asthma Proc. 2014;35(4):278‐287. PubMed

Yang J, Luo J, Yang L, et al. Efficacy and safety of antagonists for chemoattractant receptor‐homologous molecule expressed on Th2 cells in adult patients with asthma: a meta‐analysis and systematic review. Respir Res. 2018;19(1):217. PubMed PMC

Fitzgerald DA, Mellis CM. Leukotriene receptor antagonists in virus‐induced wheezing : evidence to date. Treat Respir Med. 2006;5(6):407‐417. PubMed

Laidlaw TM, Mullol J, Woessner KM, Amin N, Mannent LP. Chronic rhinosinusitis with nasal polyps and asthma. J Allergy Clin Immunol Pract. 2021;9(3):1133‐1141. PubMed

Kowalski ML, Agache I, Bavbek S, et al. Diagnosis and management of NSAID‐exacerbated respiratory disease (N‐ERD)‐a EAACI position paper. Allergy. 2019;74(1):28‐39. PubMed

Celejewska‐Wójcik N, Wójcik K, Ignacak‐Popiel M, et al. Subphenotypes of nonsteroidal antiinflammatory disease‐exacerbated respiratory disease identified by latent class analysis. Allergy. 2020;75(4):831‐840. PubMed PMC

Christie PE, Tagari P, Ford‐Hutchinson AW, et al. Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin‐sensitive asthmatic subjects. Am Rev Respir Dis. 1991;143(5 Pt 1):1025‐1029. PubMed

Arm JP, O'Hickey SP, Spur BW, Lee TH. Airway responsiveness to histamine and leukotriene E4 in subjects with aspirin‐induced asthma. Am Rev Respir Dis. 1989;140(1):148‐153. PubMed

Cowburn AS, Sladek K, Soja J, et al. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin‐intolerant asthma. J Clin Investig. 1998;101(4):834‐846. PubMed PMC

Corrigan CJ, Napoli RL, Meng Q, et al. Reduced expression of the prostaglandin E2 receptor E‐prostanoid 2 on bronchial mucosal leukocytes in patients with aspirin‐sensitive asthma. J Allergy Clin Immunol. 2012;129(6):1636‐1646. PubMed

Szczeklik A, Mastalerz L, Nizankowska E, Cmiel A. Protective and bronchodilator effects of prostaglandin E and salbutamol in aspirin‐induced asthma. Am J Respir Crit Care Med. 1996;153(2):567‐571. PubMed

Yamaguchi H, Higashi N, Mita H, et al. Urinary concentrations of 15‐epimer of lipoxin A(4) are lower in patients with aspirin‐intolerant compared with aspirin‐tolerant asthma. Clin Exp Allergy. 2011;41(12):1711‐1718. PubMed

Cahill KN, Bensko JC, Boyce JA, Laidlaw TM. Prostaglandin D₂: a dominant mediator of aspirin‐exacerbated respiratory disease. J Allergy Clin Immunol. 2015;135(1):245‐252. PubMed PMC

Kowalski ML, Asero R, Bavbek S, et al. Classification and practical approach to the diagnosis and management of hypersensitivity to nonsteroidal anti‐inflammatory drugs. Allergy. 2013;68(10):1219‐1232. PubMed

Flower RJ. The development of COX2 inhibitors. Nat Rev Drug Discov. 2003;2(3):179‐191. PubMed

Doña I, Barrionuevo E, Salas M, et al. NSAIDs‐hypersensitivity often induces a blended reaction pattern involving multiple organs. Sci Rep. 2018;8(1):16710. PubMed PMC

FitzGerald GA. COX‐2 and beyond: approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov. 2003;2(11):879‐890. PubMed

Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR. Nonsteroid drug selectivities for cyclo‐oxygenase‐1 rather than cyclo‐oxygenase‐2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci USA. 1999;96(13):7563‐7568. PubMed PMC

Dona I, Perez‐Sanchez N, Eguiluz‐Gracia I, et al. Progress in understanding hypersensitivity reactions to nonsteroidal anti‐inflammatory drugs. Allergy. 2020;75(3):561‐575. PubMed

Eguiluz‐Gracia I, Tay TR, Hew M, et al. Recent developments and highlights in biomarkers in allergic diseases and asthma. Allergy. 2018;73(12):2290‐2305. PubMed

Szczeklik A, Gryglewski RJ, Czerniawska‐Mysik G. Relationship of inhibition of prostaglandin biosynthesis by analgesics to asthma attacks in aspirin‐sensitive patients. BMJ. 1975;1(5949):67‐69. PubMed PMC

Zembowicz A, Mastalerz L, Setkowicz M, Radziszewski W, Szczeklik A. Safety of cyclooxygenase 2 inhibitors and increased leukotriene synthesis in chronic idiopathic urticaria with sensitivity to nonsteroidal anti‐inflammatory drugs. Arch Dermatol. 2003;139(12):1577‐1582. PubMed

Setkowicz M, Mastalerz L, Podolec‐Rubis M, Sanak M, Szczeklik A. Clinical course and urinary eicosanoids in patients with aspirin‐induced urticaria followed up for 4 years. J Allergy Clin Immunol. 2009;123(1):174‐178. PubMed

Di Lorenzo G, Pacor ML, Candore G, et al. Polymorphisms of cyclo‐oxygenases and 5‐lipo‐oxygenase‐activating protein are associated with chronic spontaneous urticaria and urinary leukotriene E4. Eur J Dermatol. 2011;21(1):47‐52. PubMed

Doña I, Jurado‐Escobar R, Perkins JR, et al. Eicosanoid mediator profiles in different phenotypes of nonsteroidal anti‐inflammatory drug‐induced urticaria. Allergy. 2019;74(6):1135‐1144. PubMed

Di Lorenzo G, Pacor ML, Vignola AM, et al. Urinary metabolites of histamine and leukotrienes before and after placebo‐controlled challenge with ASA and food additives in chronic urticaria patients. Allergy. 2002;57(12):1180‐1186. PubMed

Mastalerz L, Setkowicz M, Sanak M, Szczeklik A. Hypersensitivity to aspirin: common eicosanoid alterations in urticaria and asthma. J Allergy Clin Immunol. 2004;113(4):771‐775. PubMed

Bohm I, Speck U, Schild H. A possible role for cysteinyl‐leukotrienes in non‐ionic contrast media induced adverse reactions. Eur J Radiol. 2005;55(3):431‐436. PubMed

Stellato C, de Crescenzo G, Patella V, Mastronardi P, Mazzarella B, Marone G. Human basophil/mast cell releasability. XI. Heterogeneity of the effects of contrast media on mediator release. J Allergy Clin Immunol. 1996;97(3):838‐850. PubMed

Cryer B, Feldman M. Cyclooxygenase‐1 and cyclooxygenase‐2 selectivity of widely used nonsteroidal anti‐inflammatory drugs. Am J Med. 1998;104(5):413‐421. PubMed

Waterbury LD, Silliman D, Jolas T. Comparison of cyclooxygenase inhibitory activity and ocular anti‐inflammatory effects of ketorolac tromethamine and bromfenac sodium. Curr Med Res Opin. 2006;22(6):1133‐1140. PubMed

Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci USA. 1993;90(24):11693‐11697. PubMed PMC

Campos C, de Gregorio R, García‐Nieto R, Gago F, Ortiz P, Alemany S. Regulation of cyclooxygenase activity by metamizol. Eur J Pharmacol. 1999;378(3):339‐347. PubMed

Israel E, Cohn J, Dubé L, Drazen JM. Effect of treatment with zileuton, a 5‐lipoxygenase inhibitor, in patients with asthma. A randomized controlled trial. Zileuton Clinical Trial Group. JAMA. 1996;275(12):931‐936. PubMed

Castro M, Kerwin E, Miller D, et al. Efficacy and safety of fevipiprant in patients with uncontrolled asthma: Two replicate, phase 3, randomised, double‐blind, placebo‐controlled trials (ZEAL‐1 and ZEAL‐2). EClinicalMedicine. 2021;35: 100847. PubMed PMC

Landray MJ, Haynes R, Hopewell JC, et al. Effects of extended‐release niacin with laropiprant in high‐risk patients. N Engl J Med. 2014;371(3):203‐212. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...