Effects of non-steroidal anti-inflammatory drugs and other eicosanoid pathway modifiers on antiviral and allergic responses: EAACI task force on eicosanoids consensus report in times of COVID-19
Jazyk angličtina Země Dánsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
G0900536
Medical Research Council - United Kingdom
G1000758
Medical Research Council - United Kingdom
MC_PC_15031
Medical Research Council - United Kingdom
PubMed
35174512
PubMed Central
PMC9111413
DOI
10.1111/all.15258
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, LTRA, NSAID, asthma, biologicals,
- MeSH
- alergie * farmakoterapie MeSH
- antiflogistika nesteroidní farmakologie terapeutické užití MeSH
- antivirové látky farmakologie terapeutické užití MeSH
- bronchiální astma * farmakoterapie MeSH
- farmakoterapie COVID-19 * MeSH
- ikosanoidy metabolismus MeSH
- konsensus MeSH
- lidé MeSH
- SARS-CoV-2 MeSH
- zánět farmakoterapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- antivirové látky MeSH
- ikosanoidy MeSH
Non-steroidal anti-inflammatory drugs (NSAIDs) and other eicosanoid pathway modifiers are among the most ubiquitously used medications in the general population. Their broad anti-inflammatory, antipyretic, and analgesic effects are applied against symptoms of respiratory infections, including SARS-CoV-2, as well as in other acute and chronic inflammatory diseases that often coexist with allergy and asthma. However, the current pandemic of COVID-19 also revealed the gaps in our understanding of their mechanism of action, selectivity, and interactions not only during viral infections and inflammation, but also in asthma exacerbations, uncontrolled allergic inflammation, and NSAIDs-exacerbated respiratory disease (NERD). In this context, the consensus report summarizes currently available knowledge, novel discoveries, and controversies regarding the use of NSAIDs in COVID-19, and the role of NSAIDs in asthma and viral asthma exacerbations. We also describe here novel mechanisms of action of leukotriene receptor antagonists (LTRAs), outline how to predict responses to LTRA therapy and discuss a potential role of LTRA therapy in COVID-19 treatment. Moreover, we discuss interactions of novel T2 biologicals and other eicosanoid pathway modifiers on the horizon, such as prostaglandin D2 antagonists and cannabinoids, with eicosanoid pathways, in context of viral infections and exacerbations of asthma and allergic diseases. Finally, we identify and summarize the major knowledge gaps and unmet needs in current eicosanoid research.
Allergy Unit Málaga Regional University Hospital IBIMA UMA Málaga Spain
Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK
Christine Kühne Center for Allergy Research and Education Davos Switzerland
Department of Medicine Jagiellonian University Medical College Krakow Poland
Department of Respiratory Medicine and Allergology Skane University Hospital Lund Sweden
Departments of Medicine and Microbiology APC Microbiome Ireland University College Cork Cork Ireland
Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
VIB Center for Inflammation Research Ghent University Ghent Belgium
Zobrazit více v PubMed
Sokolowska M, Rovati GE, Diamant Z, et al. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy. 2021;76(1):114‐130. PubMed
Sheehan WJ, Mauger DT, Paul IM, et al. Acetaminophen versus Ibuprofen in Young Children with Mild Persistent Asthma. N Engl J Med. 2016;375(7):619‐630. PubMed PMC
Papadopoulos NG, Christodoulou I, Rohde G, et al. Viruses and bacteria in acute asthma exacerbations–a GA(2) LEN‐DARE systematic review. Allergy. 2011;66(4):458‐468. PubMed PMC
Turunen R, Koistinen A, Vuorinen T, et al. The first wheezing episode: respiratory virus etiology, atopic characteristics, and illness severity. Pediatr Allergy Immunol. 2014;25(8):796‐803. PubMed PMC
Christensen A, Kesti O, Elenius V, et al. Human bocaviruses and paediatric infections. Lancet Child Adoles Health. 2019;3(6):418‐426. PubMed
Simoes EA, Carbonell‐Estrany X, Rieger CH, et al. The effect of respiratory syncytial virus on subsequent recurrent wheezing in atopic and nonatopic children. J Allergy Clin Immunol. 2010;126(2):256‐262. PubMed PMC
Blanken MO, Rovers MM, Molenaar JM, et al. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. N Engl J Med. 2013;368(19):1791‐1799. PubMed
McCarthy MK, Weinberg JB. Eicosanoids and respiratory viral infection: coordinators of inflammation and potential therapeutic targets. Mediators Inflamm. 2012;2012:236345. PubMed PMC
Jakiela B, Gielicz A, Plutecka H, et al. Th2‐type cytokine‐induced mucus metaplasia decreases susceptibility of human bronchial epithelium to rhinovirus infection. Am J Respir Cell Mol Biol. 2014;51(2):229‐241. PubMed
Seymour ML, Gilby N, Bardin PG, et al. Rhinovirus infection increases 5‐lipoxygenase and cyclooxygenase‐2 in bronchial biopsy specimens from nonatopic subjects. J Infect Dis. 2002;185(4):540‐544. PubMed
Bancos S, Bernard MP, Topham DJ, Phipps RP. Ibuprofen and other widely used non‐steroidal anti‐inflammatory drugs inhibit antibody production in human cells. Cell Immunol. 2009;258(1):18‐28. PubMed PMC
Ryan EP, Pollock SJ, Murant TI, Bernstein SH, Felgar RE, Phipps RP. Activated human B lymphocytes express cyclooxygenase‐2 and cyclooxygenase inhibitors attenuate antibody production. J Immunol. 2005;174(5):2619‐2626. PubMed
Graham NM, Burrell CJ, Douglas RM, Debelle P, Davies L. Adverse effects of aspirin, acetaminophen, and ibuprofen on immune function, viral shedding, and clinical status in rhinovirus‐infected volunteers. J Infect Dis. 1990;162(6):1277‐1282. PubMed
Shirey KA, Lai W, Pletneva LM, et al. Role of the lipoxygenase pathway in RSV‐induced alternatively activated macrophages leading to resolution of lung pathology. Mucosal Immunol. 2014;7(3):549‐557. PubMed PMC
Tam VC, Quehenberger O, Oshansky CM, et al. Lipidomic profiling of influenza infection identifies mediators that induce and resolve inflammation. Cell. 2013;154(1):213‐227. PubMed PMC
Shirey KA, Pletneva LM, Puche AC, et al. Control of RSV‐induced lung injury by alternatively activated macrophages is IL‐4R alpha‐, TLR4‐, and IFN‐beta‐dependent. Mucosal Immunol. 2010;3(3):291‐300. PubMed PMC
Buckley CD, Gilroy DW, Serhan CN, Stockinger B, Tak PP. The resolution of inflammation. Nat Rev Immunol. 2013;13(1):59‐66. PubMed
Coulombe F, Jaworska J, Verway M, et al. Targeted prostaglandin E2 inhibition enhances antiviral immunity through induction of type I interferon and apoptosis in macrophages. Immunity. 2014;40(4):554‐568. PubMed
Tate MD, Ong JDH, Dowling JK, et al. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition. Sci Rep. 2016;6:27912. PubMed PMC
Zhao J, Legge K, Perlman S. Age‐related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Investig. 2011;121(12):4921‐4930. PubMed PMC
Andreakos E, Papadaki M, Serhan CN. Dexamethasone, pro‐resolving lipid mediators and resolution of inflammation in COVID‐19. Allergy. 2021;76(3):626‐628. PubMed PMC
Moore N, Bosco‐Levy P, Thurin N, Blin P, Droz‐Perroteau C. NSAIDs and COVID‐19: a systematic review and meta‐analysis. Drug Saf. 2021;44(9):929‐938. PubMed PMC
Qiao W, Wang C, Chen B, et al. Ibuprofen attenuates cardiac fibrosis in streptozotocin‐induced diabetic rats. Cardiology. 2015;131(2):97‐106. PubMed
Miyoshi H, VanDussen KL, Malvin NP, et al. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. Embo J. 2017;36(1):5‐24. PubMed PMC
Alfajaro MM, Choi JS, Kim DS, et al. Activation of COX‐2/PGE2 promotes sapovirus replication via the inhibition of nitric oxide production. J Virol. 2017;91(3). PubMed PMC
Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147, CD26, and other SARS‐CoV‐2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID‐19 risk factors. Allergy. 2020;75(11):2829‐2845. PubMed PMC
Zhao J, Zhao J, Legge K, Perlman S. Age‐related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Investig. 2011;121(12):4921‐4930. PubMed PMC
Theken KN, Tang SY, Sengupta S, FitzGerald GA. The roles of lipids in SARS‐CoV‐2 viral replication and the host immune response. J Lipid Res. 2021;62:100129. PubMed PMC
Sokolowska M, Chen LY, Liu Y, et al. Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular Cyclic AMP in human macrophages. J Immunol. 2015;194(11):5472‐5487. PubMed PMC
Vijay R, Fehr AR, Janowski AM, et al. Virus‐induced inflammasome activation is suppressed by prostaglandin D2/DP1 signaling. Proc Natl Acad Sci. 2017;114(27):E5444‐E5453. PubMed PMC
Martha JW, Pranata R, Lim MA, Wibowo A, Akbar MR. Active prescription of low‐dose aspirin during or prior to hospitalization and mortality in COVID‐19: a systematic review and meta‐analysis of adjusted effect estimates. Int J Infect Dis. 2021;108:6‐12. PubMed PMC
Sokolowska M, Lukasik ZM, Agache I, et al. Immunology of COVID‐19: mechanisms, clinical outcome, diagnostics, and perspectives‐a report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy. 2020;75(10):2445‐2476. PubMed PMC
Chen JS, Alfajaro MM, Chow RD, et al. Non‐steroidal anti‐inflammatory drugs dampen the cytokine and antibody response to SARS‐CoV‐2 infection. J Virol. 2021;95(7). PubMed PMC
Archambault AS, Zaid Y, Rakotoarivelo V, et al. High levels of eicosanoids and docosanoids in the lungs of intubated COVID‐19 patients. Faseb J. 2021;35(6):e21666. PubMed PMC
Schwarz B, Sharma L, Roberts L, et al. Cutting edge: severe SARS‐CoV‐2 infection in humans is defined by a shift in the serum lipidome, resulting in dysregulation of eicosanoid immune mediators. J Immunol. 2021;206(2):329‐334. PubMed PMC
Buchheit KM, Hacker JJ, Gakpo DH, Mullur J, Sohail A, Laidlaw TM. Influence of daily aspirin therapy on ACE2 expression and function—implications for SARS‐CoV‐2 and patients with aspirin‐exacerbated respiratory disease. Clin Exp Allergy. 2021;51(7):968‐971. PubMed PMC
Terrier O, Dilly S, Pizzorno A, et al. Antiviral properties of the NSAID drug naproxen targeting the nucleoprotein of SARS‐CoV‐2 coronavirus. Molecules (Basel, Switzerland). 2021;26(9):2593. PubMed PMC
Anderson BJ. Paracetamol (Acetaminophen): mechanisms of action. Paediatr Anaesth. 2008;18(10):915‐921. PubMed
Graham GG, Davies MJ, Day RO, Mohamudally A, Scott KF. The modern pharmacology of paracetamol: therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology. 2013;21(3):201‐232. PubMed
Reese JT, Coleman B, Chan L, et al. NSAID use and clinical outcomes in COVID‐19 patients: A 38‐center retrospective cohort study. medRxiv. 2021. doi:10.1101/2021.04.13.21255438 PubMed DOI PMC
Rinott E, Kozer E, Shapira Y, Bar‐Haim A, Youngster I. Ibuprofen use and clinical outcomes in COVID‐19 patients. Clin Microbiol Infect. 2020;26(9):1259.e1255‐1259.e1257. PubMed PMC
Abu Esba LC, Alqahtani RA, Thomas A, Shamas N, Alswaidan L, Mardawi G. Ibuprofen and NSAID use in COVID‐19 infected patients is not associated with worse outcomes: a prospective cohort study. Infect Dis Ther. 2021;10(1):253‐268. PubMed PMC
Drake TM, Fairfield CJ, Pius R, et al. Non‐steroidal anti‐inflammatory drug use and outcomes of COVID‐19 in the ISARIC Clinical Characterisation Protocol UK cohort: a matched, prospective cohort study. Lancet Rheumatol. 2021;3(7):e498–e506. doi:10.1016/S2665-9913(21)00104-1 PubMed DOI PMC
Park J, Lee SH, You SC, Kim J, Yang K. Non‐steroidal anti‐inflammatory agent use may not be associated with mortality of coronavirus disease 19. Sci Rep. 2021;11(1):5087. PubMed PMC
Ricke‐Hoch M, Stelling E, Lasswitz L, et al. Impaired immune response mediated by prostaglandin E2 promotes severe COVID‐19 disease. PLoS One. 2021;16(8):e0255335. PubMed PMC
Peters‐Golden M, Henderson WR Jr. Leukotrienes. N Engl J Med. 2007;357(18):1841‐1854. PubMed
Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE. Cysteinyl‐leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev. 2007;27(4):469‐527. PubMed
Diamant Z, Mantzouranis E, Bjermer L. Montelukast in the treatment of asthma and beyond. Expert Rev Clin Immunol. 2009;5(6):639‐658. PubMed
Langlois A, Ferland C, Tremblay GM, Laviolette M. Montelukast regulates eosinophil protease activity through a leukotriene‐independent mechanism. J Allergy Clin Immunol. 2006;118(1):113‐119. PubMed
Tahan F, Jazrawi E, Moodley T, Rovati GE, Adcock IM. Montelukast inhibits tumour necrosis factor‐alpha‐mediated interleukin‐8 expression through inhibition of nuclear factor‐kappaB p65‐associated histone acetyltransferase activity. Clin Exp Allergy. 2008;38(5):805‐811. PubMed
Mamedova L, Capra V, Accomazzo MR, et al. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. Biochem Pharmacol. 2005;71(1–2):115‐125. PubMed PMC
Woszczek G, Chen LY, Alsaaty S, Nagineni S, Shelhamer JH. Concentration‐dependent noncysteinyl leukotriene type 1 receptor‐mediated inhibitory activity of leukotriene receptor antagonists. J Immunol. 2010;184(4):2219‐2225. PubMed PMC
Ichiyama T, Hasegawa S, Umeda M, Terai K, Matsubara T, Furukawa S. Pranlukast inhibits NF‐kappa B activation in human monocytes/macrophages and T cells. Clin Exp Allergy. 2003;33(6):802‐807. PubMed
Ishinaga H, Takeuchi K, Kishioka C, Suzuki S, Basbaum C, Majima Y. Pranlukast inhibits NF‐kappaB activation and MUC2 gene expression in cultured human epithelial cells. Pharmacology. 2005;73(2):89‐96. PubMed
Ciana P, Fumagalli M, Trincavelli ML, et al. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl‐leukotrienes receptor. EMBO J. 2006;25(19):4615‐4627. PubMed PMC
Ramires R, Caiaffa MF, Tursi A, Haeggstrom JZ, Macchia L. Novel inhibitory effect on 5‐lipoxygenase activity by the anti‐asthma drug montelukast. Biochem Biophys Res Comm. 2004;324(2):815‐821. PubMed
Rius M, Hummel‐Eisenbeiss J, Keppler D. ATP‐dependent transport of leukotrienes B4 and C4 by the multidrug resistance protein ABCC4 (MRP4). J Pharmacol Exp Ther. 2008;324(1):86‐94. PubMed
Ravasi S, Capra V, Panigalli T, Rovati GE, Nicosia S. Pharmacological differences among CysLT(1) receptor antagonists with respect to LTC(4) and LTD(4) in human lung parenchyma. Biochem Pharmacol. 2002;63(8):1537‐1546. PubMed
Lynch KR, O'Neill GP, Liu Q, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature. 1999;399:789‐793. PubMed
Sarau HM, Ames RS, Chambers J, et al. Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor. Mol Pharmacol. 1999;56(3):657‐663. PubMed
Reiss TF, Altman LC, Chervinsky P, et al. Effects of montelukast (MK‐0476), a new potent cysteinyl leukotriene (LTD4) receptor antagonist, in patients with chronic asthma. J Allergy Clin Immunol. 1996;98(3):528‐534. PubMed
Altman LC, Munk Z, Seltzer J, et al. A placebo‐controlled, dose‐ranging study of montelukast, a cysteinyl leukotriene‐receptor antagonist. Montelukast Asthma Study Group. J Allergy Clin Immunol. 1998;102(1):50‐56. PubMed
Malmstrom K, Rodriguez‐Gomez G, Guerra J, et al. Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma. A randomized, controlled trial. Montelukast/Beclomethasone Study Group. Ann Intern Med. 1999;130(6):487‐495. PubMed
Lazarinis N, Bood J, Gomez C, et al. Leukotriene E4 induces airflow obstruction and mast cell activation through the cysteinyl leukotriene type 1 receptor. J Allergy Clin Immunol. 2018;142(4):1080‐1089. PubMed
Drazen JM, Yandava CN, Dube L, et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti‐asthma treatment. Nat Genet. 1999;22(2):168‐170. PubMed
Mougey EB, Feng H, Castro M, Irvin CG, Lima JJ. Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response. Pharmacogenet Genomics. 2009;19(2):129‐138. PubMed PMC
Scott JP, Peters‐Golden M. Antileukotriene agents for the treatment of lung disease. Am J Respir Crit Care Med. 2013;188(5):538‐544. PubMed
Kolmert J, Gomez C, Balgoma D, et al. Urinary leukotriene E4 and prostaglandin D2 metabolites increase in adult and childhood severe asthma characterized by type 2 inflammation. a clinical observational study. Am J Respir Crit Care Med. 2021;203(1):37‐53. PubMed PMC
Gaber F, Daham K, Higashi A, et al. Increased levels of cysteinyl‐leukotrienes in saliva, induced sputum, urine and blood from patients with aspirin‐intolerant asthma. Thorax. 2008;63(12):1076‐1082. PubMed
Rabinovitch N, Graber NJ, Chinchilli VM, et al. Urinary leukotriene E4/exhaled nitric oxide ratio and montelukast response in childhood asthma. J Allergy Clin Immunol. 2010;126(3):545‐551.e4. PubMed PMC
Rabinovitch N, Mauger DT, Reisdorph N, et al. Predictors of asthma control and lung function responsiveness to step 3 therapy in children with uncontrolled asthma. J Allergy Clin Immunol. 2014;133(2):350‐356. PubMed PMC
Edelman JM, Turpin JA, Bronsky EA, et al. Oral montelukast compared with inhaled salmeterol to prevent exercise‐induced bronchoconstriction. A randomized, double‐blind trial. Exercise Study Group. Ann Intern Med. 2000;132(2):97‐104. PubMed
Price DB, Swern A, Tozzi CA, Philip G, Polos P. Effect of montelukast on lung function in asthma patients with allergic rhinitis: analysis from the COMPACT trial. Allergy. 2006;61(6):737‐742. PubMed
Dahlen SE, Malmstrom K, Nizankowska E, et al. Improvement of aspirin‐intolerant asthma by montelukast, a leukotriene antagonist: a randomized, double‐blind, placebo‐controlled trial. Am J Respir Crit Care Med. 2002;165(1):9‐14. PubMed
Bisgaard H, Zielen S, Garcia‐Garcia ML, et al. Montelukast reduces asthma exacerbations in 2‐ to 5‐year‐old children with intermittent asthma. Am J Respir Crit Care Med. 2005;171(4):315‐322. PubMed
Bozek A, Warkocka‐Szoltysek B, Filipowska‐Gronska A, Jarzab J. Montelukast as an add‐on therapy to inhaled corticosteroids in the treatment of severe asthma in elderly patients. J Asthma. 2012;49(5):530‐534. PubMed
Price D, Musgrave SD, Shepstone L, et al. Leukotriene antagonists as first‐line or add‐on asthma‐controller therapy. N Engl J Med. 2011;364(18):1695‐1707. PubMed
Chalmers GW, Macleod KJ, Little SA, Thomson LJ, McSharry CP, Thomson NC. Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma. Thorax. 2002;57(3):226‐230. PubMed PMC
Gaki E, Papatheodorou G, Ischaki E, Grammenou V, Papa I, Loukides S. Leukotriene E(4) in urine in patients with asthma and COPD–the effect of smoking habit. Respir Med. 2007;101(4):826‐832. PubMed
Lazarus SC, Chinchilli VM, Rollings NJ, et al. Smoking affects response to inhaled corticosteroids or leukotriene receptor antagonists in asthma. Am J Respir Crit Care Med. 2007;175(8):783‐790. PubMed PMC
Price D, Popov TA, Bjermer L, et al. Effect of montelukast for treatment of asthma in cigarette smokers. J Allergy Clin Immunol. 2013;131(3):763‐771. PubMed
Giouleka P, Papatheodorou G, Lyberopoulos P, et al. Body mass index is associated with leukotriene inflammation in asthmatics. Eur J Clin Invest. 2011;41(1):30‐38. PubMed
Peters‐Golden M, Swern A, Bird SS, Hustad CM, Grant E, Edelman JM. Influence of body mass index on the response to asthma controller agents. Eur Respir J. 2006;27(3):495‐503. PubMed
Kowalski ML, Makowska JS, Blanca M, et al. Hypersensitivity to nonsteroidal anti‐inflammatory drugs (NSAIDs) ‐ classification, diagnosis and management: review of the EAACI/ENDA(#) and GA2LEN/HANNA*. Allergy. 2011;66(7):818‐829. PubMed
Pace S, Sautebin L, Werz O. Sex‐biased eicosanoid biology: impact for sex differences in inflammation and consequences for pharmacotherapy. Biochem Pharmacol. 2017;145:1‐11. PubMed
Pergola C, Dodt G, Rossi A, et al. ERK‐mediated regulation of leukotriene biosynthesis by androgens: a molecular basis for gender differences in inflammation and asthma. Proc Natl Acad Sci USA. 2008;105(50):19881‐19886. PubMed PMC
Pace S, Pergola C, Dehm F, et al. Androgen‐mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. J Clin Investig. 2017;127(8):3167‐3176. PubMed PMC
Pergola C, Schaible AM, Nikels F, Dodt G, Northoff H, Werz O. Progesterone rapidly down‐regulates the biosynthesis of 5‐lipoxygenase products in human primary monocytes. Pharmacol Res. 2015;94:42‐50. PubMed
Rossi A, Roviezzo F, Sorrentino R, et al. Leukotriene‐mediated sex dimorphism in murine asthma‐like features during allergen sensitization. Pharmacol Res. 2019;139:182‐190. PubMed
Pace S, Werz O. Impact of androgens on inflammation‐related lipid mediator biosynthesis in innate immune cells. Front Immunol. 2020;11:1356. PubMed PMC
Esposito R, Spaziano G, Giannattasio D, et al. Montelukast improves symptoms and lung function in asthmatic women compared with men. Front Pharmacol. 2019;10:1094. PubMed PMC
Rabinovitch N, Strand M, Stuhlman K, Gelfand EW. Exposure to tobacco smoke increases leukotriene E4‐related albuterol usage and response to montelukast. J Allergy Clin Immunol. 2008;121(6):1365‐1371. PubMed
Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy. 2020;75(7):1564‐1581. PubMed PMC
Gao YD, Ding M, Dong X, et al. Risk factors for severe and critically ill COVID‐19 patients: a review. Allergy. 2021;76(2):428‐455. PubMed
Sisakht M, Solhjoo A, Mahmoodzadeh A, Fathalipour M, Kabiri M, Sakhteman A. Potential inhibitors of the main protease of SARS‐CoV‐2 and modulators of arachidonic acid pathway: Non‐steroidal anti‐inflammatory drugs against COVID‐19. Comput Biol Med. 2021;136: 104686. PubMed PMC
Fidan C, Aydogdu A. As a potential treatment of COVID‐19: montelukast. Med Hypotheses. 2020;142: 109828. PubMed PMC
Aigner L, Pietrantonio F, Bessa de Sousa DM, et al. The leukotriene receptor antagonist montelukast as a potential COVID‐19 therapeutic. Front Mol Biosci. 2020;7:610132. PubMed PMC
Barré J, Sabatier JM, Annweiler C. Montelukast drug may improve COVID‐19 prognosis: a review of evidence. Front Pharmacol. 2020;11:1344. PubMed PMC
Crimi N, Mastruzzo C, Pagano C, Lisitano N, Palermo F, Vancheri C. Montelukast protects against bradykinin‐induced bronchospasm. J Allergy Clin Immunol. 2005;115(4):870‐872. PubMed
England JT, Abdulla A, Biggs CM, et al. Weathering the COVID‐19 storm: lessons from hematologic cytokine syndromes. Blood Rev. 2021;45: 100707. PubMed PMC
Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med. 2020;383(23):2255‐2273. PubMed PMC
Sala A, Murphy RC, Voelkel NF. Direct airway injury results in elevated levels of sulfidopeptide leukotrienes, detectable in airway secretions. Prostaglandins. 1991;42(1):1‐7. PubMed
Sanghai N, Tranmer GK. Taming the cytokine storm: repurposing montelukast for the attenuation and prophylaxis of severe COVID‐19 symptoms. Drug Discov Today. 2020;25(12):2076‐2079. PubMed PMC
Maeba S, Ichiyama T, Ueno Y, Makata H, Matsubara T, Furukawa S. Effect of montelukast on nuclear factor kappaB activation and proinflammatory molecules. Ann Allergy Asthma Immunol. 2005;94(6):670‐674. PubMed
Ueda T, Takeno S, Furukido K, Hirakawa K, Yajin K. Leukotriene receptor antagonist pranlukast suppresses eosinophil infiltration and cytokine production in human nasal mucosa of perennial allergic rhinitis. Ann Otol Rhinol Laryngol. 2003;112(11):955‐961. PubMed
Almerie MQ, Kerrigan DD. The association between obesity and poor outcome after COVID‐19 indicates a potential therapeutic role for montelukast. Med Hypotheses. 2020;143: 109883. PubMed PMC
Khan AR, Misdary C, Yegya‐Raman N, et al. Montelukast in hospitalized patients diagnosed with COVID‐19. J Asthma. 2021;1‐7. PubMed PMC
Bozek A, Winterstein J. Montelukast's ability to fight COVID‐19 infection. J Asthma. 2021;58(10):1348‐1349. PubMed
Hoxha M, Tedesco CC, Quaglin S, et al. Montelukast use decreases cardiovascular events in asthmatics. Front Pharmacol. 2020;11:611561. PubMed PMC
Funk CD. Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat Rev Drug Discov. 2005;4(8):664‐672. PubMed
Camera M, Canzano P, Brambilla M, Rovati GE. Montelukast inhibits platelet activation induced by plasma from COVID‐19 patients. Front Pharmacol. 2022;13. PubMed PMC
Funk CD, Ardakani A. A novel strategy to mitigate the hyperinflammatory response to COVID‐19 by targeting leukotrienes. Front Pharmacol. 2020;11:1214. PubMed PMC
Pettipher R, Hansel TT, Armer R. Antagonism of the prostaglandin D2 receptors DP1 and CRTH2 as an approach to treat allergic diseases. Nat Rev Drug Discov. 2007;6(4):313‐325. PubMed
Claar D, Hartert TV, Peebles RS Jr. The role of prostaglandins in allergic lung inflammation and asthma. Expert Rev Respir Med. 2015;9(1):55‐72. PubMed PMC
Boonpiyathad T, Capova G, Duchna HW, et al. Impact of high‐altitude therapy on type‐2 immune responses in asthma patients. Allergy. 2020;75(1):84‐94. PubMed
Rudulier CD, Tonti E, James E, Kwok WW, Larché M. Modulation of CRTh2 expression on allergen‐specific T cells following peptide immunotherapy. Allergy. 2019;74(11):2157‐2166. PubMed PMC
Diamant Z, Aalders W, Parulekar A, Bjermer L, Hanania NA. Targeting lipid mediators in asthma: time for reappraisal. Curr Opin Pulm Med. 2019;25(1):121‐127. PubMed
Brightling CE, Brusselle G, Altman P. The impact of the prostaglandin D(2) receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy. 2020;75(4):761‐768. PubMed
Singh D, Cadden P, Hunter M, et al. Inhibition of the asthmatic allergen challenge response by the CRTH2 antagonist OC000459. Eur Respir J. 2013;41(1):46‐52. PubMed
Diamant Z, Sidharta PN, Singh D, et al. Setipiprant, a selective CRTH2 antagonist, reduces allergen‐induced airway responses in allergic asthmatics. Clin Exp Allergy. 2014;44(8):1044‐1052. PubMed
Xia J, Abdu S, Maguire TJA, Hopkins C, Till SJ, Woszczek G. Prostaglandin D(2) receptors in human mast cells. Allergy. 2020;75(6):1477‐1480. PubMed
Beasley R, Varley J, Robinson C, Holgate ST. Cholinergic‐mediated bronchoconstriction induced by prostaglandin D2, its initial metabolite 9 alpha,11 beta‐PGF2, and PGF2 alpha in asthma. Am Rev Respir Dis. 1987;136(5):1140‐1144. PubMed
Diamant Z, Timmers MC, van der Veen H, et al. The effect of MK‐0591, a novel 5‐lipoxygenase activating protein inhibitor, on leukotriene biosynthesis and allergen‐induced airway responses in asthmatic subjects in vivo. J Allergy Clin Immunol. 1995;95(1 Pt 1):42‐51. PubMed
Pettipher R, Hunter MG, Perkins CM, et al. Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist OC000459. Allergy. 2014;69(9):1223‐1232. PubMed
Ratner P, Andrews CP, Hampel FC, et al. Efficacy and safety of setipiprant in seasonal allergic rhinitis: results from Phase 2 and Phase 3 randomized, double‐blind, placebo‐ and active‐referenced studies. Allergy Asthma Clin Immunol. 2017;13:18. PubMed PMC
Saunders R, Kaul H, Berair R, et al. DP2 antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment. Sci Transl Med. 2019;11(479). PubMed
Fajt ML, Gelhaus SL, Freeman B, et al. Prostaglandin D(2) pathway upregulation: relation to asthma severity, control, and TH2 inflammation. J Allergy Clin Immunol. 2013;131(6):1504‐1512. PubMed PMC
Brightling CE, Brusselle G, Altman P. The impact of the prostaglandin D2 receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy. 2020;75(4):761‐768. PubMed
Shiraishi Y, Asano K, Niimi K, et al. Cyclooxygenase‐2/prostaglandin D2/CRTH2 pathway mediates double‐stranded RNA‐induced enhancement of allergic airway inflammation. J Immunol. 2008;180(1):541‐549. PubMed
Werder RB, Lynch JP, Simpson JC, et al. PGD2/DP2 receptor activation promotes severe viral bronchiolitis by suppressing IFN‐lambda production. Sci Transl Med. 2018;10(440). PubMed
Gupta A, Chander CK. Prostaglandin D2 as a mediator of lymphopenia and a therapeutic target in COVID‐19 disease. Med Hypotheses. 2020;143: 110122. PubMed PMC
Safholm J, Manson ML, Bood J, et al. Prostaglandin E2 inhibits mast cell‐dependent bronchoconstriction in human small airways through the E prostanoid subtype 2 receptor. J Allergy Clin Immunol. 2015;136(5):1232‐1239.e1231. PubMed
Lu HC, Mackie K. An introduction to the endogenous cannabinoid system. Biol Psychiatry. 2016;79(7):516‐525. PubMed PMC
Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov. 2018;17(9):623‐639. PubMed
Velasco G, Sanchez C, Guzman M. Towards the use of cannabinoids as antitumour agents. Nat Rev Cancer. 2012;12(6):436‐444. PubMed
Turcotte C, Chouinard F, Lefebvre JS, Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2‐arachidonoyl‐glycerol and arachidonoyl‐ethanolamide, and their metabolites. J Leukoc Biol. 2015;97(6):1049‐1070. PubMed
Deng H, Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm Sin B. 2020;10(4):582‐602. PubMed PMC
Celorrio M, Fernandez‐Suarez D, Rojo‐Bustamante E, et al. Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson's disease. Brain Behav Immun. 2016;57:94‐105. PubMed
Alhouayek M, Muccioli GG. COX‐2‐derived endocannabinoid metabolites as novel inflammatory mediators. Trends Pharmacol Sci. 2014;35(6):284‐292. PubMed
Fowler CJ. NSAIDs: eNdocannabinoid stimulating anti‐inflammatory drugs? Trends Pharmacol Sci. 2012;33(9):468‐473. PubMed
Angelina A, Perez‐Diego M, Lopez‐Abente J, Palomares O. The role of cannabinoids in allergic diseases: Collegium Internationale Allergologicum (CIA) update 2020. Int Arch Allergy Immunol. 2020;181(8):565‐584. PubMed
Sugawara K, Zakany N, Hundt T, et al. Cannabinoid receptor 1 controls human mucosal‐type mast cell degranulation and maturation in situ. J Allergy Clin Immunol. 2013;132(1):182‐193. PubMed
Sugawara K, Biro T, Tsuruta D, et al. Endocannabinoids limit excessive mast cell maturation and activation in human skin. J Allergy Clin Immunol. 2012;129(3):726‐738.e728. PubMed
Braun A, Engel T, Aguilar‐Pimentel JA, et al. Beneficial effects of cannabinoids (CB) in a murine model of allergen‐induced airway inflammation: role of CB1/CB2 receptors. Immunobiology. 2011;216(4):466‐476. PubMed
Vuolo F, Abreu SC, Michels M, et al. Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma. Eur J Pharmacol. 2019;843:251‐259. PubMed
Jan TR, Farraj AK, Harkema JR, Kaminski NE. Attenuation of the ovalbumin‐induced allergic airway response by cannabinoid treatment in A/J mice. Toxicol Appl Pharmacol. 2003;188(1):24‐35. PubMed
Giannini L, Nistri S, Mastroianni R, et al. Activation of cannabinoid receptors prevents antigen‐induced asthma‐like reaction in guinea pigs. J Cell Mol Med. 2008;12(6A):2381‐2394. PubMed PMC
Gaffal E, Glodde N, Jakobs M, Bald T, Tuting T. Cannabinoid 1 receptors in keratinocytes attenuate fluorescein isothiocyanate‐induced mouse atopic‐like dermatitis. Exp Dermatol. 2014;23(6):401‐406. PubMed
Kim HJ, Kim B, Park BM, et al. Topical cannabinoid receptor 1 agonist attenuates the cutaneous inflammatory responses in oxazolone‐induced atopic dermatitis model. Int J Dermatol. 2015;54(10):e401‐408. PubMed
Nam G, Jeong SK, Park BM, et al. Selective cannabinoid receptor‐1 agonists regulate mast cell activation in an oxazolone‐induced atopic dermatitis model. Ann Dermatol. 2016;28(1):22‐29. PubMed PMC
Petrosino S, Verde R, Vaia M, Allara M, Iuvone T, Di Marzo V. Anti‐inflammatory properties of cannabidiol, a nonpsychotropic cannabinoid, in experimental allergic contact dermatitis. J Pharmacol Exp Ther. 2018;365(3):652‐663. PubMed
Vaia M, Petrosino S, De Filippis D, et al. Palmitoylethanolamide reduces inflammation and itch in a mouse model of contact allergic dermatitis. Eur J Pharmacol. 2016;791:669‐674. PubMed
Petrosino S, Cristino L, Karsak M, et al. Protective role of palmitoylethanolamide in contact allergic dermatitis. Allergy. 2010;65(6):698‐711. PubMed
Bozkurt TE, Kaya Y, Durlu‐Kandilci NT, Onder S, Sahin‐Erdemli I. The effect of cannabinoids on dinitrofluorobenzene‐induced experimental asthma in mice. Respir Physiol Neurobiol. 2016;231:7‐13. PubMed
Angelina A, Martin‐Fontecha M, Ruckert B, et al. The cannabinoid WIN55212‐2 restores rhinovirus‐induced epithelial barrier disruption. Allergy. 2021;76(6):1900‐1902. PubMed
Angelina A, Pérez‐Diego M, López‐Abente J, et al. Cannabinoids induce functional Tregs by promoting tolerogenic DCs via autophagy and metabolic reprograming. Mucosal Immunol. 2022;15(1):96‐108. PubMed PMC
Esposito G, Pesce M, Seguella L, et al. The potential of cannabidiol in the COVID‐19 pandemic. Br J Pharmacol. 2020;177(21):4967‐4970. PubMed PMC
Tahamtan A, Tavakoli‐Yaraki M, Salimi V. Opioids/cannabinoids as a potential therapeutic approach in COVID‐19 patients. Expert Rev Respir Med. 2020;14(10):965‐967. PubMed PMC
Rossi F, Tortora C, Argenziano M, Di Paola A, Punzo F. Cannabinoid receptor type 2: a possible target in SARS‐CoV‐2 (CoV‐19) infection? Int J Mol Sci. 2020;21(11):3809. PubMed PMC
Frei RB, Luschnig P, Parzmair GP, et al. Cannabinoid receptor 2 augments eosinophil responsiveness and aggravates allergen‐induced pulmonary inflammation in mice. Allergy. 2016;71(7):944‐956. PubMed PMC
Mimura T, Ueda Y, Watanabe Y, Sugiura T. The cannabinoid receptor‐2 is involved in allergic inflammation. Life Sci. 2012;90(21–22):862‐866. PubMed
Ferrini ME, Hong S, Stierle A, et al. CB2 receptors regulate natural killer cells that limit allergic airway inflammation in a murine model of asthma. Allergy. 2017;72(6):937‐947. PubMed PMC
Martin‐Fontecha M, Eiwegger T, Jartti T, et al. The expression of cannabinoid receptor 1 is significantly increased in atopic patients. J Allergy Clin Immunol. 2014;133(3):926‐929.e922. PubMed
Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS‐24 and LIBERTY NP SINUS‐52): results from two multicentre, randomised, double‐blind, placebo‐controlled, parallel‐group phase 3 trials. Lancet (London, England). 2019;394(10209):1638‐1650. PubMed
Gevaert P, Omachi TA, Corren J, et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. J Allergy Clin Immunol. 2020;146(3):595‐605. PubMed
Dunican EM, Fahy JV. The role of type 2 inflammation in the pathogenesis of asthma exacerbations. Ann Am Thorac Soc. 2015;12(Suppl 2):S144‐S149. PubMed PMC
Bachert C, Zhang N, Cavaliere C, Weiping W, Gevaert E, Krysko O. Biologics for chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2020;145(3):725‐739. PubMed
Bourdin A, Bjermer L, Brightling C, et al. ERS/EAACI statement on severe exacerbations in asthma in adults: facts, priorities and key research questions. Eur Respir J. 2019;54(3). PubMed
Del Giacco SR, Bakirtas A, Bel E, et al. Allergy in severe asthma. Allergy. 2017;72(2):207‐220. PubMed
Dougherty RH, Fahy JV. Acute exacerbations of asthma: epidemiology, biology and the exacerbation‐prone phenotype. Clin Exp Allergy. 2009;39(2):193‐202. PubMed PMC
Calhoun WJ, Dick EC, Schwartz LB, Busse WW. A common cold virus, rhinovirus 16, potentiates airway inflammation after segmental antigen bronchoprovocation in allergic subjects. J Clin Investig. 1994;94(6):2200‐2208. PubMed PMC
Peters‐Golden M. Expanding roles for leukotrienes in airway inflammation. Curr Allergy Asthma Rep. 2008;8(4):367‐373. PubMed
Diamant Z, Hiltermann JT, van Rensen EL, et al. The effect of inhaled leukotriene D4 and methacholine on sputum cell differentials in asthma. Am J Respir Crit Care Med. 1997;155(4):1247‐1253. PubMed
Serrano‐Candelas E, Martinez‐Aranguren R, Valero A, et al. Comparable actions of omalizumab on mast cells and basophils. Clin Exp Allergy. 2016;46(1):92‐102. PubMed
Zhang HP, Jia CE, Lv Y, Gibson PG, Wang G. Montelukast for prevention and treatment of asthma exacerbations in adults: Systematic review and meta‐analysis. Allergy Asthma Proc. 2014;35(4):278‐287. PubMed
Yang J, Luo J, Yang L, et al. Efficacy and safety of antagonists for chemoattractant receptor‐homologous molecule expressed on Th2 cells in adult patients with asthma: a meta‐analysis and systematic review. Respir Res. 2018;19(1):217. PubMed PMC
Fitzgerald DA, Mellis CM. Leukotriene receptor antagonists in virus‐induced wheezing : evidence to date. Treat Respir Med. 2006;5(6):407‐417. PubMed
Laidlaw TM, Mullol J, Woessner KM, Amin N, Mannent LP. Chronic rhinosinusitis with nasal polyps and asthma. J Allergy Clin Immunol Pract. 2021;9(3):1133‐1141. PubMed
Kowalski ML, Agache I, Bavbek S, et al. Diagnosis and management of NSAID‐exacerbated respiratory disease (N‐ERD)‐a EAACI position paper. Allergy. 2019;74(1):28‐39. PubMed
Celejewska‐Wójcik N, Wójcik K, Ignacak‐Popiel M, et al. Subphenotypes of nonsteroidal antiinflammatory disease‐exacerbated respiratory disease identified by latent class analysis. Allergy. 2020;75(4):831‐840. PubMed PMC
Christie PE, Tagari P, Ford‐Hutchinson AW, et al. Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin‐sensitive asthmatic subjects. Am Rev Respir Dis. 1991;143(5 Pt 1):1025‐1029. PubMed
Arm JP, O'Hickey SP, Spur BW, Lee TH. Airway responsiveness to histamine and leukotriene E4 in subjects with aspirin‐induced asthma. Am Rev Respir Dis. 1989;140(1):148‐153. PubMed
Cowburn AS, Sladek K, Soja J, et al. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin‐intolerant asthma. J Clin Investig. 1998;101(4):834‐846. PubMed PMC
Corrigan CJ, Napoli RL, Meng Q, et al. Reduced expression of the prostaglandin E2 receptor E‐prostanoid 2 on bronchial mucosal leukocytes in patients with aspirin‐sensitive asthma. J Allergy Clin Immunol. 2012;129(6):1636‐1646. PubMed
Szczeklik A, Mastalerz L, Nizankowska E, Cmiel A. Protective and bronchodilator effects of prostaglandin E and salbutamol in aspirin‐induced asthma. Am J Respir Crit Care Med. 1996;153(2):567‐571. PubMed
Yamaguchi H, Higashi N, Mita H, et al. Urinary concentrations of 15‐epimer of lipoxin A(4) are lower in patients with aspirin‐intolerant compared with aspirin‐tolerant asthma. Clin Exp Allergy. 2011;41(12):1711‐1718. PubMed
Cahill KN, Bensko JC, Boyce JA, Laidlaw TM. Prostaglandin D₂: a dominant mediator of aspirin‐exacerbated respiratory disease. J Allergy Clin Immunol. 2015;135(1):245‐252. PubMed PMC
Kowalski ML, Asero R, Bavbek S, et al. Classification and practical approach to the diagnosis and management of hypersensitivity to nonsteroidal anti‐inflammatory drugs. Allergy. 2013;68(10):1219‐1232. PubMed
Flower RJ. The development of COX2 inhibitors. Nat Rev Drug Discov. 2003;2(3):179‐191. PubMed
Doña I, Barrionuevo E, Salas M, et al. NSAIDs‐hypersensitivity often induces a blended reaction pattern involving multiple organs. Sci Rep. 2018;8(1):16710. PubMed PMC
FitzGerald GA. COX‐2 and beyond: approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov. 2003;2(11):879‐890. PubMed
Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR. Nonsteroid drug selectivities for cyclo‐oxygenase‐1 rather than cyclo‐oxygenase‐2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci USA. 1999;96(13):7563‐7568. PubMed PMC
Dona I, Perez‐Sanchez N, Eguiluz‐Gracia I, et al. Progress in understanding hypersensitivity reactions to nonsteroidal anti‐inflammatory drugs. Allergy. 2020;75(3):561‐575. PubMed
Eguiluz‐Gracia I, Tay TR, Hew M, et al. Recent developments and highlights in biomarkers in allergic diseases and asthma. Allergy. 2018;73(12):2290‐2305. PubMed
Szczeklik A, Gryglewski RJ, Czerniawska‐Mysik G. Relationship of inhibition of prostaglandin biosynthesis by analgesics to asthma attacks in aspirin‐sensitive patients. BMJ. 1975;1(5949):67‐69. PubMed PMC
Zembowicz A, Mastalerz L, Setkowicz M, Radziszewski W, Szczeklik A. Safety of cyclooxygenase 2 inhibitors and increased leukotriene synthesis in chronic idiopathic urticaria with sensitivity to nonsteroidal anti‐inflammatory drugs. Arch Dermatol. 2003;139(12):1577‐1582. PubMed
Setkowicz M, Mastalerz L, Podolec‐Rubis M, Sanak M, Szczeklik A. Clinical course and urinary eicosanoids in patients with aspirin‐induced urticaria followed up for 4 years. J Allergy Clin Immunol. 2009;123(1):174‐178. PubMed
Di Lorenzo G, Pacor ML, Candore G, et al. Polymorphisms of cyclo‐oxygenases and 5‐lipo‐oxygenase‐activating protein are associated with chronic spontaneous urticaria and urinary leukotriene E4. Eur J Dermatol. 2011;21(1):47‐52. PubMed
Doña I, Jurado‐Escobar R, Perkins JR, et al. Eicosanoid mediator profiles in different phenotypes of nonsteroidal anti‐inflammatory drug‐induced urticaria. Allergy. 2019;74(6):1135‐1144. PubMed
Di Lorenzo G, Pacor ML, Vignola AM, et al. Urinary metabolites of histamine and leukotrienes before and after placebo‐controlled challenge with ASA and food additives in chronic urticaria patients. Allergy. 2002;57(12):1180‐1186. PubMed
Mastalerz L, Setkowicz M, Sanak M, Szczeklik A. Hypersensitivity to aspirin: common eicosanoid alterations in urticaria and asthma. J Allergy Clin Immunol. 2004;113(4):771‐775. PubMed
Bohm I, Speck U, Schild H. A possible role for cysteinyl‐leukotrienes in non‐ionic contrast media induced adverse reactions. Eur J Radiol. 2005;55(3):431‐436. PubMed
Stellato C, de Crescenzo G, Patella V, Mastronardi P, Mazzarella B, Marone G. Human basophil/mast cell releasability. XI. Heterogeneity of the effects of contrast media on mediator release. J Allergy Clin Immunol. 1996;97(3):838‐850. PubMed
Cryer B, Feldman M. Cyclooxygenase‐1 and cyclooxygenase‐2 selectivity of widely used nonsteroidal anti‐inflammatory drugs. Am J Med. 1998;104(5):413‐421. PubMed
Waterbury LD, Silliman D, Jolas T. Comparison of cyclooxygenase inhibitory activity and ocular anti‐inflammatory effects of ketorolac tromethamine and bromfenac sodium. Curr Med Res Opin. 2006;22(6):1133‐1140. PubMed
Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci USA. 1993;90(24):11693‐11697. PubMed PMC
Campos C, de Gregorio R, García‐Nieto R, Gago F, Ortiz P, Alemany S. Regulation of cyclooxygenase activity by metamizol. Eur J Pharmacol. 1999;378(3):339‐347. PubMed
Israel E, Cohn J, Dubé L, Drazen JM. Effect of treatment with zileuton, a 5‐lipoxygenase inhibitor, in patients with asthma. A randomized controlled trial. Zileuton Clinical Trial Group. JAMA. 1996;275(12):931‐936. PubMed
Castro M, Kerwin E, Miller D, et al. Efficacy and safety of fevipiprant in patients with uncontrolled asthma: Two replicate, phase 3, randomised, double‐blind, placebo‐controlled trials (ZEAL‐1 and ZEAL‐2). EClinicalMedicine. 2021;35: 100847. PubMed PMC
Landray MJ, Haynes R, Hopewell JC, et al. Effects of extended‐release niacin with laropiprant in high‐risk patients. N Engl J Med. 2014;371(3):203‐212. PubMed