• This record comes from PubMed

A compendium answering 150 questions on COVID-19 and SARS-CoV-2

. 2020 Oct ; 75 (10) : 2503-2541. [epub] 20200720

Language English Country Denmark Media print-electronic

Document type Journal Article, Review

Grant support
GNT1117687 NHMRC Senior Research Fellowship - International
IJCI-2016-27619 Consejo Superior de Investigaciones Científicas - International
JR19/0029 Instituto de Salud Carlos III - International

In December 2019, China reported the first cases of the coronavirus disease 2019 (COVID-19). This disease, caused by the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), has developed into a pandemic. To date, it has resulted in ~9 million confirmed cases and caused almost 500 000 related deaths worldwide. Unequivocally, the COVID-19 pandemic is the gravest health and socioeconomic crisis of our time. In this context, numerous questions have emerged in demand of basic scientific information and evidence-based medical advice on SARS-CoV-2 and COVID-19. Although the majority of the patients show a very mild, self-limiting viral respiratory disease, many clinical manifestations in severe patients are unique to COVID-19, such as severe lymphopenia and eosinopenia, extensive pneumonia, a "cytokine storm" leading to acute respiratory distress syndrome, endothelitis, thromboembolic complications, and multiorgan failure. The epidemiologic features of COVID-19 are distinctive and have changed throughout the pandemic. Vaccine and drug development studies and clinical trials are rapidly growing at an unprecedented speed. However, basic and clinical research on COVID-19-related topics should be based on more coordinated high-quality studies. This paper answers pressing questions, formulated by young clinicians and scientists, on SARS-CoV-2, COVID-19, and allergy, focusing on the following topics: virology, immunology, diagnosis, management of patients with allergic disease and asthma, treatment, clinical trials, drug discovery, vaccine development, and epidemiology. A total of 150 questions were answered by experts in the field providing a comprehensive and practical overview of COVID-19 and allergic disease.

ALL MED Medical Research Institute Wroclaw Poland

Allergy Unit and Asthma Center Borgo Roma Hospital University of Verona and General Hospital Verona Italy

Allergy Unit CUF Porto Hospital and Institute Oporto Portugal

Allergy Unit Department of Pediatrics Meyer Children's University Hospital Florence Italy

Allergy Unit Hospital Universitario 12 de Octubre Madrid Spain

Allergy Unit IBIMA Regional University Hospital of Malaga UMA RETICS ARADyAL BIONAND Malaga Spain

Center for Rhinology and Allergology Wiesbaden Germany

Centre for Inflammation Research Child Life and Health The University of Edinburgh Edinburgh UK

Charité Universitätsmedizin Berlin Humboldt Universität zu Berlin Berlin Germany

Christine Kühne Center for Allergy Research and Education Davos Switzerland

CIBER Epidemiología y Salud Pública Barcelona Spain

Department of Allergology Zhongnan Hospital of Wuhan University Wuhan China

Department of Allergy Immunology and Respiratory Medicine Central Clinical School Monash University and The Alfred Hospital Melbourne Vic Australia

Department of Allergy Marqués de Valdecilla University Hospital IDIVAL Santander Spain

Department of Cardiovascular and Thoracic Sciences Fondazione Policlinico Universitario A Gemelli IRCCS University of the Sacred Heart Rome Italy

Department of Clinical Immunology and Allergology 1 M Sechenov 1st Moscow State Medical University Moscow Russia

Department of Clinical Immunology University of Wroclaw Wroclaw Poland

Department of Clinical Pharmacy and Pharmacology University Medical Center Groningen University of Groningen Groningen Netherlands

Department of Dermatology and Allergy Comprehensive Allergy Center Berlin Institute of Health Berlin Germany

Department of Immunology and Oncology Centro Nacional de Biotecnología CSIC Madrid Spain

Department of Immunology and Pathology Monash University Melbourne Vic Australia

Department of Immunology University of Toronto Toronto ON Canada

Department of Medicine and School of Microbiology APC Microbiome Ireland University College Cork Cork Ireland

Department of Medicine Jagiellonian University Medical College Krakow Poland

Department of Otolaryngology Head and Neck Surgery and Department of Allergy Beijing Tongren Hospital Beijing China

Department of Otolaryngology Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore

Department of Otorhinolaryngology Amsterdam University Medical Centers Amsterdam The Netherlands

Department of Otorhinolaryngology Head and Neck Surgery Section of Rhinology and Allergy University Hospital Marburg Philipps Universität Marburg Marburg Germany

Department of Pediatric Allergy and Immunology Kanuni Sultan Suleyman Training and Research Hospital Istanbul Turkey

Department of Respiratory Medicine 1st Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic

Department of Respiratory Medicine and Allergology Institute for Clinical Science Skane University Hospital Lund University Lund Sweden

Department of Virology Faculty of Veterinary Medicine University of Kirikkale Kirikkale Turkey

Division of Immunology and Allergy Food Allergy and Anaphylaxis Program The Hospital for Sick Children Toronto ON Canada

Division of Pediatric Allergy and Immunology Department of Pediatrics Faculty of Medicine University of Kirikkale Kirikkale Turkey

Division of Pulmonary and Critical Care Medicine Sean N Parker Center for Allergy and Asthma Research at Stanford University Stanford University Stanford CA USA

ENT Department General Hospital of Chania Greece Greece

Faculty of Experimental Sciences Universidad Francisco de Vitoria Madrid Spain

Faculty of Medicine Center for Health Technology and Services Research University of Porto Oporto Portugal

Faculty of Medicine Transylvania University Brasov Romania

IMIM Barcelona Spain

Immuno Allergology Unit Hospital Centre of Luxembourg Luxembourg Luxembourg

Institut de Recerca Sant Joan de Déu Barcelona Spain

Institute of Pathophysiology and Allergy Research Center of Pathophysiology Infectiology and Immunology Medical University of Vienna Vienna Austria

ISGlobal Barcelona Institute for Global Health Barcelona Spain

MACVIA France Montpellier France

McMaster Immunology Research Centre Department of Pathology and Molecular Medicine McMaster University Hamilton ON Canada

National Heart and Lung Institute Imperial College London London UK

Pediatric Allergy and Clinical Immunology Department Hospital Sant Joan de Déu Barcelona Spain

Public Health Research Center NOVA University of Lisbon Lisboa Portugal

Section of Pediatrics Department of Clinical and Experimental Medicine University of Pisa Pisa Italy

Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland

Translational Medicine Program Research Institute The Hospital for Sick Children Toronto ON Canada

Universitat Pompeu Fabra Barcelona Spain

ZAUM Center of Allergy and Environment Technical University and Helmholtz Center Munich Munich Germany

See more in PubMed

Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus‐infected pneumonia. N Engl J Med. 2020;382(13):1199‐1207. PubMed PMC

WHO . Coronavirus disease (COVID‐2019) situation reports. 2020; https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. Accessed June 20, 2020.

Tsang TK, Wu P, Lin Y, Lau EHY, Leung GM, Cowling BJ. Effect of changing case definitions for COVID‐19 on the epidemic curve and transmission parameters in mainland China: a modelling study. Lancet Public Health. 2020;5(5):289‐296. PubMed PMC

Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID‐19. JAMA. 2020;323:1406–1407. PubMed PMC

Dong X, Cao YY, Lu XX, et al. Eleven faces of coronavirus disease 2019. Allergy. 2020. Jul;75(7):1699–1709.10.1111/all.14289 PubMed DOI PMC

Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS‐CoV‐2. Nat Med. 2020;26(4):450‐452. PubMed PMC

Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS‐CoV‐2 genomes. Proc Natl Acad Sci USA. 2020;117(17):9241‐9243. PubMed PMC

Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS‐CoV‐2 entry by using human ACE2. Cell. 2020;181(4):894‐904 e899. PubMed PMC

Hoffmann M, Kleine‐Weber H, Schroeder S, et al. SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271‐280 e278. PubMed PMC

Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147, CD26 and other SARS‐CoV‐2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID‐19 risk factors. Allergy. 2020.10.1111/all.14429 PubMed DOI PMC

Sungnak W, Huang N, Becavin C, et al. SARS‐CoV‐2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681‐687. PubMed PMC

Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS‐CoV‐2 receptor ACE2 is an interferon‐stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016‐1035 e1019. PubMed PMC

Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020;526(1):135‐140. PubMed PMC

Zang R, Gomez Castro MF, McCune BT, et al. TMPRSS2 and TMPRSS4 promote SARS‐CoV‐2 infection of human small intestinal enterocytes. Sci Immunol. 2020;5(47):eabc3582. PubMed PMC

Iwasaki A, Yang Y. The potential danger of suboptimal antibody responses in COVID‐19. Nat Rev Immunol. 2020;20:339‐341. PubMed PMC

Whitworth KM, Rowland RRR, Petrovan V, et al. Resistance to coronavirus infection in amino peptidase N‐deficient pigs. Transgenic Res. 2019;28(1):21‐32. PubMed PMC

Holmes RS, Spradling Reeves KD, Cox LA. Mammalian Glutamyl Aminopeptidase Genes (ENPEP) and Proteins: Comparative Studies of a Major Contributor to Arterial Hypertension. Journal of Data Mining in Genomics & Proteomics. 2017;08 (02):2. PubMed PMC

Vankadari N, Wilce JA. Emerging WuHan (COVID‐19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9(1):601‐604. PubMed PMC

Itoyama S, Keicho N, Quy T, et al. ACE1 polymorphism and progression of SARS. Biochem Biophys Res Commun. 2004;323(3):1124‐1129. PubMed PMC

Type I IFN immunoprofiling in COVID‐19 patients. Journal of Allergy and Clinical Immunology. 2020. 10.1016/j.jaci.2020.04.029 PubMed DOI PMC

Chu H, Chan JF, Wang Y, et al. Comparative replication and immune activation profiles of SARS‐CoV‐2 and SARS‐CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID‐19. Clin Infect Dis. 2020. 10.1093/cid/ciaa410 PubMed DOI PMC

DeDiego ML, Nieto‐Torres JL, Jimenez‐Guardeno JM, et al. Coronavirus virulence genes with main focus on SARS‐CoV envelope gene. Virus Res. 2014;194:124‐137. PubMed PMC

Karamloo F, König R. SARS‐CoV‐2 immunogenicity at the crossroads. Allergy. 2020;75:1822–1824. 10.1111/all.14360 PubMed DOI PMC

Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy. 2020;75:1730–1741. 10.1111/all.14238 PubMed DOI

Joob B, Wiwanitkit V. SARS‐CoV‐2 and HIV. Journal of Medical Virology. 2020. 10.1002/jmv.25782 PubMed DOI PMC

Shah B, Modi P, Sagar SR. In silico studies on therapeutic agents for COVID‐19: Drug repurposing approach. Life Sci. 2020;252:117652. PubMed PMC

Lu J, Cui J, Qian Z, et al. On the origin and continuing evolution of SARS‐CoV‐2. Natl Sci Rev. 2020. 10.1093/nsr/nwaa036 PubMed DOI PMC

Su Y, Anderson D, Young B, et al. Discovery of a 382‐nt deletion during the early evolution of SARS‐CoV‐2. bioRxiv. 2020.

Zheng S, Fan J, Yu F, et al. Viral load dynamics and disease severity in patients infected with SARS‐CoV‐2 in Zhejiang province, China, January‐March 2020: retrospective cohort study. BMJ. 2020;369:m1443. PubMed PMC

Yang R, Gui X, Xiong Y. Comparison of clinical characteristics of patients with asymptomatic vs symptomatic coronavirus disease 2019 in Wuhan, China. JAMA Netw Open. 2020;3(5):e2010182. PubMed PMC

Pan Y, Zhang D, Yang P, Poon LLM, Wang Q. Viral load of SARS‐CoV‐2 in clinical samples. Lancet Infect Dis. 2020;20(4):411‐412. PubMed PMC

Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS‐CoV‐2. Gastroenterology. 2020;158(6):1831‐1833. PubMed PMC

Tian Y, Rong L, Nian W, He Y. Review article: gastrointestinal features in COVID‐19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020;51(9):843‐851. PubMed PMC

Woo PC, Lau SK, Wong BH, et al. Longitudinal profile of immunoglobulin G (IgG), IgM, and IgA antibodies against the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in patients with pneumonia due to the SARS coronavirus. Clin Diagn Lab Immunol. 2004;11(4):665‐668. PubMed PMC

Mo H, Zeng G, Ren X, et al. Longitudinal profile of antibodies against SARS‐coronavirus in SARS patients and their clinical significance. Respirology. 2006;11(1):49‐53. PubMed PMC

Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS‐CoV‐2 in patients with COVID‐19. Nat Med. 2020;26:845‐848. 10.1038/s41591-020-0897-1 PubMed DOI

Wang B, Wang L, Kong X, et al. Long‐term coexistence of SARS‐CoV‐2 with antibody response in COVID‐19 patients. J Med Virol. 2020. 10.1002/jmv.25946 PubMed DOI PMC

Yu HQ, Sun BQ, Fang ZF, et al. Distinct features of SARS‐CoV‐2‐specific IgA response in COVID‐19 patients. Eur Respir J. 2020;2001526. 10.1183/13993003.01526-2020 PubMed DOI PMC

Breedveld A, van Egmond M. IgA and FcalphaRI: pathological roles and therapeutic opportunities. Front Immunol. 2019;10:553. PubMed PMC

Jimenez‐Saiz R, Patil SU. The multifaceted B cell response in allergen immunotherapy. Curr Allergy Asthma Rep. 2018;18(12):66. PubMed PMC

Hsueh PR, Huang LM, Chen PJ, Kao CL, Yang PC. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS‐associated coronavirus. Clin Microbiol Infect. 2004;10(12):1062‐1066. PubMed PMC

Yongchen Z, Shen H, Wang X, et al. Different longitudinal patterns of nucleic acid and serology testing results based on disease severity of COVID‐19 patients. Emerg Microbes Infect. 2020;9(1):833‐836. PubMed PMC

Huang AT, Garcia‐Carreras B, Hitchings MDT, et al. A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv. 2020:2020.2004.2014.20065771. PubMed PMC

Grzelak L, Temmam S, Planchais C, et al. SARS‐CoV‐2 serological analysis of COVID‐19 hospitalized patients, pauci‐symptomatic individuals and blood donors. medRxiv. 2020:2020.2004.2021.20068858.

Carsetti R, Quintarelli C, Quinti I, et al. The immune system of children: the key to understanding SARS‐CoV‐2 susceptibility? Lancet Child Adolesc Health. 2020;4(6):414‐416. PubMed PMC

Wen W, Su W, Tang H, et al. Immune cell profiling of COVID‐19 patients in the recovery stage by single‐cell sequencing. Cell Discov. 2020;6:31. PubMed PMC

Randolph HE, Barreiro LB. Herd immunity: understanding COVID‐19. Immunity. 2020;52(5):737‐741. PubMed PMC

Kwok KO, Lai F, Wei WI, Wong SYS, Tang JWT. Herd immunity ‐ estimating the level required to halt the COVID‐19 epidemics in affected countries. J Infect. 2020;80(6):32‐33. PubMed PMC

Vultaggio A, Agache I, Akdis CA, et al. Considerations on biologicals for patients with allergic disease in times of the COVID‐19 pandemic: an EAACI Statement. Allergy. 2020. 10.1111/all.14407 PubMed DOI PMC

Blauvelt A, Simpson EL, Tyring SK, et al. Dupilumab does not affect correlates of vaccine‐induced immunity: a randomized, placebo‐controlled trial in adults with moderate‐to‐severe atopic dermatitis. J Am Acad Dermatol. 2019;80(1):158‐167. PubMed

Halpin DMG, Faner R, Sibila O, Badia JR, Agusti A. Do chronic respiratory diseases or their treatment affect the risk of SARS‐CoV‐2 infection? Lancet Respir Med. 2020;8(5):436‐438. PubMed PMC

Carli G, Cecchi L, Stebbing J, Parronchi P, Farsi A. Is asthma protective against COVID‐19?. Allergy. 2020.10.1111/all.14426 PubMed DOI PMC

Avdeev S, Moiseev S, Brovko M, et al. Low prevalence of bronchial asthma and chronic obstructive lung disease among intensive care unit patients with COVID‐19. Allergy. 2020. 10.1111/all.14420 PubMed DOI PMC

Jackson DJ, Busse WW, Bacharier LB, et al. Association of respiratory allergy, asthma, and expression of the SARS‐CoV‐2 receptor ACE2. J Allergy Clin Immunol. 2020;inpress. 10.1016/j.jaci.2020.04.009 PubMed DOI PMC

Jimenez‐Saiz R, Chu DK, Mandur TS, et al. Lifelong memory responses perpetuate humoral TH2 immunity and anaphylaxis in food allergy. J Allergy Clin Immunol. 2017;140(6):1604‐1615. PubMed PMC

Dhawale VS, Amara VR, Karpe PA, Malek V, Patel D, Tikoo K. Activation of angiotensin‐converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model. Toxicol Appl Pharmacol. 2016;306:17‐26. PubMed

Roisman GL, Danel CJ, Lacronique JG, Alhenc‐Gelas F, Dusser DJ. Decreased expression of angiotensin‐converting enzyme in the airway epithelium of asthmatic subjects is associated with eosinophil inflammation. J Allergy Clin Immunol. 1999;104(2 Pt 1):402‐410. PubMed

Sajuthi SP, DeFord P, Jackson ND, et al. Type 2 and interferon inflammation strongly regulate SARS‐CoV‐2 related gene expression in the airway epithelium. bioRxiv. 2020:2020.2004.2009.034454. PubMed PMC

Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy. 2020; 75:1564‐1581. 10.1111/all.14364 PubMed DOI PMC

Lindsley AW, Schwartz JT, Rothenberg ME. Eosinophil responses during COVID‐19 infections and coronavirus vaccination. J Allergy Clin Immunol. 2020. 10.1016/j.jaci.2020.04.021 PubMed DOI PMC

Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID‐19 Autopsies, Oklahoma, USA. Am J Clin Pathol. 2020;153(6):725‐733. PubMed PMC

Brockow K, Ardern‐Jones MR, Mockenhaupt M, et al. EAACI position paper on how to classify cutaneous manifestations of drug hypersensitivity. Allergy. 2019;74(1):14‐27. PubMed

Jesenak M, Schwarze J. Lung eosinophils‐A novel "virus sink" that is defective in asthma? Allergy. 2019;74(10):1832‐1834. PubMed

Jesenak M, Banovcin P, Diamant Z. COVID‐19, chronic inflammatory respiratory diseases and eosinophils – Observations from reported clinical case series. Allergy. 2020;75:1819‐1822. 10.1111/all.14353 PubMed DOI

Zhang M, Guogang X, Fengming D, Han L, Dongning Y, Hongzhou L. The role of peripheral blood eosinophil counts in COVID‐19. Allergy. 2020. In press. PubMed PMC

Hassani M, Leijte G, Bruse N, et al. Differentiation and activation of eosinophils in the human bone marrow during experimental human endotoxemia. J Leukoc Biol. 2020. 10.1002/jlb.1ab1219-493r PubMed DOI

Du Y, Tu L, Zhu P, et al. Clinical features of 85 fatal cases of COVID‐19 from Wuhan. A retrospective observational study. Am J Respir Crit Care Med. 2020;201(11):1372‐1379. PubMed PMC

Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497‐506. PubMed PMC

Rolot M, Dougall AM, Chetty A, et al. Helminth‐induced IL‐4 expands bystander memory CD8(+) T cells for early control of viral infection. Nat Commun. 2018;9(1):4516. PubMed PMC

Bradbury RS, Piedrafita D, Greenhill A, Mahanty S. Will helminth co‐infection modulate COVID‐19 severity in endemic regions? Nat Rev Immunol. 2020;20(6):342. PubMed PMC

Ulrich H, Pillat MM. CD147 as a target for COVID‐19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev Rep. 2020;16(3):434‐440. PubMed PMC

Herbinger KH, Hanus I, Beissner M, et al. Lymphocytosis and lymphopenia induced by imported infectious diseases: a controlled cross‐sectional study of 17,229 diseased German travelers returning from the tropics and subtropics. Am J Trop Med Hyg. 2016;94(6):1385‐1391. PubMed PMC

Qu R, Ling Y, Zhang YH, et al. Platelet‐to‐lymphocyte ratio is associated with prognosis in patients with coronavirus disease‐19. J Med Virol. 2020. 10.1002/jmv.25767 PubMed DOI PMC

Mazzoni A, Salvati L, Maggi L, et al. Impaired immune cell cytotoxicity in severe COVID‐19 is IL‐6 dependent. J Clin Invest. 2020. 10.1172/jci138554 PubMed DOI PMC

Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell responses to SARS‐CoV‐2 coronavirus in humans with COVID‐19 disease and unexposed individuals. Cell. 2020. 10.1016/j.cell.2020.05.015 PubMed DOI PMC

Ng OW, Chia A, Tan AT, et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post‐infection. Vaccine. 2016;34(17):2008‐2014. PubMed PMC

Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID‐19). Front Immunol. 2020;11:827. PubMed PMC

Ma Y, Jiang J, Gao Y, et al. Research progress of the relationship between pyroptosis and disease. Am J Transl Res. 2018;10(7):2213‐2219. PubMed PMC

Tan L, Wang Q, Zhang D, et al. Lymphopenia predicts disease severity of COVID‐19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5(1):33. PubMed PMC

Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012;76(1):16‐32. PubMed PMC

Behrens EM, Koretzky GA. Review: cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheumatol. 2017;69(6):1135‐1143. PubMed

Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID‐19. J Infect. 2020;80(6):607‐613. PubMed PMC

Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID‐19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1‐9. PubMed

Yang Y, Shen C, Li J, et al. Exuberant elevation of IP‐10, MCP‐3 and IL‐1ra during SARS‐CoV‐2 infection is associated with disease severity and fatal outcome. medRxiv. 2020:2020.2003.2002.20029975.

Ritchie AI, Singanayagam A. Immunosuppression for hyperinflammation in COVID‐19: a double‐edged sword? Lancet. 2020;395(10230):1111. PubMed PMC

Poston JT, Patel BK, Davis AM. Management of Critically Ill Adults With COVID‐19. JAMA. 2020. 10.1001/jama.2020.4914 PubMed DOI

Matthay MA, Aldrich JM, Gotts JE. Treatment for severe acute respiratory distress syndrome from COVID‐19. Lancet Respir Med. 2020;8(5):433‐434. PubMed PMC

Brough HA, Kalayci O, Sediva A, et al. Managing childhood allergies and immunodeficiencies during respiratory virus epidemics ‐ The 2020 COVID‐19 pandemic: a statement from the EAACI‐section on pediatrics. Pediatr Allergy Immunol. 2020. 10.1111/pai.13262 PubMed DOI PMC

Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID‐19 in Wuhan, China. Clin Infect Dis. 2020. 10.1093/cid/ciaa248 PubMed DOI PMC

Michalovich D, Rodriguez‐Perez N, Smolinska S, et al. Obesity and disease severity magnify disturbed microbiome‐immune interactions in asthma patients. Nat Commun. 2019;10(1):5711. PubMed PMC

Wu Q, Zhou L, Sun X, et al. Altered lipid metabolism in recovered SARS patients twelve years after infection. Sci Rep. 2017;7(1):9110. PubMed PMC

Huppert LA, Matthay MA, Ware LB. Pathogenesis of acute respiratory distress syndrome. Semin Respir Crit Care Med. 2019;40(1):31‐39. PubMed PMC

Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID‐19. N Engl J Med. 2020. 10.1056/nejmoa2015432 PubMed DOI PMC

Sokolowska M, Lukasik Z, Agache I, et al. Immunology of COVID‐ 19: mechanisms, clinical outcome, diagnostics and perspectives – a report of the 1 European Academy of Allergy and Clinical Immunology (EAACI). Allergy. 2020;75:2445‐2476. 10.1111/all.14462 PubMed DOI PMC

Gattinoni L, Chiumello D, Rossi S. COVID‐19 pneumonia: ARDS or not? Crit Care. 2020;24(1):154. PubMed PMC

Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA. 2018;319(7):698‐710. PubMed

O'Neill LAJ, Netea MG. BCG‐induced trained immunity: can it offer protection against COVID‐19? Nat Rev Immunol. 2020;20(6):335‐337. PubMed PMC

Ozdemir C, Kucuksezer UC, Tamay ZU. Is BCG vaccination affecting the spread and severity of COVID‐19?. Allergy. 2020;75:1824‐1827. 10.1111/all.14344 PubMed DOI

Gursel M, Gursel I. Is global BCG vaccination‐induced trained immunity relevant to the progression of SARS‐CoV‐2 pandemic?. Allergy. 2020;75:1815‐1819. 10.1111/all.14345 PubMed DOI PMC

Hamiel U, Kozer E, Youngster I. SARS‐CoV‐2 Rates in BCG‐Vaccinated and Unvaccinated Young Adults. JAMA. 2020;323 (22):2340. 10.1001/jama.2020.8189 PubMed DOI PMC

Curtis N, Sparrow A, Ghebreyesus TA, Netea MG. Considering BCG vaccination to reduce the impact of COVID‐19. Lancet. 2020;395(10236):1545‐1546. PubMed PMC

Bacille WHO.Calmette‐Guerin (BCG) vaccination and COVID‐19. 2020. https://www.who.int/news-room/commentaries/detail/bacille-calmette-gu%C3%A9rin-(bcg)-vaccination-and-covid-19. Accessed April 29, 2020

Riphagen S, Gomez X, Gonzalez‐Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID‐19 pandemic. Lancet. 2020;395(10237):1607‐1608. PubMed PMC

Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki‐like disease at the Italian epicentre of the SARS‐CoV‐2 epidemic: an observational cohort study. Lancet. 2020;395:1771–1778. PubMed PMC

Viner RM, Whittaker E. Kawasaki‐like disease: emerging complication during the COVID‐19 pandemic. Lancet. 2020;395:1741‐1743. PubMed PMC

Terpos E, Ntanasis‐Stathopoulos I, Elalamy I, et al. Hematological findings and complications of COVID‐19. Am J Hematol. 2020;95(7):834–847. PubMed PMC

Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708‐1720. PubMed PMC

Lechner M, Chandrasekharan D, Jumani K, et al. Anosmia as a presenting symptom of SARS‐CoV‐2 infection in healthcare workers – a systematic review of the literature, case series, and recommendations for clinical assessment and management. Rhinology. 2020. 10.4193/rhin20.189 PubMed DOI

Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID‐19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054‐1062. PubMed PMC

Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS‐CoV‐2. JAMA. 2020;323 (22):2249. PubMed

Nalla AK, Casto AM, Huang MW, et al. Comparative performance of SARS‐CoV‐2 detection assays using seven different primer‐probe sets and one assay kit. J Clin Microbiol. 2020;58(6):JCM.00557‐00520. PubMed PMC

Wang W, Xu Y, Gao R, et al. Detection of SARS‐CoV‐2 in different types of clinical specimens. JAMA. 2020;323(18):1843–1844. PubMed PMC

WHO . Laboratory testing for 2019 novel coronavirus (2019‐nCoV) in suspected human cases. 2020; https://www.who.int/publications-detail/laboratory-testing-for-2019-novel-coronavirus-in-suspected-human-cases-20200117. Accessed May 24, 2020

Ozcurumez MK, Ambrosch A, Frey O, et al. SARS‐CoV‐2 antibody testing ‐ questions to be asked. J Allergy Clin Immunol. 2020. 10.1016/j.jaci.2020.05.020 PubMed DOI PMC

Padoan A, Sciacovelli L, Basso D, et al. IgA‐Ab response to spike glycoprotein of SARS‐CoV‐2 in patients with COVID‐19: a longitudinal study. Clin Chim Acta. 2020;507:164‐166. PubMed PMC

Udugama B, Kadhiresan P, Kozlowski HN, et al. Diagnosing COVID‐19: the disease and tools for detection. ACS Nano. 2020;14(4):3822‐3835. PubMed

WHO . Advice on the use of point‐of‐care immunodiagnostic tests for COVID‐19. 2020; https://www.who.int/news-room/commentaries/detail/advice-on-the-use-of-point-of-care-immunodiagnostic-tests-for-covid-19. Accessed May 24, 2020

Pan Y, Li X, Yang G, et al. Serological immunochromatographic approach in diagnosis with SARS‐CoV‐2 infected COVID‐19 patients. J Infect. 2020.81(1):28–32. PubMed PMC

Lu X, Wang L, Sakthivel SK, et al. US CDC real‐time reverse transcription PCR Panel for detection of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020;26(8). 10.3201/eid2608.201246 PubMed DOI PMC

Zhang JJ, Cao YY, Dong X, et al. Distinct characteristics of COVID‐19 patients with initial rRT‐PCR‐positive and rRT‐PCR‐negative results for SARS‐CoV‐2. Allergy. 2020;75:1809–1812. 10.1111/all.14316 PubMed DOI PMC

Control ECfDPa . Guidance for discharge and ending isolation in the context of widespread community transmission of COVID‐19. 2020; https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-guidance-discharge-and-ending-isolation-first%20update.pdf. Accessed May 21, 2020

Malipiero G, Paoletti G, Puggioni F, et al. An academic allergy unit during COVID‐19 pandemic in Italy. J Allergy Clin Immunol. 2020. 10.1111/all.14316 PubMed DOI PMC

Pfaar OKL, Jutel M, Akdis CA, et al. COVID‐19 pandemic: practical considerations on the organization of an allergy clinic – an EAACI/ARIA Position Paper. Allergy. 2020; In press. 10.1111/all.14453 PubMed DOI PMC

Portnoy J, Waller M, Elliott T. Telemedicine in the Era of COVID‐19. J Allergy Clin Immunol Pract. 2020;8(5):1489‐1491. PubMed PMC

Kiecolt‐Glaser JK, Heffner KL, Glaser R, et al. How stress and anxiety can alter immediate and late phase skin test responses in allergic rhinitis. Psychoneuroendocrinology. 2009;34(5):670‐680. PubMed PMC

WHO . Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected. 2020; https://www.who.int/publications-detail/infection-prevention-and-control-during-health-care-when-novel-coronavirus-(ncov)-infection-is-suspected-20200125. Accessed May 24, 2020

Zhang Y, Zhang L. Management practice of allergic rhinitis in China during the COVID‐19 pandemic. Allergy Asthma Immunol Res. 2020;12(4):738‐742. PubMed PMC

CDC . Interim guidelines for biosafety and COVID‐19. 2020; cdc.gov/coronavirus/2019-ncov/lab/lab-biosafety-guidelines.html. Accessed May 24, 2020

Du H, Dong X, Jj Z, et al. Clinical characteristics of 182 pediatric COVID‐19 patients with different severities and allergic status. Allergy. 2020. 10.1111/all.14452 PubMed DOI PMC

OSHA . COVID‐19 ‐ control and prevention. 2020; https://www.osha.gov/SLTC/covid-19/controlprevention.html. Accessed May 24, 2020

Bousquet J, Akdis CA, Jutel M, et al. Intranasal corticosteroids in allergic rhinitis in COVID‐19 infected patients: an ARIA‐EAACI statement. Allergy. 2020;75:2511‐2515. 10.1111/all.14302 PubMed DOI

Leonardi A, Fauquert JL, Doan S, et al. Managing ocular allergy in the time of COVID‐19. Allergy. 2020;75:2399‐2402. 10.1111/all.14361 PubMed DOI PMC

Klimek L, Jutel M, Akdis CA, et al. Handling of allergen immunotherapy in the COVID‐19 pandemic: an ARIA‐EAACI statement. Allergy. 2020;75:1546‐1554. 10.1111/all.14336 PubMed DOI PMC

Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58(Suppl S29):1‐464. PubMed

Pellegrino R, Cooper KW, Di Pizio A, Joseph PV, Bhutani S, Parma V. Corona viruses and the chemical senses: past, present, and future. Chem Senses. 2020. 10.1093/chemse/bjaa031 PubMed DOI PMC

Bilinska K, Jakubowska P, Von Bartheld CS, Butowt R. Expression of the SARS‐CoV‐2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci. 2020;11(11):1555‐1562. PubMed PMC

Hopkins C, Surda P, Whitehead E, Kumar BN. Early recovery following new onset anosmia during the COVID‐19 pandemic – an observational cohort study. J Otolaryngol Head Neck Surg. 2020;49(1):26. PubMed PMC

Van Gerven L, Hellings PW, Cox T, Fokkens WJ, Hopkins C. Personal protection and delivery of rhinologic and endoscopic skull base procedures during the COVID‐19 outbreak: ERS endorsed advises. Rhinology. 2020;58(3):289‐294. PubMed

WHO . Rational use of personal protective equipment for coronavirus disease 2019 (COVID‐19). 2020; https://apps.who.int/iris/bitstream/handle/10665/331215/WHO-2019-nCov-IPCPPE_use-2020.1-eng.pdf. Accessed May 24, 2020

WHO . Clinical management of severe acute respiratory infection when COVID‐19 is suspected. 2020; https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected. Accessed May 24, 2020

Simon F, Haggard M, Rosenfeld RM, et al. International consensus (ICON) on management of otitis media with effusion in children. Eur Ann Otorhinolaryngol Head Neck Dis. 2018;135(1S):S33‐S39. PubMed

Rosenfeld RM, Schwartz SR, Pynnonen MA, et al. Clinical practice guideline: Tympanostomy tubes in children. Otolaryngol Head Neck Surg. 2013;149(1 Suppl):S1‐35. PubMed

Society BT . Advice for Healthcare Professionals Treating People with Asthma (adults) in relation to COVID‐19. 2020; https://www.brit-thoracic.org.uk/document-library/quality-improvement/covid-19/bts-advice-for-healthcare-professionals-treating-patients-with-asthma/. Accessed May 21, 2020

Peters MC, Sajuthi S, Deford P, et al. COVID‐19 related genes in sputum cells in asthma: relationship to demographic features and corticosteroids. Am J Respir Crit Care Med. 2020. 10.1164/rccm.202003-0821oc PubMed DOI PMC

Johnston SL. Asthma and COVID‐19: is asthma a risk factor for severe outcomes?. Allergy. 2020;75:1543–1545. 10.1111/all.14348 PubMed DOI PMC

Licari A, Votto M, Brambilla I, et al. Allergy and asthma in children and adolescents during the COVID outbreak: what we know and how we could prevent allergy and asthma flares. Allergy. 2020;75:2402–2405. 10.1111/all.14369 PubMed DOI PMC

Asthma GIf . COVID‐19: GINA answers to frequently asked questions on asthma management. 2020; https://ginasthma.org/covid-19-gina-answers-to-frequently-asked-questions-on-asthma-management/. Accessed May 21, 2020

Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104(3):246‐251. PubMed PMC

Llewellin P, Sawyer G, Lewis S, et al. The relationship between FEV1 and PEF in the assessment of the severity of airways obstruction. Respirology. 2002;7(4):333‐337. PubMed

Goyal M, Goel A, Bhattacharya S, Verma N, Tiwari S. Circadian variability in airways characteristics: a spirometric study. Chronobiol Int. 2019;36(11):1550‐1557. PubMed

Matricardi PM, Dramburg S, Alvarez‐Perea A, et al. The role of mobile health technologies in allergy care: An EAACI position paper. Allergy. 2020;75(2):259‐272. PubMed

Morais‐Almeida M, Aguiar R, Martin B, et al. COVID‐19, asthma, and biologic therapies: What we need to know. World Allergy Organ J. 2020:13(5):100126. PubMed PMC

Chiappetta S, Sharma AM, Bottino V, Stier C. COVID‐19 and the role of chronic inflammation in patients with obesity. Int J Obes (Lond). 2020. 10.1038/s41366-020-0597-4 PubMed DOI PMC

Kruglikov IL, Scherer PE. The role of adipocytes and adipocyte‐like cells in the severity of COVID‐19 infections. Obesity (Silver Spring). 2020. 10.1002/oby.22856 PubMed DOI PMC

Kim HY, Lee HJ, Chang YJ, et al. Interleukin‐17‐producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity‐associated airway hyperreactivity. Nat Med. 2014;20(1):54‐61. PubMed PMC

Grace J, Mohan A, Lugogo NL. Obesity and adult asthma: diagnostic and management challenges. Curr Opin Pulm Med. 2019;25(1):44‐50. PubMed

Estebanez A, Perez‐Santiago L, Silva E, Guillen‐Climent S, Garcia‐Vazquez A, Ramon MD. Cutaneous manifestations in COVID‐19: a new contribution. J Eur Acad Dermatol Venereol. 2020;34(6):250. PubMed PMC

Recalcati S. Cutaneous manifestations in COVID‐19: a first perspective. J Eur Acad Dermatol Venereol. 2020;34(5):212‐213. PubMed

Suchonwanit P, Leerunyakul K, Kositkuljorn C. Cutaneous manifestations in COVID‐19: lessons learned from current evidence. J Am Acad Dermatol. 2020;83(1):57–60. PubMed PMC

Gelincik A, Brockow K, Çelik GE, et al. Diagnosis and management of the drug hypersensitivity reactions in Coronavirus disease 19. Allergy. 2020. 10.1111/all.14439 PubMed DOI PMC

Wollenberg A, Flohr C, Simon D, et al. European Task Force on Atopic Dermatitis (ETFAD) statement on severe acute respiratory syndrome coronavirus 2 (SARS‐Cov‐2)‐infection and atopic dermatitis. J Eur Acad Dermatol Venereol. 2020;34(6):241 PubMed

Meding B, Gronhagen CM, Bergstrom A, Kull I, Wrangsjo K, Liden C. Water exposure on the hands in adolescents: a report from the BAMSE Cohort. Acta Derm Venereol. 2017;97(2):188‐192. PubMed

Prescott SL, Larcombe DL, Logan AC, et al. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J. 2017;10(1):29. PubMed PMC

Yan Y, Chen H, Chen L, et al. Consensus of Chinese experts on protection of skin and mucous membrane barrier for health‐care workers fighting against coronavirus disease. Dermatol Ther. 2019;2020:e13310. PubMed PMC

Carugno A, Raponi F, Locatelli AG, et al. No evidence of increased risk for COVID‐19 infection in patients treated with Dupilumab for atopic dermatitis in a high‐epidemic area ‐ Bergamo, Lombardy, Italy. J Eur Acad Dermatol Venereol. 2020. 10.1111/jdv.16552 PubMed DOI PMC

Simpson EL, Paller AS, Siegfried EC, et al. Efficacy and safety of dupilumab in adolescents with uncontrolled moderate to severe atopic dermatitis: a phase 3 randomized clinical trial. JAMA Dermatol. 2019;156(1):44. PubMed PMC

Schneeweiss MC, Perez‐Chada L, Merola JF. Comparative safety of systemic immuno‐modulatory medications in adults with atopic dermatitis. J Am Acad Dermatol. 2019. 10.1016/j.jaad.2019.05.073 PubMed DOI

Blauvelt A, de Bruin‐Weller M, Gooderham M, et al. Long‐term management of moderate‐to‐severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1‐year, randomised, double‐blinded, placebo‐controlled, phase 3 trial. Lancet. 2017;389(10086):2287‐2303. PubMed

Zhang Y, Cao W, Xiao M, et al. Clinical and coagulation characteristics of 7 patients with critical COVID‐2019 pneumonia and acro‐ischemia. Zhonghua Xue Ye Xue Za Zhi. 2020;41:E006. PubMed

Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID‐19): a review. JAMA. 2020;323(18):1824–1836. PubMed

Xu X, Ong YK, Wang Y. Role of adjunctive treatment strategies in COVID‐19 and a review of international and national clinical guidelines. Mil Med Res. 2020;7(1):22. PubMed PMC

Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID‐19. J Thromb Haemost. 2020;18(5):1023‐1026. PubMed PMC

Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006;3(9):e343. PubMed PMC

Yam LY, Lau AC, Lai FY, et al. Corticosteroid treatment of severe acute respiratory syndrome in Hong Kong. J Infect. 2007;54(1):28‐39. PubMed PMC

Shang L, Zhao J, Hu Y, Du R, Cao B. On the use of corticosteroids for 2019‐nCoV pneumonia. Lancet. 2020;395(10225):683‐684. PubMed PMC

NIH . Coronavirus disease 2019 (COVID‐19) treatment guidelines. 2020; https://www.covid19treatmentguidelines.nih.gov/. Accessed May 24, 2020

Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID‐19: A single center experience. J Med Virol. 2020;92:814‐818. PubMed PMC

Alberici F, Delbarba E, Manenti C, et al. A single center observational study of the clinical characteristics and short‐term outcome of 20 kidney transplant patients admitted for SARS‐CoV2 pneumonia. Kidney Int. 2020;97(6):1083–1088. PubMed PMC

Capra R, De Rossi N, Mattioli F, et al. Impact of low dose tocilizumab on mortality rate in patients with COVID‐19 related pneumonia. Eur J Intern Med. 2020;7631–7635. PubMed PMC

Colaneri M, Bogliolo L, Valsecchi P, et al. Tocilizumab for treatment of severe COVID‐19 patients: preliminary results from SMAtteo COvid19 REgistry (SMACORE). Microorganisms. 2020;8(5):695. PubMed PMC

Di Giambenedetto S, Ciccullo A, Borghetti A, et al. Off‐label use of tocilizumab in patients with SARS‐CoV‐2 infection. J Med Virol. 2020. 10.1002/jmv.25897 PubMed DOI PMC

Jacobs JP, Stammers AH, St Louis J, et al. Extracorporeal membrane oxygenation in the treatment of severe pulmonary and cardiac compromise in COVID‐19: experience with 32 patients. ASAIO J. 2020. 10.1097/mat.0000000000001185 PubMed DOI PMC

Klopfenstein T, Zayet S, Lohse A, et al. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID‐19 patients. Med Mal Infect. 2020. 10.1016/j.medmal.2020.05.001 PubMed DOI PMC

Mazzitelli M, Arrighi E, Serapide F, et al. Use of subcutaneous tocilizumab in patients with COVID‐19 pneumonia. J Med Virol. 2020. 10.1002/jmv.26016 PubMed DOI PMC

Pereira MR, Mohan S, Cohen DJ, et al. COVID‐19 in solid organ transplant recipients: Initial report from the US epicenter. Am J Transplant. 2020. 10.1111/ajt.15941 PubMed DOI PMC

Piva S, Filippini M, Turla F, et al. Clinical presentation and initial management critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection in Brescia, Italy. J Crit Care. 2020;58:29‐33. PubMed PMC

Sciascia S, Apra F, Baffa A, et al. Pilot prospective open, single‐arm multicentre study on off‐label use of tocilizumab in patients with severe COVID‐19. Clin Exp Rheumatol. 2020;38(3):529–532. PubMed

Toniati P, Piva S, Cattalini M, et al. Tocilizumab for the treatment of severe COVID‐19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: a single center study of 100 patients in Brescia, Italy. Autoimmun Rev. 2020;19(7):102568. PubMed PMC

Xu X, Han M, Li T, et al. Effective treatment of severe COVID‐19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117(20):10970‐10975. PubMed PMC

Xie M, Chen Q. Insight into 2019 novel coronavirus – an updated interim review and lessons from SARS‐CoV and MERS‐CoV. Int J Infect Dis. 2020;94:119‐124. PubMed PMC

Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID‐19 infection? Lancet Respir Med. 2020;8(4):e21. PubMed PMC

Agency EM . EMA gives advice on the use of non‐steroidal anti‐inflammatories for COVID‐19. 2020; https://www.ema.europa.eu/en/news/ema-gives-advice-use-non-steroidal-anti-inflammatories-covid-19. Accessed May 20, 2020

Bonini S, Maltese G. COVID‐19 Clinical trials: quality matters more than quantity. Allergy. 2020;75:2542–2547. 10.1111/all.14409 PubMed DOI PMC

Zhou M, Zhang X, Qu J. Coronavirus disease 2019 (COVID‐19): a clinical update. Front Med. 2020;14(2):126‐135. PubMed PMC

Funck‐Brentano C, Salem JE. Chloroquine or hydroxychloroquine for COVID‐19: why might they be hazardous?. The Lancet. 2020. 10.1016/s0140-6736(20)31174-0 PubMed DOI PMC

McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candidate drugs against SARS‐CoV‐2 and COVID‐19. Pharmacol Res. 2020;157:104859. PubMed PMC

Bian H, Zheng Z‐H, Wei D, et al. Meplazumab treats COVID‐19 pneumonia: an open‐labelled, concurrent controlled add‐on clinical trial. medRxiv. 2020:2020.2003.2021.20040691.

Monteil V, Kwon H, Prado P, et al. Inhibition of SARS‐CoV‐2 infections in engineered human tissues using clinical‐grade soluble human ACE2. Cell. 2020;181(4):905‐913. PubMed PMC

Ford N, Vitoria M, Rangaraj A, Norris SL, Calmy A, Doherty M. Systematic review of the efficacy and safety of antiretroviral drugs against SARS, MERS or COVID‐19: initial assessment. J Int AIDS Soc. 2020;23(4):e25489. PubMed PMC

Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe COVID‐19. N Engl J Med. 2020;382(24):2327–2336. PubMed PMC

Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of COVID‐19 – preliminary report. N Engl J Med. 2020. 10.1056/nejmoa2007764 PubMed DOI

Blanco JL, Ambrosioni J, Garcia F, et al. COVID‐19 in patients with HIV: clinical case series. Lancet HIV. 2020;7(5):e314‐e316. PubMed PMC

Cao B, Wang Y, Wen D, et al. A trial of lopinavir‐ritonavir in adults hospitalized with severe COVID‐19. N Engl J Med. 2020;382(19):1787‐1799. PubMed PMC

Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID‐19 patients. Proc Natl Acad Sci USA. 2020;117(17):9490‐9496. PubMed PMC

Stebbing J, Phelan A, Griffin I, et al. COVID‐19: combining antiviral and anti‐inflammatory treatments. Lancet Infect Dis. 2020;20(4):400‐402. PubMed PMC

Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID‐19: A pilot study on safety and clinical impact. J Infect. 2020. 10.1016/j.jinf.2020.04.017 PubMed DOI PMC

Harigai M. Growing evidence of the safety of JAK inhibitors in patients with rheumatoid arthritis. Rheumatology (Oxford). 2019;58(Suppl 1):i34‐i42. PubMed PMC

Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA‐approved drug ivermectin inhibits the replication of SARS‐CoV‐2 in vitro. Antiviral Res. 2020;178:104787. PubMed PMC

Schmith VD, Zhou JJ, Lohmer LR. The approved dose of ivermectin alone is not the ideal dose for the treatment of COVID‐19. Clin Pharmacol Ther. 2020. 10.1002/cpt.1889 PubMed DOI PMC

Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with COVID‐19. N Engl J Med. 2020;382(25):2411–2418. PubMed PMC

Borba MGS, Val FFA, Sampaio VS, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection: a randomized clinical trial. JAMA Netw Open. 2020;3(4):e208857. PubMed

Magagnoli J, Narendran S, Pereira F, et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid‐19. medRxiv. 2020:2020.2004.2016.20065920. PubMed PMC

Boulware DR, Pullen MF, Bangdiwala AS, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for COVID‐19. N Engl J Med. 2020. 10.1056/nejmoa2016638 PubMed DOI PMC

Blanco‐Melo D, Nilsson‐Payant BE, Liu WC, et al. Imbalanced host response to SARS‐CoV‐2 drives development of COVID‐19. Cell. 2020;181(5):1036‐1045. PubMed PMC

Khoury M, Cuenca J, Cruz FF, Figueroa FE, Rocco PRM, Weiss DJ. Current status of cell‐based therapies for respiratory virus infections: applicability to COVID‐19. Eur Respir J. 2020;55(6):2000858. PubMed PMC

Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin‐converting enzyme 2 (ACE2) as a SARS‐CoV‐2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586‐590. PubMed PMC

WHO . COVID‐19 and the use of angiotensin‐converting enzyme inhibitors and receptor blockers. 2020; https://www.who.int/news-room/commentaries/detail/covid-19-and-the-use-of-angiotensin-converting-enzyme-inhibitors-and-receptor-blockers. Accessed May 27, 2020

Bao L, Deng W, Gao H, et al. Lack of reinfection in rhesus macaques infected with SARS‐CoV‐2. bioRxiv. 2020:2020.2003.2013.990226.

Williamson BN, Feldmann F, Schwarz B, et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS‐CoV‐2. bioRxiv. 2020:2020.2004.2015.043166. PubMed PMC

Soldatov VO, Kubekina MV, Silaeva YY, Bruter AV, Deykin AV. On the way from SARS‐CoV‐sensitive mice to murine COVID‐19 model. Res Results Pharmacol. 2020;6(2):1‐7.

Le Thanh T, Andreadakis Z, Kumar A, et al. The COVID‐19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305‐306. PubMed

WHO . DRAFT landscape of COVID‐19 candidate vaccines. 2020; https://www.who.int/docs/default-source/coronaviruse/novel-coronavirus-landscape-covid-19fbda851295d245e48d8d0a78b35af7ff.pdf?sfvrsn=1720b348_1&download=true. Accessed May 25, 2020

Barnes CO, West AP, Huey‐Tubman KE, et al. Structures of human antibodies bound to SARS‐CoV‐2 spike reveal common epitopes and recurrent features of antibodies. bioRxiv. 2020:2020.2005.2028.121533. PubMed PMC

Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS‐CoV‐2 infection. Nature. 2020. 10.1038/s41586-020-2380-z PubMed DOI

Shi R, Shan C, Duan X, et al. A human neutralizing antibody targets the receptor binding site of SARS‐CoV‐2. Nature. 2020. 10.1038/s41586-020-2381-y PubMed DOI

Wrapp D, De Vlieger D, Corbett KS, et al. Structural basis for potent neutralization of betacoronaviruses by single‐domain camelid antibodies. Cell. 2020;181(5):1004‐1015. PubMed PMC

Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking SARS‐CoV‐2 infection. Nat Commun. 2020;11(1):2251. PubMed PMC

Larios Mora A, Detalle L, Gallup JM, et al. Delivery of ALX‐0171 by inhalation greatly reduces respiratory syncytial virus disease in newborn lambs. MAbs. 2018;10(5):778‐795. PubMed PMC

Grgic H, Hunter DB, Hunton P, Nagy E. Vaccine efficacy against Ontario isolates of infectious bronchitis virus. Can J Vet Res. 2009;73(3):212‐216. PubMed PMC

Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type‐5 vectored COVID‐19 vaccine: a dose‐escalation, open‐label, non‐randomised, first‐in‐human trial. Lancet. 2020;395(10240):1845–1854. PubMed PMC

Arons MM, Hatfield KM, Reddy SC, et al. Presymptomatic SARS‐CoV‐2 infections and transmission in a skilled nursing facility. N Engl J Med. 2020;382(22):2081‐2090. PubMed PMC

Gandhi M, Yokoe DS, Havlir DV. Asymptomatic transmission, the Achilles' Heel of current strategies to control COVID‐19. N Engl J Med. 2020;382(22):2158‐2160. PubMed PMC

Hains DS, Schwaderer AL, Carroll AE, et al. Asymptomatic seroconversion of immunoglobulins to SARS‐CoV‐2 in a pediatric dialysis Unit. JAMA. 2020;323(23):2424–2425. PubMed PMC

McAnulty JM, Ward K. Suppressing the epidemic in New South Wales. N Engl J Med. 2020;382(21):e74. PubMed PMC

Fauci AS, Lane HC, Redfield RR. Covid‐19 ‐ navigating the uncharted. N Engl J Med. 2020;382(13):1268‐1269. PubMed PMC

Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID‐19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020;26(6):729‐734. PubMed PMC

Lu X, Zhang L, Du H, et al. SARS‐CoV‐2 infection in children. N Engl J Med. 2020;382(17):1663‐1665. PubMed PMC

Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID‐19 among children in China. Pediatrics. 2020;145(6):e20200702. PubMed

Parri N, Lenge M,Buonsenso D, Coronavirus Infection in Pediatric Emergency Departments Research G . Children with Covid‐19 in pediatric emergency departments in Italy. N Engl J Med. 2020. 10.1056/nejmc2007617 PubMed DOI PMC

Castagnoli R, Votto M, Licari A, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS‐CoV‐2) infection in children and adolescents. JAMA Pediatr. 2020. 10.1001/jamapediatrics.2020.1467 PubMed DOI

Garazzino S, Montagnani C, Dona D, et al. Multicentre Italian study of SARS‐CoV‐2 infection in children and adolescents, preliminary data as at 10 April 2020. Euro Surveill. 2020;25(18):2000600. PubMed PMC

Nickbakhsh S, Mair C, Matthews L, et al. Virus‐virus interactions impact the population dynamics of influenza and the common cold. Proc Natl Acad Sci USA. 2019;116:27142‐27150. PubMed PMC

Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631‐637. PubMed PMC

Bunyavanich S, Do A, Vicencio A. Nasal gene expression of angiotensin‐converting enzyme 2 in children and adults. JAMA. 2020;323(23):2427–2429. PubMed PMC

Johnston NW, Johnston SL, Norman GR, Dai J, Sears MR. The September epidemic of asthma hospitalization: school children as disease vectors. J Allergy Clin Immunol. 2006;117(3):557‐562. PubMed

Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS‐coronavirus 2. Science. 2020;368(6494):1016‐1020. PubMed PMC

Livingston E, Bucher K. Coronavirus disease 2019 (COVID‐19) in Italy. JAMA. 2020. 10.1001/jama.2020.4344 PubMed DOI

Targher G, Mantovani A, Wang XB, et al. Patients with diabetes are at higher risk for severe illness from COVID‐19. Diabetes Metab. 2020. 10.1016/j.diabet.2020.05.001 PubMed DOI PMC

Pareek M, Bangash MN, Pareek N, et al. Ethnicity and COVID‐19: an urgent public health research priority. Lancet. 2020;395(10234):1421‐1422. PubMed PMC

Khunti K, Singh AK, Pareek M, Hanif W. Is ethnicity linked to incidence or outcomes of covid‐19? BMJ. 2020;369:m1548. PubMed

Millett GA, Jones AT, Benkeser D, et al. Assessing differential impacts of COVID‐19 on black communities. Ann Epidemiol. 2020. 10.1016/j.annepidem.2020.05.003 PubMed DOI PMC

Forbes RL, Gibson PG, Murphy VE, Wark PA. Impaired type I and III interferon response to rhinovirus infection during pregnancy and asthma. Thorax. 2012;67(3):209‐214. PubMed

Qiancheng X, Jian S, Lingling P, et al. Coronavirus disease 2019 in pregnancy. Int J Infect Dis. 2020;95:376‐383. PubMed PMC

Whitehead CL, Walker SP. Consider pregnancy in COVID‐19 therapeutic drug and vaccine trials. Lancet. 2020;395(10237):e92. PubMed PMC

Gielen V, Johnston SL, Edwards MR. Azithromycin induces anti‐viral responses in bronchial epithelial cells. Eur Respir J. 2010;36(3):646‐654. PubMed

Chico RM, Chandramohan D. Azithromycin plus chloroquine: combination therapy for protection against malaria and sexually transmitted infections in pregnancy. Expert Opin Drug Metab Toxicol. 2011;7(9):1153‐1167. PubMed PMC

Bacharier LB, Guilbert TW, Mauger DT, et al. Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses: a randomized clinical trial. JAMA. 2015;314(19):2034‐2044. PubMed PMC

Gibson PG, Yang IA, Upham JW, et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): a randomised, double‐blind, placebo‐controlled trial. Lancet. 2017;390(10095):659‐668. PubMed

Gibson WT, Evans DM, An J, Jones SJM. ACE 2 coding variants: A potential X‐linked risk factor for COVID‐19 disease. bioRxiv. 2020:2020.2004.2005.026633.

Berghofer B, Frommer T, Haley G, Fink L, Bein G, Hackstein H. TLR7 ligands induce higher IFN‐alpha production in females. J Immunol. 2006;177(4):2088‐2096. PubMed

Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS‐CoV‐2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1547–1581. PubMed PMC

Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID‐19 inpatients in Wuhan. J Allergy Clin Immunol. 2020. 10.1016/j.jaci.2020.04.006 PubMed DOI PMC

Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARS‐CoV‐2 in the Icelandic population. N Engl J Med. 2020. PubMed PMC

CDC . Weekly updates by select demographic and geographic characteristics. 2020; https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.htm#AgeAndSex. Accessed May 27, 2020

Xie J, Tong Z, Guan X, Du B, Qiu H. Clinical characteristics of patients who died of coronavirus disease 2019 in China. JAMA Netw Open. 2020;3(4):e205619. PubMed PMC

McMichael TM, Currie DW, Clark S, et al. Epidemiology of Covid‐19 in a long‐term care facility in King County, Washington. N Engl J Med. 2020;382(21):2005‐2011. PubMed PMC

Fauver JR, Petrone ME, Hodcroft EB, et al. Coast‐to‐coast spread of SARS‐CoV‐2 during the early epidemic in the United States. Cell. 2020;181(5):990‐996 e995. PubMed PMC

Linka K, Peirlinck M, Sahli Costabal F, Kuhl E. Outbreak dynamics of COVID‐19 in Europe and the effect of travel restrictions. Comput Methods Biomech Biomed Eng. 2020. 10.1080/10255842.2020.1759560 PubMed DOI PMC

Shaman J, Goldstein E, Lipsitch M. Absolute humidity and pandemic versus epidemic influenza. Am J Epidemiol. 2011;173(2):127‐135. PubMed PMC

Miller MA, Viboud C, Balinska M, Simonsen L. The signature features of influenza pandemics–implications for policy. N Engl J Med. 2009;360(25):2595‐2598. PubMed

Ratnesar‐Shumate S, Williams G, Green B, et al. Simulated sunlight rapidly inactivates SARS‐CoV‐2 on surfaces. J Infect Dis. 2020. 10.1093/infdis/jiaa274 PubMed DOI PMC

Neher RA, Dyrdak R, Druelle V, Hodcroft EB, Albert J. Potential impact of seasonal forcing on a SARS‐CoV‐2 pandemic. Swiss Med Wkly. 2020;150:w20224. PubMed

Hamner L, Dubbel P, Capron I, et al. High SARS‐CoV‐2 attack rate following exposure at a choir practice – Skagit County, Washington, March 2020. MMWR Morb Mortal Wkly Rep. 2020;69(19):606‐610. PubMed

Wilson NM, Norton A, Young FP, Collins DW. Airborne transmission of severe acute respiratory syndrome coronavirus‐2 to healthcare workers: a narrative review. Anaesthesia. 2020. 10.1111/anae.15093 PubMed DOI PMC

Liu Y, Ning Z, Chen Y, et al. Aerodynamic analysis of SARS‐CoV‐2 in two Wuhan hospitals. Nature. 2020. 10.1038/s41586-020-2271-3 PubMed DOI

Zhang J, Litvinova M, Liang Y, et al. Changes in contact patterns shape the dynamics of the COVID‐19 outbreak in China. Science. 2020;eabb8001. 10.1126/science.abb8001 PubMed DOI PMC

Matrajt L, Leung T. Evaluating the effectiveness of social distancing interventions to delay or flatten the epidemic curve of coronavirus disease. Emerg Infect Dis. 2020;26(8). 10.3201/eid2608.201093 PubMed DOI PMC

Block P, Hoffman M, Raabe IJ, et al. Social network‐based distancing strategies to flatten the COVID‐19 curve in a post‐lockdown world. Nat Hum Behav. 2020;4(6):588–596. PubMed

Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person‐to‐person transmission of SARS‐CoV‐2 and COVID‐19: a systematic review and meta‐analysis. Lancet. 2020. 10.1016/s0140-6736(20)31142-9 PubMed DOI PMC

Epidemiology Working Group for Ncip Epidemic Response CCfDC, Prevention . [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID‐19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(2):145‐151. PubMed

van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS‐CoV‐2 as compared with SARS‐CoV‐1. N Engl J Med. 2020;382(16):1564‐1567. PubMed PMC

Chen J, Qi T, Liu L, et al. Clinical progression of patients with COVID‐19 in Shanghai, China. J Infect. 2020;80(5):e1‐e6. PubMed PMC

Jartti T, Palomares O, Waris M, et al. Distinct regulation of tonsillar immune response in virus infection. Allergy. 2014;69(5):658‐667. PubMed PMC

Cai Q, Huang D, Ou P, et al. COVID‐19 in a designated infectious diseases hospital outside Hubei Province, China. Allergy. 2020;75:1742–1752. 10.1111/all.14309 PubMed DOI

Riou J, Althaus CL. Pattern of early human‐to‐human transmission of Wuhan 2019 novel coronavirus (2019‐nCoV), December 2019 to January 2020. Euro Surveill. 2020;25(4).2000058. PubMed PMC

Endo A, Abbott S, Kucharski AJ, Funk S. Estimating the overdispersion in COVID‐19 transmission using outbreak sizes outside China. Wellcome Open Res. 2020;5(67). 10.12688/wellcomeopenres.15842.1 PubMed DOI PMC

Studdert DM, Hall MA. Disease control, civil liberties, and mass testing ‐ calibrating restrictions during the Covid‐19 pandemic. N Engl J Med. 2020. 10.1056/nejmp2007637 PubMed DOI

Ng Y, Li Z, Chua YX, et al. Evaluation of the effectiveness of surveillance and containment measures for the first 100 patients with COVID‐19 in Singapore ‐ January 2‐February 29, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(11):307‐311. PubMed PMC

Guo Y, Li Y, Monroe‐Wise A, Yeung SJ, Huang Y. A dynamic residential community‐based quarantine strategy: China's experience in fighting COVID‐19. Infect Control Hosp Epidemiol. 2020;1. 10.1017/ice.2020.172 PubMed DOI PMC

Sotgiu G, Gerli AG, Centanni S, et al. Advanced forecasting of SARS‐CoV‐2‐related deaths in Italy, Germany, Spain, and New York State. Allergy. 2020;75:1813–1815. 10.1111/all.14327 PubMed DOI PMC

Yasaka TM, Lehrich BM, Sahyouni R. Peer‐to‐peer contact tracing: development of a privacy‐preserving smartphone app. JMIR Mhealth Uhealth. 2020;8(4):e18936. PubMed PMC

Parker MJ, Fraser C, Abeler‐Dorner L, Bonsall D. Ethics of instantaneous contact tracing using mobile phone apps in the control of the COVID‐19 pandemic. J Med Ethics. 2020. 10.1136/medethics-2020-106314 PubMed DOI PMC

Stampfli MR, Anderson GP. How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat Rev Immunol. 2009;9(5):377‐384. PubMed

Patanavanich R, Glantz SA. Smoking is associated with COVID‐19 progression: a meta‐analysis. medRxiv. 2020:2020.2004.2013.20063669. PubMed PMC

Szabo G, Saha B. Alcohol's effect on host defense. Alcohol Res. 2015;37(2):159‐170. PubMed PMC

Pang M, Bala S, Kodys K, Catalano D, Szabo G. Inhibition of TLR8‐ and TLR4‐induced Type I IFN induction by alcohol is different from its effects on inflammatory cytokine production in monocytes. BMC Immunol. 2011;12:55. PubMed PMC

Simonnet A, Chetboun M, Poissy J, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) requiring invasive mechanical ventilation. Obesity (Silver Spring). 2020. 10.1002/oby.22831 PubMed DOI PMC

Campagna M, Rivas C. Antiviral activity of resveratrol. Biochem Soc Trans. 2010;38(Pt 1):50‐53. PubMed

Dhar D, Mohanty A. Gut microbiota and Covid‐19‐ possible link and implications. Virus Res. 2020;285:198018. PubMed PMC

Kalantar‐Zadeh K, Ward SA, Kalantar‐Zadeh K, El‐Omar EM. Considering the effects of microbiome and diet on SARS‐CoV‐2 infection: nanotechnology roles. ACS Nano. 2020;14(5):5179‐5182. PubMed

Dickson RP, Erb‐Downward JR, Martinez FJ, Huffnagle GB. The microbiome and the respiratory tract. Annu Rev Physiol. 2016;78:481‐504. PubMed PMC

Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person‐to‐person transmission: a study of a family cluster. Lancet. 2020;395(10223):514‐523. PubMed PMC

Khan AA, Khan Z. COVID‐2019 associated overexpressed Prevotella proteins mediated host‐pathogen interactions and their role in coronavirus outbreak. Bioinformatics. 2020. 10.1093/bioinformatics/btaa285 PubMed DOI PMC

Ellenbogen Y, Jiménez‐Saiz R, Spill P, Chu DK, Waserman S, Jordana M. The initiation of Th2 immunity towards food allergens. Int J Mol Sci. 2018;19(5):1447. PubMed PMC

Jimenez‐Saiz R, Ellenbogen Y, Koenig JFE, et al. IgG1(+) B‐cell immunity predates IgE responses in epicutaneous sensitization to foods. Allergy. 2019;74(1):165‐175. PubMed

Wang M, Tan G, Eljaszewicz A, et al. Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. J Allergy Clin Immunol. 2019;143(5):1892‐1903. PubMed

Agache I, Miller R, Gern JE, et al. Emerging concepts and challenges in implementing the exposome paradigm in allergic diseases and asthma: a Practall document. Allergy. 2019;74(3):449‐463. PubMed

Garcia‐Alvarez L, Fuente‐Tomas L, Saiz PA, Garcia‐Portilla MP, Bobes J. Will changes in alcohol and tobacco use be seen during the COVID‐19 lockdown? Adicciones. 2020;32(2):85‐89. PubMed

Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically ill patients with COVID‐19 with convalescent plasma. JAMA. 2020;323(16):1582–1589. PubMed PMC

Zhang B, Liu S, Tan T, et al. Treatment with convalescent plasma for critically ill patients with severe acute respiratory syndrome coronavirus 2 infection. Chest. 2020. 10.1016/j.chest.2020.03.039 PubMed DOI PMC

Ahn JY, Sohn Y, Lee SH, et al. Use of convalescent plasma therapy in two COVID‐19 patients with acute respiratory distress syndrome in Korea. J Korean Med Sci. 2020;35(14):e149. PubMed PMC

Ye M, Fu D, Ren Y, et al. Treatment with convalescent plasma for COVID‐19 patients in Wuhan, China. J Med Virol. 2020. 10.1002/jmv.25882 PubMed DOI PMC

Zeng QL, Yu ZJ, Gou JJ, et al. Effect of convalescent plasma therapy on viral shedding and survival in COVID‐19 patients. J Infect Dis. 2020;222(1):38–43. PubMed PMC

Salazar E, Perez KK, Ashraf M, et al. Treatment of COVID‐19 patients with convalescent plasma. Am J Pathol. 2020. 10.1016/j.ajpath.2020.05.014 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...