Physiological and Immune Functions of Punicalagin
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
8X20023
Ministerstvo Školství, Mládeže a Tělovýchovy
APVV-18-0312
Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
DS-FR-19-0049
Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
PubMed
34201484
PubMed Central
PMC8308219
DOI
10.3390/nu13072150
PII: nu13072150
Knihovny.cz E-resources
- Keywords
- apoptosis, ellagic acid, immune cells, metabolism, proliferation, punicalagin,
- MeSH
- Anti-Inflammatory Agents pharmacology MeSH
- Biological Availability MeSH
- Hydrolyzable Tannins immunology metabolism MeSH
- Immunosuppressive Agents pharmacology MeSH
- Ellagic Acid analysis MeSH
- Humans MeSH
- Metabolome MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anti-Inflammatory Agents MeSH
- Hydrolyzable Tannins MeSH
- Immunosuppressive Agents MeSH
- Ellagic Acid MeSH
- punicalagin MeSH Browser
The aim of this publication is to compile a summary of the findings regarding punicalagin in various tissues described thus far in the literature, with an emphasis on the effect of this substance on immune reactions. Punicalagin (PUN) is an ellagitannin found in the peel of pomegranate (Punica granatum). It is a polyphenol with proven antioxidant, hepatoprotective, anti-atherosclerotic and chemopreventive activities, antiproliferative activity against tumor cells; it inhibits inflammatory pathways and the action of toxic substances, and is highly tolerated. This work describes the source, metabolism, functions and effects of punicalagin, its derivatives and metabolites. Furthermore, its anti-inflammatory and antioxidant effects are described.
See more in PubMed
Jurenka J.S. Therapeutic applications of pomegranate (Punica granatum L.): A review. Altern. Med. Rev. A J. Clin. 2008;13:128–144. PubMed
Abdollahzadeh S., Mashouf R., Mortazavi H., Moghaddam M., Roozbahani N., Vahedi M. Antibacterial and antifungal activ-ities of punica granatum peel extracts against oral pathogens. J. Dent. 2011;8:1–6. PubMed PMC
Syed D.N., Chamcheu J.-C., Adhami V.M., Mukhtar H. Pomegranate extracts and cancer prevention: Molecular and cellular activities. Anti-Cancer Agents Med. Chem. 2013;13:1149–1161. doi: 10.2174/1871520611313080003. PubMed DOI PMC
Paller C.J., Pantuck A., Carducci M.A. A review of pomegranate in prostate cancer. Prostate Cancer Prostatic Dis. 2017;20:265–270. doi: 10.1038/pcan.2017.19. PubMed DOI PMC
Singh B., Singh J.P., Kaur A., Singh N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem. 2018;261:75–86. doi: 10.1016/j.foodchem.2018.04.039. PubMed DOI
Kraszni M., Marosi A., Larive C.K. NMR assignments and the acid–base characterization of the pomegranate ellagitannin punicalagin in the acidic pH-range. Anal. Bioanal. Chem. 2013;405:5807–5816. doi: 10.1007/s00216-013-6987-x. PubMed DOI
Gil M.I., Tomás-Barberán F.A., Hess-Pierce B., Holcroft D.M., Kader A.A. Antioxidant Activity of Pomegranate Juice and Its Relationship with Phenolic Composition and Processing. J. Agric. Food Chem. 2000;48:4581–4589. doi: 10.1021/jf000404a. PubMed DOI
Seeram N.P., Adams L.S., Henning S.M., Niu Y., Zhang Y., Nair M.G., Heber D. In vitro antiproliferative, apoptotic and antioxi-dant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with oth-er polyphenols as found in pomegranate juice. J. Nutr. Biochem. 2005;16:360–367. doi: 10.1016/j.jnutbio.2005.01.006. PubMed DOI
Oudane B., Boudemagh D., Bounekhel M., Sobhi W., Vidal M., Broussy S. Isolation, characterization, antioxidant activity, and protein-precipitating capacity of the hydrolyzable tannin punicalagin from pomegranate yellow peel (Punica granatum) J. Mol. Struct. 2018;1156:390–396. doi: 10.1016/j.molstruc.2017.11.129. DOI
Moilanen J., Karonen M., Tähtinen P., Jacquet R., Quideau S., Salminen J.-P. Biological activity of ellagitannins: Effects as an-ti-oxidants, pro-oxidants and metal chelators. Phytochemistry. 2016;125:65–72. doi: 10.1016/j.phytochem.2016.02.008. PubMed DOI
Kulkarni A.P., Mahal H., Kapoor S., Aradhya S. In vitro studies on the binding, antioxidant, and cytotoxic actions of puni-calagin. J. Agric. Food Chem. 2007;55:1491–1500. doi: 10.1021/jf0626720. PubMed DOI
Tang J., Li B., Hong S., Liu C., Min J., Hu M., Li Y., Liu Y., Hong L. Punicalagin suppresses the proliferation and invasion of cervical cancer cells through inhibition of the β-catenin pathway. Mol. Med. Rep. 2017;16:1439–1444. doi: 10.3892/mmr.2017.6687. PubMed DOI
Bialonska D., Ramnani P., Kasimsetty S.G., Muntha K.R., Gibson G.R., Ferreira D. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. Int. J. Food Microbiol. 2010;140:175–182. doi: 10.1016/j.ijfoodmicro.2010.03.038. PubMed DOI
Lin L.-T., Chen T.-Y., Lin S.-C., Chung C.-Y., Lin T.-C., Wang G.-H., Anderson R., Lin C.-C., Richardson C.D. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol. 2013;13:187. doi: 10.1186/1471-2180-13-187. PubMed DOI PMC
Zahin M., Ahmad I., Gupta R.C., Aqil F. Punicalagin and Ellagic Acid Demonstrate Antimutagenic Activity and Inhibition of Benzo[a]pyrene Induced DNA Adducts. Biomed. Res. Int. 2014;2014:1–10. doi: 10.1155/2014/467465. PubMed DOI PMC
Heber D. Pomegranate Ellagitannins. In: Benzie I.F.F., Wachtel-Galor S., editors. Herbal Medicine: Biomolecular and Clinical Aspects. CRC Press/Taylor & Francis; Boca Raton, FL, USA: 2011. PubMed
Espín J.C., Larrosa M., García-Conesa M.T., Tomás-Barberán F. Biological Significance of Urolithins, the Gut Microbial Ellagic Acid-Derived Metabolites: The Evidence So Far. Evid. Based Complementary Altern. Med. 2013;2013:270418. doi: 10.1155/2013/270418. PubMed DOI PMC
Silacci P., Tretola M. Pomegranate’s Ellagitannins: Metabolism and Mechanisms of Health Promoting Properties. Nutr. Food Sci. Int. J. 2019;9:555766. doi: 10.19080/NFSIJ.2019.09.555766. DOI
García-Villalba R., Vissenaekens H., Pitart J., Vaquero M.R., Espín J.C., Grootaert C., Selma M.V., Raes K., Smagghe G., Possemiers S., et al. Gastrointestinal Simulation Model TWIN-SHIME Shows Differences between Human Urolithin-Metabotypes in Gut Microbiota Composition, Pomegranate Polyphenol Metabolism, and Transport along the Intestinal Tract. J. Agric. Food Chem. 2017;65:5480–5493. doi: 10.1021/acs.jafc.7b02049. PubMed DOI
González-Sarrías A., García-Villalba R., Núñez-Sánchez Á.M., Tomé-Carneiro J., Zafrilla P., Mulero J., Tomás-Barberán F.A., Espín J.C. Identifying the limits for ellagic acid bioavailability: A crossover pharmacokinetic study in healthy volunteers after consumption of pomegranate extracts. J. Funct. Foods. 2015;19:225–235. doi: 10.1016/j.jff.2015.09.019. DOI
Selma M.V., Tomas-Barberan F.A., Beltran D., García-Villalba R., Espín J.C. Gordonibacter urolithinfaciens sp. nov., a uro-lithin-producing bacterium isolated from the human gut. Int. J. Syst. Evol. Microbiol. 2014;64:2346–2352. doi: 10.1099/ijs.0.055095-0. PubMed DOI
Selma M.V., Beltrán D., García-Villalba R., Espín J.C., Tomás-Barberán F.A. Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct. 2014;5:1779–1784. doi: 10.1039/C4FO00092G. PubMed DOI
Vaquero M.R., García-Villalba R., González-Sarrías A., Beltrán D., Tomás-Barberán F.A., Espín J.C., Selma M.V. Interindividual variability in the human metabolism of ellagic acid: Contribution of Gordonibacter to urolithin production. J. Funct. Foods. 2015;17:785–791. doi: 10.1016/j.jff.2015.06.040. DOI
Selma M.V., Romo-Vaquero M., García-Villalba R., González-Sarrías A., Tomás-Barberán F.A., Espín J.C. The human gut microbial ecology associated with overweight and obesity determines ellagic acid metabolism. Food Funct. 2015;7:1769–1774. doi: 10.1039/C5FO01100K. PubMed DOI
Qin G., Xu C., Ming R., Tang H., Guyot R., Kramer E.M., Hu Y., Yi X., Qi Y., Xu X., et al. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis. Plant J. 2017;91:1108–1128. doi: 10.1111/tpj.13625. PubMed DOI
Llorach R., Cerdá B., Cerón J.J., Espín J.C., Tomás-Barberán F.A. Evaluation of the bioavailability and metabolism in the rat of punicalagin, an antioxidant polyphenol from pomegranate juice. Eur. J. Nutr. 2003;42:18–28. doi: 10.1007/s00394-003-0396-4. PubMed DOI
Cerdá B., Espín J.C., Parra S., Martínez P., Tomás-Barberán F.A. The potent in vitro antioxidant ellagitannins from pomegranate juice are metabolised into bioavailable but poor antioxidant hydroxy–6H–dibenzopyran–6–one derivatives by the colon-ic microflora of healthy humans. Eur. J. Nutr. 2004;43:205–220. doi: 10.1007/s00394-004-0461-7. PubMed DOI
Zuccari G., Baldassari S., Ailuno G., Turrini F., Alfei S., Caviglioli G. Formulation Strategies to Improve Oral Bioavailability of Ellagic Acid. Appl. Sci. 2020;10:3353. doi: 10.3390/app10103353. DOI
Nyamba I., Lechanteur A., Semdé R., Evrard B. Physical formulation approaches for improving aqueous solubility and bio-availability of ellagic acid: A review. Eur. J. Pharm. Biopharm. 2020;159:198–210. doi: 10.1016/j.ejpb.2020.11.004. PubMed DOI
Williams H.D., Trevaskis N.L., Charman S., Shanker R.M., Charman W., Pouton C., Porter C.J.H. Strategies to Address Low Drug Solubility in Discovery and Development. Pharm. Rev. 2013;65:315–499. doi: 10.1124/pr.112.005660. PubMed DOI
Qu W., Iii A.P.B., Pan Z., Ma H. Quantitative determination of major polyphenol constituents in pomegranate products. Food Chem. 2012;132:1585–1591. doi: 10.1016/j.foodchem.2011.11.106. PubMed DOI
Nathan C. Points of control in inflammation. Nat. Cell Biol. 2002;420:846–852. doi: 10.1038/nature01320. PubMed DOI
Xu X., Yin P., Wan C., Chong X., Liu M., Cheng P., Chen J., Liu F., Xu J. Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation. Inflammation. 2014;37:956–965. doi: 10.1007/s10753-014-9816-2. PubMed DOI
BenSaad L.A., Kim K.H., Quah C.C., Kim W.R., Shahimi M. Anti-inflammatory potential of ellagic acid, gallic acid and puni-calagin A&B isolated from Punica granatum. BMC Complementary Altern. Med. 2017;17:47 PubMed PMC
Lee S.-I., Kim B.-S., Kim K.-S., Lee S., Shin K.-S., Lim J.-S. Immune-suppressive activity of punicalagin via inhibition of NFAT activation. Biochem. Biophys. Res. Commun. 2008;371:799–803. doi: 10.1016/j.bbrc.2008.04.150. PubMed DOI
Cao Y., Chen J., Ren G., Zhang Y., Tan X., Yang L. Punicalagin Prevents Inflammation in LPS-Induced RAW264.7 Macro-phages by Inhibiting FoxO3a/Autophagy Signaling Pathway. Nutrients. 2019;11:2794. doi: 10.3390/nu11112794. PubMed DOI PMC
Ngkelo A., Meja K., Yeadon M., Adcock I., Kirkham P.A. LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4 and Giα dependent PI-3kinase signalling. J. Inflamm. 2012;9:1. doi: 10.1186/1476-9255-9-1. PubMed DOI PMC
Trevillyan J.M., Chiou X.G., Chen Y.-W., Ballaron S.J., Sheets M.P., Smith M.L., Wiedeman P.E., Warrior U., Wilkins J., Gubbins E.J., et al. Potent Inhibition of NFAT Activation and T Cell Cytokine Production by Novel Low Molecular Weight Pyrazole Compounds. J. Biol. Chem. 2001;276:48118–48126. doi: 10.1074/jbc.M107919200. PubMed DOI
Rahimi H.R., Arastoo M., Ostad S.N. A Comprehensive Review of Punica granatum (Pomegranate) Properties in Toxicolog-ical, Pharmacological, Cellular and Molecular Biology Researches. Iran J. Pharm. Res. 2012;11:385–400. PubMed PMC
Elmore S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007;35:495–516. doi: 10.1080/01926230701320337. PubMed DOI PMC
Zhang L., Chinnathambi A., Alharbi S.A., Veeraraghavan V.P., Mohan S.K., Zhang G. Punicalagin promotes the apoptosis in human cervical cancer (ME-180) cells through mitochondrial pathway and by inhibiting the NF-kB signaling pathway. Saudi J. Biol. Sci. 2020;27:1100–1106. doi: 10.1016/j.sjbs.2020.02.015. PubMed DOI PMC
Carneiro C.C., Santos S., Lino R.D.S., Bara M.T.F., Chaibub B.A., Reis P.R.D.M., Chaves D.A., da Silva A.J.R., Silva L.S., Silva D.D.M.E., et al. Chemopreventive effect and angiogenic activity of punicalagin isolated from leaves of Lafoensia pacari A. St.-Hil. Toxicol. Appl. Pharm. 2016;310:1–8. doi: 10.1016/j.taap.2016.08.015. PubMed DOI
Stahlhut C., Slack F.J. MicroRNAs and the cancer phenotype: Profiling, signatures and clinical implications. Genome Med. 2013;5:111. doi: 10.1186/gm516. PubMed DOI PMC
Huang T., Zhang X., Wang H. Punicalagin inhibited proliferation, invasion and angiogenesis of osteosarcoma through suppression of NF-κB signaling. Mol. Med. Rep. 2020;22:2386–2394. doi: 10.3892/mmr.2020.11304. PubMed DOI PMC
Syed D.N., Malik A., Hadi N., Sarfaraz S., Afaq F., Mukhtar H. Photochemopreventive Effect of Pomegranate Fruit Extract on UVA-mediated Activation of Cellular Pathways in Normal Human Epidermal Keratinocytes. Photochem. Photobiol. 2006;82:398–405. doi: 10.1562/2005-06-23-RA-589. PubMed DOI
Larrosa M., Tomás-Barberán F.A., Espín J.C. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. J. Nutr. Biochem. 2006;17:611–625. doi: 10.1016/j.jnutbio.2005.09.004. PubMed DOI
Wang S.G., Huang M.H., Li J.H., Lai F.I., Lee H.M., Hsu Y.N. Punicalagin induces apoptotic and autophagic cell death in human U87MG glioma cells. Acta Pharm. Sin. 2013;34:1411–1419. doi: 10.1038/aps.2013.98. PubMed DOI PMC
Liang J., Shao S.H., Xu Z.-X., Hennessy B., Ding Z., Larrea M., Kondo S., Dumont D.J., Gutterman J.U., Walker C.L., et al. The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol. 2007;9:218–224. doi: 10.1038/ncb1537. PubMed DOI
Ammar O.M.A., Ilktac M., Gülcan H. Urolithins and their antimicrobial activity: A short review. EMU J. Pharm. Sci. 2019;3:117–124.
Gulube Z., Patel M. Effect of Punica granatum on the virulence factors of cariogenic bacteria Streptococcus mutans. Microb. Pathog. 2016;98:45–49. doi: 10.1016/j.micpath.2016.06.027. PubMed DOI
Tito A., Colantuono A., Pirone L., Pedone E., Intartaglia D., Giamundo G., Conte I., Vitaglione P., Apone F. A pomegranate peel extract as inhibitor of SARS-CoV-2 Spike binding to human ACE2 (in vitro): A promising source of novel antiviral drugs. Front. Chem. 2021;9:638187. PubMed PMC
Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., Squadrito F., Altavilla D., Bitto A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med. Cell. Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763. PubMed DOI PMC
Djedjibegovic J., Marjanovic A., Panieri E., Saso L. Ellagic Acid-Derived Urolithins as Modulators of Oxidative Stress. Oxidative Med. Cell. Longev. 2020;2020:5194508. doi: 10.1155/2020/5194508. PubMed DOI PMC
Liguori I., Russo G., Curcio F., Bulli G., Aran L., DELLA Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging. 2018;13:757–772. doi: 10.2147/CIA.S158513. PubMed DOI PMC
Sun Y.Q., Xin T.A.O., Men X.M., Xu Z.W., Tian W.A.N.G. In vitro and in vivo antioxidant activities of three major polyphenolic com-pounds in pomegranate peel: Ellagic acid, punicalin, and punicalagin. J. Integr. Agric. 2017;16:1808–1818. doi: 10.1016/S2095-3119(16)61560-5. DOI
Wang Y., Zhang H., Liang H., Yuan Q. Purification, antioxidant activity and protein-precipitating capacity of punicalin from pomegranate husk. Food Chem. 2013;138:437–443. doi: 10.1016/j.foodchem.2012.10.092. PubMed DOI
Bialonska D., Kasimsetty S.G., Khan S.I., Ferreira D. Urolithins, Intestinal Microbial Metabolites of Pomegranate Ellagitannins, Exhibit Potent Antioxidant Activity in a Cell-Based Assay. J. Agric. Food Chem. 2009;57:10181–10186. doi: 10.1021/jf9025794. PubMed DOI
Fouad A.A., Qutub H.O., Al-Melhim W.N. Punicalagin alleviates hepatotoxicity in rats challenged with cyclophosphamide. Environ. Toxicol. Pharmacol. 2016;45:158–162. doi: 10.1016/j.etap.2016.05.031. PubMed DOI
Luedde T., Schwabe R.F. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat. Rev. Gastro-Enterol. Hepatol. 2011;8:108–118. doi: 10.1038/nrgastro.2010.213. PubMed DOI PMC
Foroutanfar A., Mehri S., Marzyeh K., Tandisehpanah Z., Hosseinzadeh H. Protective effect of punicalagin, the main poly-phenol compound of pomegranate, against acrylamide-induced neurotoxicity and hepatotoxicity in rats. Phytother. Res. 2020;34:3262–3272. doi: 10.1002/ptr.6774. PubMed DOI
Les F., Arbonés-Mainar J.M., Valero M.S., López V. Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. J. Ethnopharmacol. 2018;220:67–74. doi: 10.1016/j.jep.2018.03.029. PubMed DOI
Wu D., Ma X., Tian W. Pomegranate husk extract, punicalagin and ellagic acid inhibit fatty acid synthase and adipogenesis of 3T3-L1 adipocyte. J. Funct. Foods. 2013;5:633–641. doi: 10.1016/j.jff.2013.01.005. DOI
Reguero M., Gómez de Cedrón M., Reglero G., Quintela J.C., de Molina A.R. Natural Extracts to Augment Energy Ex-penditure as a Complementary Approach to Tackle Obesity and Associated Metabolic Alterations. Biomolecules. 2021;11:412. doi: 10.3390/biom11030412. PubMed DOI PMC
Mele L., Mena P., Piemontese A., Marino V., López-Gutiérrez N., Bernini F., Brighenti F., Zanotti I., Del Rio D. Antiatherogenic effects of ellagic acid and urolithins in vitro. Arch. Biochem. Biophys. 2016;599:42–50. doi: 10.1016/j.abb.2016.02.017. PubMed DOI
Kruth S.H. Fluid-phase pinocytosis of LDL by macrophages: A novel target to reduce macrophage cholesterol accumula-tion in atherosclerotic lesions. Curr. Pharm. Des. 2013;19:5865–5872. doi: 10.2174/1381612811319330005. PubMed DOI PMC
Zhao W., Wang L., Haller V., Ritsch A. A Novel Candidate for Prevention and Treatment of Atherosclerosis: Urolithin B Decreases Lipid Plaque Deposition in apoE(-/-) Mice and Increases Early Stages of Reverse Cholesterol Transport in ox-LDL Treated Macrophages Cells. Mol. Nutr. Food Res. 2019;63:e1800887. doi: 10.1002/mnfr.201800887. PubMed DOI
Cui G.-H., Chen W.-Q., Shen Z.-Y. Urolithin A shows anti-atherosclerotic activity via activation of class B scavenger receptor and activation of Nef2 signaling pathway. Pharm. Rep. 2018;70:519–524. doi: 10.1016/j.pharep.2017.04.020. PubMed DOI
Cerdá B., Cerón J.J., Tomás-Barberán F.A., Espín J.C. Repeated oral administration of high doses of the pomegranate ellag-itannin punicalagin to rats for 37 days is not toxic. J. Agric. Food Chem. 2003;51:3493–3501. doi: 10.1021/jf020842c. PubMed DOI
Sánchez-Lamar A., Fonseca G., Fuentes J.L., Cozzi R., Cundari E., Fiore M., Ricordy R., Perticone P., Degrassi F., De Salvia R. As-sessment of the genotoxic risk of Punica granatum L. (Punicaceae) whole fruit extracts. J. Ethnopharmacol. 2008;115:416–422. doi: 10.1016/j.jep.2007.10.011. PubMed DOI
Labieniec M., Gabryelak T. Effects of tannins on Chinese hamster cell line B14. Mutat. Res. Toxicol. Env. Mutagen. 2003;539:127–135. doi: 10.1016/S1383-5718(03)00161-X. PubMed DOI