Prototype Design and Experimental Evaluation of Autonomous Collaborative Communication System for Emerging Maritime Use Cases

. 2021 Jun 03 ; 21 (11) : . [epub] 20210603

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34205190

Grantová podpora
FV40309 Ministerstvo Průmyslu a Obchodu
813278 Horizon 2020

Automated systems have been seamlessly integrated into several industries as part of their industrial automation processes. Employing automated systems, such as autonomous vehicles, allows industries to increase productivity, benefit from a wide range of technologies and capabilities, and improve workplace safety. So far, most of the existing systems consider utilizing one type of autonomous vehicle. In this work, we propose a collaboration of different types of unmanned vehicles in maritime offshore scenarios. Providing high capacity, extended coverage, and better quality of services, autonomous collaborative systems can enable emerging maritime use cases, such as remote monitoring and navigation assistance. Motivated by these potential benefits, we propose the deployment of an Unmanned Surface Vehicle (USV) and an Unmanned Aerial Vehicle (UAV) in an autonomous collaborative communication system. Specifically, we design high-speed, directional communication links between a terrestrial control station and the two unmanned vehicles. Using measurement and simulation results, we evaluate the performance of the designed links in different communication scenarios and we show the benefits of employing multiple autonomous vehicles in the proposed communication system.

Zobrazit více v PubMed

Sullivan B.P., Arias Nava E., Desai S., Sole J., Rossi M., Ramundo L., Terzi S. Defining Maritime 4.0: Reconciling principles, elements and characteristics to support maritime vessel digitalisation. IET Collab. Intell. Manuf. 2021 doi: 10.1049/cim2.12012. DOI

Sanchez-Gonzalez P.L., Díaz-Gutiérrez D., Leo T.J., Núñez-Rivas L.R. Toward digitalization of maritime transport? Sensors. 2019;19:926. doi: 10.3390/s19040926. PubMed DOI PMC

Zolich A., Palma D., Kansanen K., Fjørtoft K., Sousa J., Johansson K.H., Jiang Y., Dong H., Johansen T.A. Survey on communication and networks for autonomous marine systems. J. Intell. Robot. Syst. 2019;95:789–813. doi: 10.1007/s10846-018-0833-5. DOI

Khosravi Z., Gerasimenko M., Urama J., Pyattaev A., Escusol J.V., Hosek J., Andreev S., Koucheryavy Y. Designing high-speed directional communication capabilities for unmanned surface vehicles; Proceedings of the 2019 16th International Symposium on Wireless Communication Systems (ISWCS); Oulu, Finland. 27–30 August 2019; pp. 651–655.

Ma K. Master’s Thesis. Tampere University; Tampere, Finland: 2020. Implementation and Evaluation of Communication System for Autonomous Offshore Vehicles.

Valavanis K.P., Vachtsevanos G.J. Handbook of Unmanned Aerial Vehicles. Volume 1 Springer; Berlin, Germany: 2015.

Salhaoui M., Guerrero-González A., Arioua M., Ortiz F.J., El Oualkadi A., Torregrosa C.L. Smart industrial IoT monitoring and control system based on UAV and cloud computing applied to a concrete plant. Sensors. 2019;19:3316. doi: 10.3390/s19153316. PubMed DOI PMC

Delavarpour N., Koparan C., Nowatzki J., Bajwa S., Sun X. A Technical Study on UAV Characteristics for Precision Agriculture Applications and Associated Practical Challenges. Remote Sens. 2021;13:1204. doi: 10.3390/rs13061204. DOI

Mehallegue N., Djellab M., Loukhaoukha K. Efficient Use of UAVs for Public Safety in Disaster and Crisis Management. Wirel. Pers. Commun. 2021;116:369–380. doi: 10.1007/s11277-020-07719-y. DOI

Global Commercial Drone Market Size in 2018 and 2024. [(accessed on 28 May 2021)]; Available online: https://www.statista.com/statistics/878018/global-commercial-drone-market-size/

Mozaffari M., Saad W., Bennis M., Nam Y.H., Debbah M. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. IEEE Commun. Surv. Tutor. 2019;21:2334–2360. doi: 10.1109/COMST.2019.2902862. DOI

Carrillo D., Mikhaylov K., Nardelli P.J., Andreev S., da Costa D.B. Understanding UAV-Based WPCN-Aided Capabilities for Offshore Monitoring Applications. IEEE Wirel. Commun. 2021 doi: 10.1109/MWC.001.2000218. DOI

Alzenad M., El-Keyi A., Lagum F., Yanikomeroglu H. 3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage. IEEE Wirel. Commun. Lett. 2017;6:434–437. doi: 10.1109/LWC.2017.2700840. DOI

Lai C.C., Chen C.T., Wang L.C. On-demand density-aware uav base station 3d placement for arbitrarily distributed users with guaranteed data rates. IEEE Wirel. Commun. Lett. 2019;8:913–916. doi: 10.1109/LWC.2019.2899599. DOI

Li M., Yu F.R., Si P., Yang R., Wang Z., Zhang Y. UAV-Assisted Data Transmission in Blockchain-Enabled M2M Communications with Mobile Edge Computing. IEEE Netw. 2020;34:242–249. doi: 10.1109/MNET.011.2000147. DOI

Zeng Y., Zhang R., Lim T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016;54:36–42. doi: 10.1109/MCOM.2016.7470933. DOI

Khawaja W., Guvenc I., Matolak D.W., Fiebig U.C., Schneckenburger N. A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles. IEEE Commun. Surv. Tutor. 2019;21:2361–2391. doi: 10.1109/COMST.2019.2915069. DOI

Sánchez-García J., Reina D., Toral S. A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario. Future Gener. Comput. Syst. 2019;90:129–148. doi: 10.1016/j.future.2018.07.048. DOI

Magán-Carrión R., Camacho J., García-Teodoro P., Flushing E.F., Di Caro G.A. A Dynamical Relay node placement solution for MANETs. Comput. Commun. 2017;114:36–50. doi: 10.1016/j.comcom.2017.10.012. DOI

Zhan C., Zeng Y., Zhang R. Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wirel. Commun. Lett. 2017;7:328–331. doi: 10.1109/LWC.2017.2776922. DOI

Xu J., Zeng Y., Zhang R. UAV-enabled wireless power transfer: Trajectory design and energy optimization. IEEE Trans. Wirel. Commun. 2018;17:5092–5106. doi: 10.1109/TWC.2018.2838134. DOI

E Silva T.D., de Melo C.F.E., Cumino P., Rosário D., Cerqueira E., De Freitas E.P. STFANET: SDN-based topology management for flying ad hoc network. IEEE Access. 2019;7:173499–173514. doi: 10.1109/ACCESS.2019.2956724. DOI

Zhao Z., Cumino P., Souza A., Rosario D., Braun T., Cerqueira E., Gerla M. Software-defined unmanned aerial vehicles networking for video dissemination services. Ad Hoc Netw. 2019;83:68–77. doi: 10.1016/j.adhoc.2018.08.023. DOI

How To Calculate Distances, Azimuths and Elevation Angles Of Peaks. [(accessed on 28 May 2021)]; Available online: http://tchester.org/sgm/analysis/peaks/how_to_get_view_params.html.

Parsons J.D. The Mobile Radio Propagation Channel. Wiley; Hoboken, NJ, USA: 2000.

Cui Z., Briso C., Guan K., Matolak D.W., Calvo-Ramírez C., Ai B., Zhong Z. Low-altitude UAV air-ground propagation channel measurement and analysis in a suburban environment at 3.9 GHz. IET Microw. Antennas Propag. 2019;13:1503–1508. doi: 10.1049/iet-map.2019.0067. DOI

Yee Hui L., Dong F., Meng Y.S. Near sea-surface mobile radiowave propagation at 5 GHz: Measurements and modeling. Radioengineering. 2014;23:824–830.

Morón Alguacil C. Master’s Thesis. Tampere University; Tampere, Finland: 2019. Design and Analysis of Directional Antenna Structure for Unmanned Surface Vessel.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...