• This record comes from PubMed

Ozone Induced Stomatal Regulations, MAPK and Phytohormone Signaling in Plants

. 2021 Jun 11 ; 22 (12) : . [epub] 20210611

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Ozone (O3) is a gaseous environmental pollutant that can enter leaves through stomatal pores and cause damage to foliage. It can induce oxidative stress through the generation of reactive oxygen species (ROS) like hydrogen peroxide (H2O2) that can actively participate in stomatal closing or opening in plants. A number of phytohormones, including abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and jasmonic acid (JA) are involved in stomatal regulation in plants. The effects of ozone on these phytohormones' ability to regulate the guard cells of stomata have been little studied, however, and the goal of this paper is to explore and understand the effects of ozone on stomatal regulation through guard cell signaling by phytohormones. In this review, we updated the existing knowledge by considering several physiological mechanisms related to stomatal regulation after response to ozone. The collected information should deepen our understanding of the molecular pathways associated with response to ozone stress, in particular, how it influences stomatal regulation, mitogen-activated protein kinase (MAPK) activity, and phytohormone signaling. After summarizing the findings and noting the gaps in the literature, we present some ideas for future research on ozone stress in plants.

See more in PubMed

Mills G., Pleijel H., Malley C.S., Sinha B., Cooper O.R., Schultz M.G., Neufeld H.S., Simpson D., Sharps K., Feng Z., et al. Tropospheric ozone assessment report: Present-day tropospheric ozone distribution and trends relevant to vegetation. Elem. Sci. Anthrop. 2018;6 doi: 10.1525/elementa.302. DOI

Morales L.O., Shapiguzov A., Safronov O., Leppälä J., Vaahtera L., Yarmolinsky D., Kollist H., Brosché M. Ozone responses in Arabidopsis: Beyond stomatal conductance. Plant Physiol. 2021;186:180–192. doi: 10.1093/plphys/kiab097. PubMed DOI PMC

Chen Z., Cao J., Yu H., Shang H. Effects of elevated ozone levels on photosynthesis, biomass and non-structural carbohydrates of Phoebe bournei and Phoebe zhennan in subtropical china. Front. Plant Sci. 2018;9 doi: 10.3389/fpls.2018.01764. PubMed DOI PMC

Feng Z., De Marco A., Anav A., Gualtieri M., Sicard P., Tian H., Fornasier F., Tao F., Guo A., Paoletti E. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ. Int. 2019;131:104966. doi: 10.1016/j.envint.2019.104966. PubMed DOI

Andrady A., Aucamp P.J., Austin A.T., Bais A.F., Ballare C.L., Barnes P.W., Bernhard G.H., Bjoern L.O., Bornman J.F., Congdon N., et al. Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2016. Photochem. Photobiol. Sci. 2017;16:107–145. doi: 10.1039/c7pp90001e. PubMed DOI PMC

Ahlfors R., Brosché M., Kangasjärvi J. Ozone and nitric oxide interaction in Arabidopsis thaliana: A role for ethylene? Plant Signal. Behav. 2009;4:878–879. doi: 10.4161/psb.4.9.9428. PubMed DOI PMC

Gandin A., Dizengremel P., Jolivet Y. Integrative role of plant mitochondria facing oxidative stress: The case of ozone. Plant Physiol. Biochem. 2021;159:202–210. doi: 10.1016/j.plaphy.2020.12.019. PubMed DOI

Caregnato F.F., Clebsch C.C., Rocha R.F., Feistauer L.B.H., Oliveira P.L., Divan Junior A.D., Moreira J.C.F. Ozone exposure differentially affects oxidative stress parameters in distinct Phaseolus vulgaris L. varieties. J. Plant Interact. 2010;5:111–115. doi: 10.1080/17429140903518455. DOI

Pellegrini E., Trivellini A., Cotrozzi L., Vernieri P., Nali C. Involvement of phytohormones in plant responses to ozone. In: Ahammed G.J., Yu J.-Q., editors. Plant Hormones under Challenging Environmental Factors. Springer; Dordrecht, The Netherlands: 2016. pp. 215–245.

Zhang J., Wei Y., Fang Z. Ozone pollution: A major health hazard worldwide. Front. Plant Sci. 2019;10 doi: 10.3389/fimmu.2019.02518. PubMed DOI PMC

Jolivet Y., Bagard M., Cabané M., Vaultier M.-N., Gandin A., Afif D., Dizengremel P., Le Thiec D. Deciphering the ozone-induced changes in cellular processes: A prerequisite for ozone risk assessment at the tree and forest levels. Ann. For. Sci. 2016;73:923–943. doi: 10.1007/s13595-016-0580-3. DOI

Monks P.S., Archibald A.T., Colette A., Cooper O., Coyle M., Derwent R., Fowler D., Granier C., Law K.S., Mills G.E., et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015;15:8889–8973. doi: 10.5194/acp-15-8889-2015. DOI

Lin M., Fiore A.M., Horowitz L.W., Cooper O.R., Naik V., Holloway J., Johnson B.J., Middlebrook A.M., Oltmans S.J., Pollack I.B., et al. Transport of Asian ozone pollution into surface air over the western United States in spring. J. Geophys. Res. Atmos. 2012;117 doi: 10.1029/2011JD016961. DOI

Super I., Vilà-Guerau de Arellano J., Krol M.C. Cumulative ozone effect on canopy stomatal resistance and the impact on boundary layer dynamics and CO2 assimilation at the diurnal scale: A case study for grassland in the Netherlands. J. Geophys. Res. Biogeosci. 2015;120:1348–1365. doi: 10.1002/2015JG002996. DOI

Li S., Harley P.C., Niinemets Ü. Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris. Plant Cell Environ. 2017;40:1984–2003. doi: 10.1111/pce.13003. PubMed DOI PMC

Horaruang W., Hills A., Blatt M.R. Communication between the Plasma Membrane and Tonoplast Is an Emergent Property of Ion Transport. Plant Physiol. 2020;182:1833–1835. doi: 10.1104/pp.19.01485. PubMed DOI PMC

Kollist H., Nuhkat M., Roelfsema M.R.G. Closing gaps: Linking elements that control stomatal movement. New Phytol. 2014;203:44–62. doi: 10.1111/nph.12832. PubMed DOI

Negi J., Matsuda O., Nagasawa T., Oba Y., Takahashi H., Kawai-Yamada M., Uchimiya H., Hashimoto M., Iba K. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature. 2008;452:483–486. doi: 10.1038/nature06720. PubMed DOI

Vahisalu T., Kollist H., Wang Y.-F., Nishimura N., Chan W.-Y., Valerio G., Lamminmäki A., Brosché M., Moldau H., Desikan R., et al. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature. 2008;452:487–491. doi: 10.1038/nature06608. PubMed DOI PMC

Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A., Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science. 2009;324:1064–1068. doi: 10.1126/science.1172408. PubMed DOI

Hasan M.M., Gong L., Nie Z.-F., Li F.-P., Ahammed G.J., Fang X.-W. ABA-induced stomatal movements in vascular plants during dehydration and rehydration. Environ. Exp. Bot. 2021;186:104436. doi: 10.1016/j.envexpbot.2021.104436. DOI

Postiglione A.E., Muday G.K. The Role of ROS Homeostasis in ABA-Induced guard cell signaling. Front. Plant Sci. 2020;11:968. doi: 10.3389/fpls.2020.00968. PubMed DOI PMC

Kollist H., Zandalinas S.I., Sengupta S., Nuhkat M., Kangasjärvi J., Mittler R. Rapid Responses to Abiotic Stress: Priming the Landscape for the Signal Transduction Network. Trends Plant Sci. 2019;24:25–37. doi: 10.1016/j.tplants.2018.10.003. PubMed DOI

Gong L., Liu X.D., Zeng Y.Y., Tian X.Q., Li Y.L., Turner N.C., Fang X.W. Differences in stomatal morphology and physiology explain differences in stomatal sensitivity to abscisic acid across vascular plant lineages. Plant Physiol. 2021;186:782–797. doi: 10.1093/plphys/kiab090. PubMed DOI PMC

Kurusu T., Saito K., Horikoshi S., Hanamata S., Negi J., Yagi C., Kitahata N., Iba K., Kuchitsu K. An S-type anion channel SLAC1 is involved in cryptogein-induced ion fluxes and modulates hypersensitive responses in tobacco BY-2 cells. PLoS ONE. 2013;8:e70623. doi: 10.1371/journal.pone.0070623. PubMed DOI PMC

Tran D., El-Maarouf-Bouteau H., Rossi M., Biligui B., Briand J., Kawano T., Mancuso S., Bouteau F. Post-transcriptional regulation of GORK channels by superoxide anion contributes to increases in outward-rectifying K+ currents. New Phytol. 2013;198:1039–1048. doi: 10.1111/nph.12226. PubMed DOI

Daszkowska-Golec A., Szarejko I. Open or close the gate—Stomata action under the control of phytohormones in drought stress conditions. Front. Plant Sci. 2013;4:138. doi: 10.3389/fpls.2013.00138. PubMed DOI PMC

Yang Y.J., Bi M.H., Nie Z.F., Jiang H., Liu X.D., Fang X.W., Brodribb T.J. Evolution of stomatal closure to optimise water use efficiency in response to dehydration in ferns and seed plants. New Phytol. 2021;230:2001–2010. doi: 10.1111/nph.17278. PubMed DOI

Yao G.Q., Nie Z.F., Turner N.C., Li F.M., Gao T.P., Fang X.W., Scoffoni C. Combined high leaf hydraulic safety and efficiency provides drought tolerance in Caragana species adapted to low mean annual precipitation. New Phytol. 2021;229:230–244. doi: 10.1111/nph.16845. PubMed DOI PMC

McAdam E.L., Brodribb T.J., McAdam S.A.M. Does ozone increase ABA levels by non-enzymatic synthesis causing stomata to close? Plant Cell Environ. 2017;40:741–747. doi: 10.1111/pce.12893. PubMed DOI

Wilkinson S., Davies W.J. Drought, ozone, ABA and ethylene: New insights from cell to plant to community. Plant Cell Environ. 2010;33:510–525. doi: 10.1111/j.1365-3040.2009.02052.x. PubMed DOI

Saxena I., Srikanth S., Chen Z. Cross talk between H2O2 and interacting signal molecules under plant stress response. Front. Plant Sci. 2016;7:570. doi: 10.3389/fpls.2016.00570. PubMed DOI PMC

Shi C., Qi C., Ren H., Huang A., Hei S., She X. Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis. Plant J. 2015;82:280–301. doi: 10.1111/tpj.12815. PubMed DOI

Gomi K., Ogawa D., Katou S., Kamada H., Nakajima N., Saji H., Soyano T., Sasabe M., Machida Y., Mitsuhara I., et al. A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in Tobacco. Plant Cell Physiol. 2005;46:1902–1914. doi: 10.1093/pcp/pci211. PubMed DOI

Sinha A.K., Jaggi M., Raghuram B., Tuteja N. Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal. Behav. 2011;6:196–203. doi: 10.4161/psb.6.2.14701. PubMed DOI PMC

Pitzschke A., Schikora A., Hirt H. MAPK cascade signalling networks in plant defence. Curr. Opin. Plant Biol. 2009;12:421–426. doi: 10.1016/j.pbi.2009.06.008. PubMed DOI

Samuel M.A., Ellis B.E. Double jeopardy: Both overexpression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell. 2002;14:2059–2069. doi: 10.1105/tpc.002337. PubMed DOI PMC

Miles G.P., Samuel M.A., Zhang Y., Ellis B.E. RNA interference-based (RNAi) suppression of AtMPK6, an Arabidopsis mitogen-activated protein kinase, results in hypersensitivity to ozone and misregulation of AtMPK3. Environ. Pollut. 2005;138:230–237. doi: 10.1016/j.envpol.2005.04.017. PubMed DOI

Rasmussen M., Roux M., Petersen M., Mundy J. MAP kinase cascades in Arabidopsis innate immunity. Front. Plant Sci. 2012;3 doi: 10.3389/fpls.2012.00169. PubMed DOI PMC

Vainonen J.P., Kangasjärvi J. Plant signalling in acute ozone exposure. Plant Cell Environ. 2015;38:240–252. doi: 10.1111/pce.12273. PubMed DOI

Overmyer K., Brosché M., Pellinen R., Kuittinen T., Tuominen H., Ahlfors R., Keinänen M., Saarma M., Scheel D., Kangasjärvi J. Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death1 mutant. Plant Physiol. 2005;137:1092–1104. doi: 10.1104/pp.104.055681. PubMed DOI PMC

Xu J., Zhang S. Regulation of ethylene biosynthesis and signaling by protein kinases and phosphatases. Mol. Plant. 2014;7:939–942. doi: 10.1093/mp/ssu059. PubMed DOI

Wang H., Ngwenyama N., Liu Y., Walker J.C., Zhang S. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell. 2007;19:63–73. doi: 10.1105/tpc.106.048298. PubMed DOI PMC

Astier J., Gross I., Durner J. Nitric oxide production in plants: An update. J. Exp. Bot. 2017;69:3401–3411. doi: 10.1093/jxb/erx420. PubMed DOI

Pasqualini S., Meier S., Gehring C., Madeo L., Fornaciari M., Romano B., Ederli L. Ozone and nitric oxide induce cGMP-dependent and -independent transcription of defence genes in tobacco. Plant Signal. Behav. 2009;181:860–870. doi: 10.1111/j.1469-8137.2008.02711.x. PubMed DOI

Niu L., Liao W. Hydrogen peroxide signaling in plant development and abiotic responses: Crosstalk with nitric oxide and calcium. Front. Plant Sci. 2016;7:230. doi: 10.3389/fpls.2016.00230. PubMed DOI PMC

Khan M.I.R., Fatma M., Per T.S., Anjum N.A., Khan N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.00462. PubMed DOI PMC

Prodhan M.Y., Munemasa S., Nahar M.N.-E.-N., Nakamura Y., Murata Y. Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway. Plant Physiol. 2018;178:441–450. doi: 10.1104/pp.18.00321. PubMed DOI PMC

Melotto M., Zhang L., Oblessuc P.R., He S.Y. Stomatal defense a decade later. Plant Physiol. 2017;174:561–571. doi: 10.1104/pp.16.01853. PubMed DOI PMC

Fragnière C., Serrano M., Abou-Mansour E., Métraux J.-P., L’Haridon F. Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett. 2011;585:1847–1852. doi: 10.1016/j.febslet.2011.04.039. PubMed DOI

Shine M.B., Yang J.-W., El-Habbak M., Nagyabhyru P., Fu D.-Q., Navarre D., Ghabrial S., Kachroo P., Kachroo A. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytol. 2016;212:627–636. doi: 10.1111/nph.14078. PubMed DOI

Ogawa D., Nakajima N., Sano T., Tamaoki M., Aono M., Kubo A., Kanna M., Ioki M., Kamada H., Saji H. Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant Cell Physiol. 2005;46:1062–1072. doi: 10.1093/pcp/pci118. PubMed DOI

Li P., Mane S.P., Sioson A.A., Robinet C.V., Heath L.S., Bohnert H.J., Grene R. Effects of chronic ozone exposure on gene expression in Arabidopsis thaliana ecotypes and in Thellungiella halophila. Plant Cell Environ. 2006;29:854–868. doi: 10.1111/j.1365-3040.2005.01465.x. PubMed DOI

Rao M.V., Davis K.R. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: The role of salicylic acid. Plant J. 1999;17:603–614. doi: 10.1046/j.1365-313X.1999.00400.x. PubMed DOI

Xu E., Vaahtera L., Brosché M. Roles of defense hormones in the regulation of ozone-induced changes in gene expression and cell death. Mol. Plant. 2015;8:1776–1794. doi: 10.1016/j.molp.2015.08.008. PubMed DOI

Sharma A., Kumar V., Sidhu G.P.S., Kumar R., Kohli S.K., Yadav P., Kapoor D., Bali A.S., Shahzad B., Khanna K., et al. Molecular Plant Abiotic Stress. John Wiley & Sons; Hoboken, NJ, USA: 2019. Abiotic stress management in plants: Role of ethylene; pp. 185–208.

Mirica L.M., Klinman J.P. The nature of O2 activation by the ethylene-forming enzyme 1-aminocyclopropane-1-carboxylic acid oxidase. Proc. Natl. Acad. Sci. USA. 2008;105:1814. doi: 10.1073/pnas.0711626105. PubMed DOI PMC

Houben M., Van de Poel B. 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO): The enzyme that makes the plant hormone ethylene. Front. Plant Sci. 2019;10 doi: 10.3389/fpls.2019.00695. PubMed DOI PMC

Sinn J.P., Schlagnhaufer C.D., Arteca R.N., Pell E.J. Ozone-induced ethylene and foliar injury responses are altered in 1-aminocyclopropane-1-carboxylate synthase antisense potato plants. New Phytol. 2004;164:267–277. doi: 10.1111/j.1469-8137.2004.01172.x. PubMed DOI

Tsuchisaka A., Theologis A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 2004;136:2982–3000. doi: 10.1104/pp.104.049999. PubMed DOI PMC

Bandurska H., Borowiak K., Miara M.J.A.B.C.S.B. Effect of two different ambient ozone concentrations on antioxidative enzymes in leaves of two tobacco cultivars with contrasting ozone sensitivity. Acta Biol. Cracov. Ser. Bot. 2009;51:37–44.

Gupta S.K., Sharma M., Majumder B., Maurya V.K., Lohani M., Deeba F., Pandey V. Impact of Ethylene diurea (EDU) on growth, yield and proteome of two winter wheat varieties under high ambient ozone phytotoxicity. Chemosphere. 2018;196:161–173. doi: 10.1016/j.chemosphere.2017.12.150. PubMed DOI

Ruan J., Zhou Y., Zhou M., Yan J., Khurshid M., Weng W., Cheng J., Zhang K. Jasmonic acid signaling pathway in plants. Int. J. Mol. Sci. 2019;20:2479. doi: 10.3390/ijms20102479. PubMed DOI PMC

Wang Y., Yuan J., Yang W., Zhu L., Su C., Wang X., Wu H., Sun Z., Li X. Genome wide identification and expression profiling of ethylene receptor genes during soybean nodulation. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.00859. PubMed DOI PMC

Sasaki-Sekimoto Y., Taki N., Obayashi T., Aono M., Matsumoto F., Sakurai N., Suzuki H., Hirai M.Y., Noji M., Saito K., et al. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J. 2005;44:653–668. doi: 10.1111/j.1365-313X.2005.02560.x. PubMed DOI

Tamaoki M. The role of phytohormone signaling in ozone-induced cell death in plants. Plant Signal. Behav. 2008;3:166–174. doi: 10.4161/psb.3.3.5538. PubMed DOI PMC

Kangasjärvi J., Jaspers P., Kollist H. Signalling and cell death in ozone-exposed plants. Plant Cell Environ. 2005;28:1021–1036. doi: 10.1111/j.1365-3040.2005.01325.x. DOI

Pellegrini E., Trivellini A., Campanella A., Francini A., Lorenzini G., Nali C., Vernieri P. Signaling molecules and cell death in Melissa officinalis plants exposed to ozone. Plant Cell Rep. 2013;32:1965–1980. doi: 10.1007/s00299-013-1508-0. PubMed DOI

Nunn A.J., Kozovits A.R., Reiter I.M., Heerdt C., Leuchner M., Lütz C., Liu X., Lo¨w M., Winkler J.B., Grams T.E.E., et al. Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica) Environ. Pollut. 2005;137:494–506. doi: 10.1016/j.envpol.2005.01.036. PubMed DOI

Betz G., Gerstner E., Olbrich M., Winkler J., Langebartels C., Heller W., Sandermann H., Ernst D. Forestry Effects of abiotic stress on gene transcription in European beech: Ozone affects ethylene biosynthesis in saplings of Fagus sylvatica L. IForest. 2009;2:114. doi: 10.3832/ifor0495-002. DOI

Shinozaki K., Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 2006;58:221–227. doi: 10.1093/jxb/erl164. PubMed DOI

Yao G.Q., Li F.P., Nie Z.F., Bi M.H., Jiang H., Liu X.D., Wei Y., Fang X.W. Ethylene, not ABA, is closely linked to the recovery of gas exchange after drought in four Caragana species. Plant Cell Environ. 2020;44:399–411. doi: 10.1111/pce.13934. PubMed DOI

Blomster T., Salojärvi J., Sipari N., Brosché M., Ahlfors R., Keinänen M., Overmyer K., Kangasjärvi J. Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. Plant Physiol. 2011;157:1866–1883. doi: 10.1104/pp.111.181883. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...