• This record comes from PubMed

Search for AL amyloidosis risk factors using Mendelian randomization

. 2021 Jul 13 ; 5 (13) : 2725-2731.

Language English Country United States Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
C1298/A8362 Cancer Research UK - United Kingdom

In amyloid light chain (AL) amyloidosis, amyloid fibrils derived from immunoglobulin light chain are deposited in many organs, interfering with their function. The etiology of AL amyloidosis is poorly understood. Summary data from genome-wide association studies (GWASs) of multiple phenotypes can be exploited by Mendelian randomization (MR) methodology to search for factors influencing AL amyloidosis risk. We performed a 2-sample MR analyzing 72 phenotypes, proxied by 3461 genetic variants, and summary genetic data from a GWAS of 1129 AL amyloidosis cases and 7589 controls. Associations with a Bonferroni-defined significance level were observed for genetically predicted increased monocyte counts (P = 3.8 × 10-4) and the tumor necrosis factor receptor superfamily member 17 (TNFRSF17) gene (P = 3.4 × 10-5). Two other associations with the TNFRSF (members 6 and 19L) reached a nominal significance level. The association between genetically predicted decreased fibrinogen levels may be related to roles of fibrinogen other than blood clotting. be related to its nonhemostatic role. It is plausible that a causal relationship with monocyte concentration could be explained by selection of a light chain-producing clone during progression of monoclonal gammopathy of unknown significance toward AL amyloidosis. Because TNFRSF proteins have key functions in lymphocyte biology, it is entirely plausible that they offer a potential link to AL amyloidosis pathophysiology. Our study provides insight into AL amyloidosis etiology, suggesting high circulating levels of monocytes and TNFRSF proteins as risk factors.

See more in PubMed

Merlini G, Seldin DC, Gertz MA.. Amyloidosis: pathogenesis and new therapeutic options. J Clin Oncol. 2011;29(14):1924-1933. PubMed PMC

Koh Y. AL amyloidosis: advances in diagnosis and management. Blood Res. 2020;55(S1):S54-S57. PubMed PMC

Merlini G, Dispenzieri A, Sanchorawala V, et al. . Systemic immunoglobulin light chain amyloidosis. Nat Rev Dis Primers. 2018;4(1):38. PubMed

Ramirez-Alvarado M. Amyloid formation in light chain amyloidosis. Curr Top Med Chem. 2012;12(22):2523-2533. PubMed PMC

Blancas-Mejía LM, Ramirez-Alvarado M.. Systemic amyloidoses. Annu Rev Biochem. 2013;82(1):745-774. PubMed PMC

Blancas-Mejia LM, Misra P, Dick CJ, et al. . Immunoglobulin light chain amyloid aggregation. Chem Commun (Camb). 2018;54(76):10664-10674. PubMed PMC

Xin SH, Tan L, Cao X, Yu JT, Tan L.. Clearance of amyloid beta and tau in Alzheimer’s Disease: from mechanisms to therapy. Neurotox Res. 2018;34(3):733-748. PubMed

Gertz M. Immunoglobin light chain amyloidosis: 2011 update on diagnosis, risk-stratification, and management. Am J Hematol. 2011;86:181-186. PubMed

Kyle RA, Durie BG, Rajkumar SV, et al. ; International Myeloma Working Group. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia. 2010;24(6):1121-1127. PubMed PMC

Merlini G, Bellotti V.. Molecular mechanisms of amyloidosis. N Engl J Med. 2003;349(6):583-596. PubMed

Kyle RA, Rajkumar SV.. Epidemiology of the plasma-cell disorders. Best Pract Res Clin Haematol. 2007;20(4):637-664. PubMed

Siragusa S, Morice W, Gertz MA, et al. . Asymptomatic immunoglobulin light chain amyloidosis (AL) at the time of diagnostic bone marrow biopsy in newly diagnosed patients with multiple myeloma and smoldering myeloma. A series of 144 cases and a review of the literature. Ann Hematol. 2011;90(1):101-106. PubMed

Chattopadhyay S, Thomsen H, Weinhold N, et al. . Eight novel loci implicate shared genetic etiology in multiple myeloma, AL amyloidosis, and monoclonal gammopathy of unknown significance. Leukemia. 2020;34(4):1187-1191. PubMed

da Silva Filho MI, Försti A, Weinhold N, et al. . Genome-wide association study of immunoglobulin light chain amyloidosis in three patient cohorts: comparison with myeloma. Leukemia. 2017;31(8):1735-1742. PubMed

Hemminki K, Li X, Försti A, Sundquist J, Sundquist K.. Incidence and survival in non-hereditary amyloidosis in Sweden. BMC Public Health. 2012;12(1):974. PubMed PMC

Pinney JH, Smith CJ, Taube JB, et al. . Systemic amyloidosis in England: an epidemiological study. Br J Haematol. 2013;161(4):525-532. PubMed PMC

Saunders CN, Cornish AJ, Kinnersley B, Law PJ, Houlston RS.. Searching for causal relationships of glioma: a phenome-wide Mendelian randomisation study. Br J Cancer. 2021;124(2):447-454. PubMed PMC

Went M, Cornish AJ, Law PJ, et al. . Search for multiple myeloma risk factors using Mendelian randomization. Blood Adv. 2020;4(10):2172-2179. PubMed PMC

Gertz MA. Immunoglobulin light chain amyloidosis: 2016 update on diagnosis, prognosis, and treatment. Am J Hematol. 2016;91(9):947-956. PubMed

Meziane I, Huhn S, Filho MIDS, et al. . Genome-wide association study of clinical parameters in immunoglobulin light chain amyloidosis in three patient cohorts. Haematologica. 2017;102(10):e411-e414. PubMed PMC

Kleinstern G, Camp NJ, Berndt SI, et al. . Lipid trait variants and the risk of non-Hodgkin lymphoma subtypes: a Mendelian randomization study. Cancer Epidemiol Biomarkers Prev. 2020;29(5):1074-1078. PubMed PMC

Hemani G, Zheng J, Elsworth B, et al. . The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408. PubMed PMC

Kyle RA, Larson DR, Therneau TM, et al. . Long-term follow-up of monoclonal gammopathy of undetermined significance. N Engl J Med. 2018;378(3):241-249. PubMed PMC

Turesson I, Kovalchik SA, Pfeiffer RM, et al. . Monoclonal gammopathy of undetermined significance and risk of lymphoid and myeloid malignancies: 728 cases followed up to 30 years in Sweden. Blood. 2014;123(3):338-345. PubMed PMC

Muchtar E, Dispenzieri A, Kumar SK, et al. . Immunoparesis in newly diagnosed AL amyloidosis is a marker for response and survival. Leukemia. 2017;31(1):92-99. PubMed

Shalapour S, Karin M.. Pas de deux: control of anti-tumor immunity by cancer-associated inflammation. Immunity. 2019;51(1):15-26. PubMed PMC

Petty AJ, Yang Y.. Tumor-associated macrophages in hematologic malignancies: new insights and targeted therapies. Cells. 2019;8(12):1526. PubMed PMC

Kawano Y, Roccaro AM, Ghobrial IM, Azzi J.. Multiple myeloma and the immune microenvironment. Curr Cancer Drug Targets. 2017;17(9):806-818. PubMed

Dostert C, Grusdat M, Letellier E, Brenner D.. The TNF family of ligands and receptors: communication modules in the immune system and beyond. Physiol Rev. 2019;99(1):115-160. PubMed

Shah N, Chari A, Scott E, Mezzi K, Usmani SZ.. B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia. 2020;34(4):985-1005. PubMed PMC

de Larrea CF, Staehr M, Lopez AV, et al. . Defining an optimal dual-targeted CAR T-cell therapy approach simultaneously targeting BCMA and GPRC5D to prevent BCMA escape-driven relapse in multiple myeloma. Blood Cancer Discov. 2020;1(2):146-154. PubMed PMC

Rosenzweig M, Urak R, Walter M, et al. . Preclinical data support leveraging CS1 chimeric antigen receptor T-cell therapy for systemic light chain amyloidosis. Cytotherapy. 2017;19(7):861-866. PubMed

Kaufman GP, Cerchione C.. Beyond Andromeda: improving therapy for light chain amyloidosis. Front Oncol. 2021;10:624573. PubMed PMC

Yi F, Frazzette N, Cruz AC, Klebanoff CA, Siegel RM.. Beyond cell death: new functions for TNF family cytokines in autoimmunity and tumor immunotherapy. Trends Mol Med. 2018;24(7):642-653. PubMed PMC

Guo Z, Zhang M, Tang H, Cao X.. Fas signal links innate and adaptive immunity by promoting dendritic-cell secretion of CC and CXC chemokines. Blood. 2005;106(6):2033-2041. PubMed

Choi BK, Kim SH, Kim YH, et al. . RELT negatively regulates the early phase of the T-cell response in mice. Eur J Immunol. 2018;48(10):1739-1749. PubMed

Went M, Sud A, Försti A, et al. ; PRACTICAL Consortium. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma [published correction appears in Nat Commun. 2019;10(1):213]. Nat Commun. 2018;9(1):3707. PubMed PMC

Luyendyk JP, Schoenecker JG, Flick MJ.. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood. 2019;133(6):511-520. PubMed PMC

Pudusseri A, Sanchorawala V, Sloan JM, et al. . Prevalence and prognostic value of D-dimer elevation in patients with AL amyloidosis. Am J Hematol. 2019;94(10):1098-1103. PubMed

Mohty D, Damy T, Cosnay P, et al. . Cardiac amyloidosis: updates in diagnosis and management. Arch Cardiovasc Dis. 2013;106(10):528-540. PubMed

Kastritis E, Roussou M, Michael M, et al. ; Greek Myeloma Study Group. High levels of serum angiogenic growth factors in patients with AL amyloidosis: comparisons with normal individuals and multiple myeloma patients. Br J Haematol. 2010;150(5):587-591. PubMed

Jakob C, Sterz J, Zavrski I, et al. . Angiogenesis in multiple myeloma. Eur J Cancer. 2006;42(11):1581-1590. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...