Aspergillus niger Environmental Isolates and Their Specific Diversity Through Metabolite Profiling
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
34248871
PubMed Central
PMC8261049
DOI
10.3389/fmicb.2021.658010
Knihovny.cz E-resources
- Keywords
- Aspergillus niger environmental isolates, Biolog FF MicroplateTM, extrolite profile, molecular analyses, multi-criteria data analysis,
- Publication type
- Journal Article MeSH
We present a biological profile of 16 Aspergillus niger environmental isolates from different types of soils and solid substrates across a pH range, from an ultra-acidic (<3.5) to a very strongly alkaline (>9.0) environment. The soils and solid substrates also differ in varying degrees of anthropic pollution, which in most cases is caused by several centuries of mining activity at old mining sites, sludge beds, ore deposits, stream sediments, and coal dust. The values of toxic elements (As, Sb, Zn, Cu, Pb) very often exceed the limit values. The isolates possess different macro- and micromorphological features. All the identifications of Aspergillus niger isolates were confirmed by molecular PCR analysis and their similarity was expressed by RAMP analysis. The biochemical profile of isolates based on FF-MicroPlate tests from the Biolog system showed identical biochemical reactions in 50 tests, while in 46 tests the utilisation reactions differed. The highest similarity of strains isolated from substrates with the same pH, as well as the most suitable biochemical tests for analysis of the phenotypic similarity of isolated strains, were confirmed when evaluating the biochemical profile using multicriterial analysis in the Canoco program. The isolates were screened for mycotoxin production by thin-layer chromatography (TLC), as well. Two of them were able to synthesise ochratoxin A, while none produced fumonisins under experimental conditions. Presence of toxic compounds in contaminated sites may affect environmental microscopic fungi and cause the genome alteration, which may result in changes of their physiology, including the production of different (secondary) metabolites, such as mycotoxins.
Department of Microbiology Slovak Medical University in Bratislava Bratislava Slovakia
Department of Molecular Biology Faculty of Natural Sciences Comenius University Bratislava Slovakia
Department of Soil Science Faculty of Natural Sciences Comenius University Bratislava Slovakia
Institute of Molecular Biology Slovak Academy of Sciences Bratislava Slovakia
See more in PubMed
Abdel-Kareem O. (2010). Monitoring, controlling and prevention of the fungal deterioration of textile artifacts in the Museum of Jordanian heritage. Mediterr. Archeol. Archaeom. 10 85–96.
Acosta-Rodriguez I., Cárdenas-Gonzáles J. F., Pérez A. S. R., Oviedo J. T., Martínez-Juárez V. M. (2018). Bioremoval of different heavy metals by the resistant fungal strain Aspergillus niger. Hindawi Bioinorg. Chem. Appl. 2018:3457196. 10.1155/2018/3457196 PubMed DOI PMC
Act No. 220 (2004). Slovak Republic On the protection and use of agricultural land and amending Act no. 245/2003 Coll. on Integrated Prevention and Control of Environmental Pollution and on Amendments to Certain Acts. 2278–2315.
Adeleke R., Nwangburuka C., Oboirien B. (2017). Origins, roles and fate of organic acids in soils: a review. S. Afr. J Bot. 08 393–406. 10.1016/j.sajb.2016.09.002 DOI
Akhtar N., Shoaib A., Munir S., Ali A., Khurshid S. (2014). Isolation, identification and enzyme production profile of A. niger. J. Anim. Plant. Sci. 24 1438–1443.
Aldosari M. A., Darwish S. S., Adam M. A., Elmarzugi N. A., Ahmed S. M. (2019). Using ZnO nanoparticles in fungal inhibition and self-protection of exposed marble columns in historic sites. Archeol. Anthrop. Sci. 11 3407–3422. 10.1007/s12520-018-0762-z DOI
Asem S. O., Misak R. F., Alenezi A., Roy W. Y. (2016). Effects of crude oil on some soils types of Kuwait. Kuwait J. Sci. 43 150–161.
Aziz N. H., Zainol N. (2018). Isolation and identification of soil fungi isolates from forest soil for flooted soil recovery. IOP Conf. Series Mater. Sci. Eng. 342:012028. 10.1088/1757-899X/342/1/012028 DOI
Bang J. S., Hesterberg D. (2004). Dissolution of trace element contaminants from two coastal plain soils as affected by pH. J. Environ. Qual. 33:891. 10.2134/jeq2004.0891 PubMed DOI
Beccari G., Stępień Ł, Onofri A., Lattanzio V. M. T., Ciasca B., Abd-El Fatah S. I., et al. (2020). In Vitro fumonisin biosynthesis and genetic structure of Fusarium verticillioides strains from five mediterranean countries. Microorg 8:241. 10.3390/microorganisms8020241 PubMed DOI PMC
Bedrna Z., Dlapa P., Šimkovic I., Šimonovičová A. (2010). Soils with Umbric Horizon in Slovakia. Slovakia: Comenius University in Bratislava, 226.
Bochner B. R. (2009). Global phenotypic characterization of bacteria. FEMS Microbiol. Rev. 33 191–205. 10.1111/j.1574-6976.2008.00149.x PubMed DOI PMC
Braak C. J. F., Smilauer P. (2012). CANOCO 5. Reference Manual and User’s Guide to Canoco for Windows: Software for Ordination. Ithaca, NY: Microcomputer Power, 496.
Chávez R., Fierro F., Garcia-Rico R. O., Vaca I. (2015). Filamntous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Front. Microbiol. 6:903. 10.3389/fmicb.2015.00903 PubMed DOI PMC
Cho B. H., Chino H., Tsuji H., Kunito T., Nagaoka K., Otsuka S., et al. (1997). Laboratory-scale bioremediation of oil-contaminated soil of Kuwait with soil amendment materials. Chemosphere 35 1599–1611. 10.1016/s0045-6535(97)00220-8 PubMed DOI
Choe S. I., Gravelat F. N., Al Abdallah Q., Lee M. J., Gibbs B. F., Sheppard D. C. (2012). Role of Aspergillus niger acrA in arsenic resistance and its use as the basis for an arsenic biosensor. Appl. Environ. Microbiol. 78:3855. 10.1128/AEM.07771-11 PubMed DOI PMC
Čurlík J., Bedrna Z., Hanes J., Holobradý K., Hrtánek B., Kotvas F., et al. (2003). Soil Reaction and its Adjustment. Slovak, NY: Bratislava, Jaroslav Suchoň, Soma print Bratislava, 249.
Doolotkeldieva T., Konurbaeva M., Bobusheva S. (2018). Microbial communities in pesticide-contaminated soils in Kyrgyzstan and bioremediation possibilities. Environ. Sci. Pollut. Res. Int. 25 31848–31862. 10.1007/s11356-017-0048-5 PubMed DOI PMC
Egbuta M. A., Mwanza M., Babalola O. O. (2017). Health risk associated with exposure to filamntous fungi. Int. J Environ. Res. Public Health 14:719. 10.3390/ijerph14070719 PubMed DOI PMC
Eisendle M., Oberegger H., Buttinger R., Illmer P., Haas H. (2004). Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH Regulatory system in Aspergillus nidulans. Eukaryot Cell 3 561–563. 10.1128/ec.3.2.561-563.2004 PubMed DOI PMC
Esteban A., Abarca M. L., Bragulat M. R., Cabañes F. J. (2006). Influence of pH and incubation time on ochratoxin A production by Aspergillus carbonarius in culture media. J. Food Prot. 68 1435–1440. 10.4315/0362-028x-68.7.1435 PubMed DOI
Filtenborg O., Frisvad J., Thrane U. (1989). Analysis and screening for mycotoxins and other secondary metabolites in fungal cultures by tin-layer chromatography and high-performance liquid chromatography. Arch. Environ. Contam. Toxicol. 3:331. 10.1007/bf01062357 PubMed DOI
Fox E. M., Howlett B. (2008). Secondary metabolism: regulation and role in fungal biology. Curr. Opin. Microbiol. 11 481–487. 10.1016/j.mib.2008.10.007 PubMed DOI
Freitas J. S., Silva E. M., Leal J., Gras D. E., Martinez-Rossi N. M., Dos Santos L. D., et al. (2011). Transcription of the Hsp30, Hsp70, and Hsp90 heat shock protein genes is modulated by the PalA protein in response to acid pH-sensing in the fungus Aspergillus nidulans. Cell Stress Chaperon. 16 565–572. 10.1007/s12192-011-0267-5 PubMed DOI PMC
Frisvad J. C., Smedsgaard J., Samson R. A., Larsen T. O., Thrane U. (2007). Fumonisin B2 production by Aspergillus niger. J. Agri. Food Chem. 55 9727–9732. PubMed
Geweely N. S., Afifi H. A., Ibrahim D. M., Soliman M. M. (2019). Efficacy of essential oils on fungi isolated from archeological objects in Saqqara excavation. Egypt Geomicrobiol. J. 36 148–168. 10.1080/01490451.2018.1520938 DOI
Gryta A., Fraç M., Oszut K. (2014). The application of the Biolog ecoplate approach in ecotoxicological evaluation of diary sewage sludge. Appl. Biochem. Biotechnol. 174 1434–1443. 10.1007/s12010-014-1131-8 PubMed DOI PMC
Gulzar T., Huma T., Jalal F., Iqbal S., Abzar S., Kiran S., et al. (2017). Bioremediation of synthetic and industrial effluents by Aspergillus niger isolated from contaminated soil following a sequential strategy. Molecules 22:2244. 10.3390/molecules2212244 PubMed DOI PMC
Han F. X. (2007). Biogeochemistry of trace elements in arid environments. Environ. Pollut. 13 267–302. 10.1007/978-1-4020-6024-3 DOI
Hindersah R., Asda K. R., Herdiyantoro D., Kamaluddin N. N. (2018). Isolation of mercury-resistant fungi from mercury-contaminated agricultural soil. Agriculture 8:33. 10.3390/agriculture8030033 DOI
Hughes M., Poole R. (1991). Metal speciation and microbial growth - The hard (and soft) facts. Microbiology-sgm 137 725–734. 10.1099/00221287-137-4-725 DOI
Karlovsky P. (2008). Secundary Metabolites in Soil Ecology. Berlin, Heidelberg: Springer Verlag, 10.1007/978-3-540-74543-3 DOI
Katz M. E., Rice R. N., Cheetham B. F. (1994). Isolation and characterization of an Aspergillus nidulans gene encoding an alkaline protease. Gene 150 287–292. 10.1016/0378-1119(94)90439-1 PubMed DOI
Khaledian Y., Pereira P., Brevik E. C., Pundyte N., Paliulis D. (2017). The Influence of organic carbon and pH on heavy metals, potassium, and magnesium levels in Lithuanian Podzols. Land Degrad. Develop. 28 345–354. 10.1002/ldr.2638 DOI
Klingler J. M., Stowe R. P., Obenhuber D. C., Groves T. O., Mishra S. K., Pierson D. L. (1992). Evaluation of the Biolog automated microbial identification system. Appl. Environ Microbiol. 58 2089–2092. 10.1128/aem.58.6.2089-2092.1992 PubMed DOI PMC
Knapp D. G., Kovács G. M. (2016). Interspecific metabolic diversity of root-colonizing endophytic fungi revealed by enzyme activity tests. FEMS Microbiol. Ecol. 92:fiw190. 10.1093/femsec/fiw190 PubMed DOI
Kolenčík M., Vojtková H., Urík M., Čaplovičová M., Pištora J., Cada M., et al. (2017). Heterothropic bacterial leaching of zinc and arsenic from artificial adamite. Water Air Soil Pollut. 228:224. 10.1007/s11270-017-3400-y DOI
Massi F. P., Sartori D., de Souza Ferranti L., Iamanaka B. T., Taniwaki M. H., Vieira M. L. (2016). Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of Aspergillus niger and Aspergillus welwitschiae. Ind. J. Food Microbiol. 16 19–28. 10.1016/j.ijfoodmicro.2016.01.010 PubMed DOI
Mikušová P., Caboň M., Melichárková A., Urík M., Ritieni A., Slovák M. (2020). Genetic diversity, ochratoxin A and fumonosin profiles of strains of Aspergillus section Nigri isolated from dried vine fruits. Toxins 12:592. 10.3390/toxins12090592 PubMed DOI PMC
Nelson P. E., Desjardins A. E., Plattner R. D. (1993). Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry and significance. Ann. Rev. Phytopathol. 31 233–252. 10.1146/annurev.py.31.090193.001313 PubMed DOI
Nielsen K. F., Morgensen J. M., Johansen M., Larsen T. O. (2020). Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Anal. Bioanal. Chem. 395 1225–1242. 10.1007/s00216-009-3081-5 PubMed DOI
Noonim P., Mahakarnchanakul W., Nielsen K. F., Frisvad J. C., Samson R. A. (2009). Fumonisin B2 Production by Aspergillus niger in Thai coffee beans. Food Addit. Contam. Part A 26 94–100. 10.1080/02652030802366090 PubMed DOI
Odoni D. I., van Gaal M. P., Schonewille T., Tamayo-Ramos J. A., Martins dos Santos V. A. P., Suarez-Diez M., et al. (2017). Aspergillus niger secretes citrate to increase iron bioavailability. Front. Microbiol. 8:1424. 10.3389/fmicb.2017.01424 PubMed DOI PMC
Olaniran A., Balgobind A., Pillay B. (2013). Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int. J. Mo.l Sci. 14 10197–10228. 10.3390/ijms140510197 PubMed DOI PMC
Omar A. M., Taha A. S., Mohamed A. A. A. (2018). Microbial deterioration of some aecheological artifacts: Manipulation and treatment. Eur. J Exp. Biol. 8:21. 10.201767/2248-9215.100062 DOI
Pangallo D., Kraková L., Chovanová K., Šimonovičová A., De Leo F., Urzi C. (2012). Analysis and comparison of the microflora isolated from fresco surface and from surrounding air environment trough molecular and biodegradative assays. World J Microbiol. Biotechnol. 28 2015–2027. 10.1007/s11274-012-1004-7 PubMed DOI
Peñalva M. A., Arst H. N., Jr. (2002). Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol. Mol. Biol. Rev. 66 426–446. 10.1128/MMBR.66.3.426-446.2002 PubMed DOI PMC
Perrone G., Logrieco A. F., Frisvad J. C. (2017). Comments on “screening and identification of novel Ochratoxin a-producing fungi from grapes. in reporting ochratoxin a production from strains of Aspergillus, Penicillium and Talaromyces. Toxins 9:65. 10.3390/toxins9020065 PubMed DOI PMC
Rieuwerts J. S., Thornton I., Farago M. E., Ashmoret M. R. (1998). Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem. Spetiat. Bioavailab. 10 61–75. 10.3184/095422998782775835 DOI
Rohlfs M., Churchill A. C. L. (2011). Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet. Biol. 48 23–34. 10.1016/j.fgb.2010.08.008 PubMed DOI
Rohlfs M., Kürschner L. (2010). Saprophagous insect larvae, Drosophila melanogaster, profit from increased species richness in beneficial microbes. J. Appl. Entomol. 134 667–671.
Rola B., Pawlik A., Fraç M., Małek W., Targoñski Z., Rogalski J., et al. (2015). Thephenotypic and genomic diversity of Aspergillus strains producing glucosedehydrogenase. Acta Biochim. Pol. 62 747–755. 10.18388/abp.2015_1125 PubMed DOI
Rutkowska B., Szulc W., Bomze K., Gozdowski D., Spychaj-Fabisiak E. (2015). Soil factors affecting solubility and mobility of zinc in contaminated soils. Int. J. Environ. Sci. Technol. 12 1687–1694. 10.1007/s13762-014-0546-7 DOI
Selvig K., Alspaugh J. A. (2011). pH response pathways in fungi: adapting to host-derived and environmental signals. Mycobiology 39 249–256. 10.5941/MYCO.2011.39.4.249 PubMed DOI PMC
Šimonovičová A., Ferianc P., Vojtková H., Pangallo D., Hanajík P., Krakovská L., et al. (2017). Alkaline Technosol contaminated by former mining acitivity and its culturable autochthonous microbiota. Chemosphere 171 89–96. 10.1016/j.chemosphere.2016.11.131 PubMed DOI PMC
Šimonovičová A., Hlinková E., Chovanová K., Pangallo D. (2013). Influence of the environment on the morphological and biochemical characteristics of different Aspergillus niger wild type strains. Indian J. Microbiol. 53 187–193. 10.1007/s12088-012-0317-4 PubMed DOI PMC
Šimonovičová A., Kraková L., Pauditšová E., Pangallo D. (2019). Occurence and diversity of cultivable autochthonous microscopic fungi in substrates of old environmental loads from mining acitivites in Slovakia. Ecotoxicol. Environ. Safe. 172 194–202. 10.1016/j.ecoenv.2019.01.064 PubMed DOI
Šimonovičová A., Kupka D., Nosalj S., Kraková L., Drahovská H., Bártová Z., et al. (2020). Differences in metabolities production using the Biolog FF MicroplateTM system with anemphasis on some organic acids of Aspergillus niger wild type strains. Biologia 75 1537–1546. 10.2478/s11756-020-00521-y DOI
Singh M. P. (2009). Application of Biolog FF microplate for substrate utilization and metabolite profiling of closely related fungi. J. Microbiol. Methods 77 102–108. 10.1016/j.mimet.2009.01.014 PubMed DOI
Stefanowicz A. (2006). The Biolog plates technique as a toll in ecological studies of microbial communities. Polish J Environ. Stud. 15 669–676.
Steiger M. G., Blumhoff M. L., Mattanovich D., Sauer M. (2013). Biochemistry of microbial itaconic acid production. Front. Microbiol. 4:23. 10.3389/fmicb.201300023 PubMed DOI PMC
Stępieñ Ł. (2020). Fusarium: mycotoxins, taxonomy, pathogenicity. Microorg 8:1404. 10.3390/microorganisms8091404 PubMed DOI PMC
Storari M., Dennert F. G., Bigler L., Gessler C., Broggini G. A. L. (2012). Isolation of mycotoxins producing black Aspergilli in herbal teas available on the Swiss market. Food Control 26 157–161. 10.1016/j.foodcont.2012.01.026 DOI
Susca A., Proctor R. H., Butchko R. A., Haidukowski M., Stea G., Logrieco A. F. (2014). Variation in the fumonisin biosynthetic gene cluster in fumonisin-producing and non-producing black Aspergilli. Fungal Genet. Biol. 73 39–52. 10.1016/j.fgb.2014.09.009 PubMed DOI
Susca A., Proctor R. H., Morelli M., Haidukowski M., Gallo A., Logrieco A. F., et al. (2016). Variation in fumonosin and ochratoxin production associated with differences in biosynthetic gene content in Aspergillus niger and A. welwitschiae isolates from multiple crop and geographic origins. Front. Microbiol. 7:1412. 10.3389/fmicb.2016.01412 PubMed DOI PMC
Utobo E. B., Tewari L. (2014). Soil enzymes as bioindicators of soil ecosystem status. App. Ecol. Env. Res. 13 147–169.
van Kuyk P. A., Cheetham B. F., Katz M. E. (2000). Analysis of two Aspergillus nidulans genes encoding extracellular proteases. Fungal Genet. Biol. 29 201–210. 10.1006/fgbi.2000.1195 PubMed DOI
Vašinková M., Babičová A., Dlabaja M. (2017). Biodiversity of microscopic filamentous fungi isolated from Ostrava lagoons (Lagoons Ostramo, CzechRepublic). Int. Multidisciplinary Sci. Geol. Conf. Surveying Geol. and Mining Ecol. Manag. SGEM 17 535–540. 10.5593/sgem2017/61/S24.070 DOI
Xinhui D., Runhua C., Yan S., Shengnan Z. (2018). Preliminary bioleaching of heavy metals from contaminated soil applying Aspergillus niger F2. AJESE 2 72–78.
Zafra G., Absalón A. E., Cortés-Espinosa D. V. (2015). Morphological changes and growth of filamentous fungi in the presence of high concentrations of PAHs. Braz. J. Microbiol. 46 937–941. 10.1590/S1517-838246320140575 PubMed DOI PMC