New Concept and Apparatus for Cytocentrifugation and Cell Processing for Microscopy Analysis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TE02000058
Technologická Agentura České Republiky
LM2015064
Ministerstvo Školství, Mládeže a Tělovýchovy
ENOCH- CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
PubMed
34281153
PubMed Central
PMC8268716
DOI
10.3390/ijms22137098
PII: ijms22137098
Knihovny.cz E-zdroje
- Klíčová slova
- cytocentrifugation, microscopy, sample processing, staining,
- MeSH
- barvení a značení metody MeSH
- centrifugace přístrojové vybavení metody MeSH
- cytologické techniky přístrojové vybavení metody MeSH
- lidé MeSH
- mikroskopie metody MeSH
- odběr biologického vzorku metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cytocentrifugation is a common technique for the capture of cells on microscopic slides. It usually requires a special cytocentrifuge or cytorotor and cassettes. In the study presented here, we tested the new concept of cytocentrifugation based on the threaded connection of the lid and the sample holder to ensure an adjustable flow of solutions through the filters and the collection of the filtered solutions in the reservoir during centrifugation. To test this concept, we developed a device for the preparation of cell samples on circular coverslips. The device was tested for the capture and sample processing of both eukaryotic and prokaryotic cells, cell nuclei, and mitochondria for microscopy analysis including image cytometry. Moreover, an efficient procedure was developed for capturing formaldehyde-fixed cells on non-treated coverslips without cell drying. The results showed that the tested arrangement enables the effective capture and processing of all of the tested samples and the developed device represents an inexpensive alternative to common cytocentrifuges, as only the paper filter is consumed during sample processing, and no special centrifuge, cytorotor, or cassette is necessary. As no additional system of solution removal is required during sample staining, the tested concept also facilitates the eventual automation of the staining procedure.
Zobrazit více v PubMed
Bots G.T.A., Went L.N., Schaberg A. Een toestel voor cytologisch onderzoek van de liquor cerebrospinalis. Ned. T. Geneeskd. 1963;107:445–446. PubMed
Dore C.F., Balfour B.M. A device for preparing cell spreads. Immunology. 1965;9:403–405. PubMed PMC
Watson P. A slide centrifuge: An apparatus for concentrating cells in suspension onto a microscope slide. J. Lab. Clin. Med. 1966;68:494–501. PubMed
Stokes B.O. Principles of cytocentrifugation. Lab. Med. 2004;35:434–437. doi: 10.1309/FTT59GWKDWH69FB0. DOI
Bucci D. Preparation of Cytological Slides from Mononuclear Cell Fraction of Bone Marrow Aspirate or Peripheral Blood. Biorepositories and Biospecimen Research Branch, National Cancer Institute; Bethesda, MD, USA: 2014. [(accessed on 21 May 2018)]. Available online: https://brd.nci.nih.gov/brd/sop/download-pdf/1088.
Sen R., Hasija S., Kalra R., Garg S., Singh A., Megha Morphometric analysis and immunocytochemical staining on cytospin preparation in effusion cytology: A study. J. Cytol. Histol. 2015;6:314.
Oertel J., Oertel B., Dorken B. Detection of small numbers of cells characteristic for haematological disorders in peripheral blood (the deep diff) Clin. Lab. Haematol. 2002;24:73–80. doi: 10.1046/j.1365-2257.2002.00434.x. PubMed DOI
Wright R.G., Halford J.A. Evaluation of thin-layer methods in urine cytology. Cytopathology. 2001;12:306–313. doi: 10.1046/j.1365-2303.2001.00341.x. PubMed DOI
Chapinrobertson K., Dahlberg S.E., Edberg S.C. Clinical and laboratory analyses of cytospin-prepared gram stains for recovery and diagnosis of bacteria from sterile body-fluids. J. Clin. Microbiol. 1992;30:377–380. doi: 10.1128/jcm.30.2.377-380.1992. PubMed DOI PMC
da Cunha Santos G., Saieg M.A. Preanalytic specimen triage: Smears, cell blocks, cytospin preparations, transport media, and cytobanking. Cancer Cytopathol. 2017;125:455–464. doi: 10.1002/cncy.21850. PubMed DOI
Marcos R., Santos M., Marrinhas C., Correia-Gomes C., Caniatti M. Cytocentrifuge preparation in veterinary cytology: A quick, simple, and affordable manual method to concentrate low cellularity fluids. Vet. Clin. Path. 2016;45:725–731. doi: 10.1111/vcp.12423. PubMed DOI
Hu X., Laguerre V., Packert D., Nakasone A., Moscinski L. A simple and efficient method for preparing cell slides and staining without using cytocentrifuge and cytoclips. Int. J. Cell Biol. 2015;2015:813216. doi: 10.1155/2015/813216. PubMed DOI PMC
Krishnamurthy V., Satish S., Doreswamy S.M., Vimalambike M.G. Comparison of cell preparations between commercially available filter cards of the cytospin with custom made filter cards. J. Clin. Diagn. Res. 2016;10:EC18–EC20. doi: 10.7860/JCDR/2016/20082.8204. PubMed DOI PMC
Stadler C., Skogs M., Brismar H., Uhlen M., Lundberg E. A single fixation protocol for proteome-wide immunofluorescence localization studies. J. Proteom. 2010;73:1067–1078. doi: 10.1016/j.jprot.2009.10.012. PubMed DOI
Wang Y., Zhang W., Yao Q. Copper-based biomaterials for bone and cartilage tissue engineering. J. Orthop. Translat. 2021;29:60–71. doi: 10.1016/j.jot.2021.03.003. PubMed DOI PMC
Byerley J.J., Teo W.K. Oxidation of formaldehyde by copper(I1) in aqueous solution. Can. J. Chem. 1969;47:3355–3360. doi: 10.1139/v69-556. DOI
Ligasova A., Vydrzalova M., Burianova R., Bruckova L., Vecerova R., Janostakova A., Koberna K. A new sensitive method for the detection of mycoplasmas using fluorescence microscopy. Cells. 2019;8:1510. doi: 10.3390/cells8121510. PubMed DOI PMC
Maurya D.K., Halo J. An imagej program for semiautomatic quantification of DNA damage at single-cell level. Int. J. Toxicol. 2014;33:362–366. doi: 10.1177/1091581814549961. PubMed DOI
Guillou E., Ibarra A., Coulon V., Casado-Vela J., Rico D., Casal I., Schwob E., Losada A., Mendez J. Cohesin organizes chromatin loops at DNA replication factories. Gene Dev. 2010;24:2812–2822. doi: 10.1101/gad.608210. PubMed DOI PMC
Ligasova A., Liboska R., Rosenberg I., Koberna K. The fingerprint of anti-bromodeoxyuridine antibodies and its use for the assessment of their affinity to 5-bromo-2’-deoxyuridine in cellular DNA under various conditions. PLoS ONE. 2015;10:e0132393. doi: 10.1371/journal.pone.0132393. PubMed DOI PMC
Frezza C., Cipolat S., Scorrano L. Organelle isolation: Functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat. Protoc. 2007;2:287–295. doi: 10.1038/nprot.2006.478. PubMed DOI
Ligasova A., Liboska R., Friedecky D., Micova K., Adam T., Ozdian T., Rosenberg I., Koberna K. Dr Jekyll and Mr Hyde: A strange case of 5-ethynyl-2’-deoxyuridine and 5-ethynyl-2’-deoxycytidine. Open Biol. 2016;6:150172. doi: 10.1098/rsob.150172. PubMed DOI PMC
Ligasova A., Strunin D., Friedecky D., Adam T., Koberna K. A fatal combination: A thymidylate synthase inhibitor with DNA damaging activity. PLoS ONE. 2015;10:e0117459. doi: 10.1371/journal.pone.0117459. PubMed DOI PMC
Ligasova A., Konecny P., Frydrych I., Koberna K. Cell cycle profiling by image and flow cytometry: The optimised protocol for the detection of replicational activity using 5-Bromo-2’-deoxyuridine, low concentration of hydrochloric acid and exonuclease III. PLoS ONE. 2017;12:e0175880. doi: 10.1371/journal.pone.0175880. PubMed DOI PMC
Ligasova A., Strunin D., Koberna K. A new method of the visualization of the double-stranded mitochondrial and nuclear DNA. PLoS ONE. 2013;8:e66864. doi: 10.1371/journal.pone.0066864. PubMed DOI PMC
Carpenter A.E., Jones T.R., Lamprecht M.R., Clarke C., Kang I.H., Friman O., Guertin D.A., Chang J.H., Lindquist R.A., Moffat J., et al. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7:R100. doi: 10.1186/gb-2006-7-10-r100. PubMed DOI PMC
Kamentsky L., Jones T.R., Fraser A., Bray M.A., Logan D.J., Madden K.L., Ljosa V., Rueden C., Eliceiri K.W., Carpenter A.E. Improved structure, function and compatibility for CellProfiler: Modular high-throughput image analysis software. Bioinformatics. 2011;27:1179–1180. doi: 10.1093/bioinformatics/btr095. PubMed DOI PMC
Berg S., Kutra D., Kroeger T., Straehle C.N., Kausler B.X., Haubold C., Schiegg M., Ales J., Beier T., Rudy M., et al. ilastik: Interactive machine learning for (bio) image analysis. Nat. Methods. 2019;16:1226–1232. doi: 10.1038/s41592-019-0582-9. PubMed DOI