Functional Specialization within the EXO70 Gene Family in Arabidopsis
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
18-12579S
Grantová Agentura České Republiky
19-02242J
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000738
Centre for Experimental Plant Biology
LM2015062
Czech Bioimaging
PubMed
34299214
PubMed Central
PMC8303320
DOI
10.3390/ijms22147595
PII: ijms22147595
Knihovny.cz E-resources
- Keywords
- Arabidopsis, EXO70, EXO70A1, EXO70B1, exocyst complex, polar exocytosis,
- MeSH
- Arabidopsis genetics growth & development metabolism MeSH
- Cell Membrane metabolism MeSH
- Exocytosis MeSH
- Arabidopsis Proteins genetics metabolism MeSH
- Gene Expression Regulation, Plant MeSH
- Transport Vesicles metabolism MeSH
- Vesicular Transport Proteins genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Arabidopsis Proteins MeSH
- Vesicular Transport Proteins MeSH
Localized delivery of plasma-membrane and cell-wall components is a crucial process for plant cell growth. One of the regulators of secretory-vesicle targeting is the exocyst tethering complex. The exocyst mediates first interaction between transport vesicles and the target membrane before their fusion is performed by SNARE proteins. In land plants, genes encoding the EXO70 exocyst subunit underwent an extreme proliferation with 23 paralogs present in the Arabidopsis (Arabidopsis thaliana) genome. These paralogs often acquired specialized functions during evolution. Here, we analyzed functional divergence of selected EXO70 paralogs in Arabidopsis. Performing a systematic cross-complementation analysis of exo70a1 and exo70b1 mutants, we found that EXO70A1 was functionally substituted only by its closest paralog, EXO70A2. In contrast, none of the EXO70 isoforms tested were able to substitute EXO70B1, including its closest relative, EXO70B2, pointing to a unique function of this isoform. The presented results document a high degree of functional specialization within the EXO70 gene family in land plants.
Institute of Experimental Botany Czech Academy of Sciences Rozvojová 263 16502 Prague Czech Republic
See more in PubMed
Novick P., Field C., Schekman R. Identification of 23 Complementation Groups Required for Post-Translational Events in the Yeast Secretory Pathway. Cell. 1980;21:205–215. doi: 10.1016/0092-8674(80)90128-2. PubMed DOI
Guo W., Grant A., Novick P. Exo84p Is an Exocyst Protein Essential for Secretion. J. Biol. Chem. 1999;274:23558–23564. doi: 10.1074/jbc.274.33.23558. PubMed DOI
TerBush D.R., Maurice T., Roth D., Novick P. The Exocyst Is a Multiprotein Complex Required for Exocytosis in Saccharomyces Cerevisiae. EMBO J. 1996;15:6483–6494. doi: 10.1002/j.1460-2075.1996.tb01039.x. PubMed DOI PMC
Elias M. The Exocyst Complex in Plants. Cell Biol. Int. 2003;27:199–201. doi: 10.1016/S1065-6995(02)00349-9. PubMed DOI
Cvrčková F., Grunt M., Bezvoda R., Hála M., Kulich I., Rawat A., Zárský V. Evolution of the Land Plant Exocyst Complexes. Front. Plant Sci. 2012;3:159. doi: 10.3389/fpls.2012.00159. PubMed DOI PMC
Žárský V., Sekereš J., Kubátová Z., Pečenková T., Cvrčková F. Three Subfamilies of Exocyst EXO70 Family Subunits in Land Plants: Early Divergence and Ongoing Functional Specialization. J. Exp. Bot. 2020;71:49–62. doi: 10.1093/jxb/erz423. PubMed DOI
Fendrych M., Synek L., Pecenková T., Drdová E.J., Sekeres J., de Rycke R., Nowack M.K., Zársky V. Visualization of the Exocyst Complex Dynamics at the Plasma Membrane of Arabidopsis Thaliana. Mol. Biol. Cell. 2013;24:510–520. doi: 10.1091/mbc.e12-06-0492. PubMed DOI PMC
Fendrych M., Synek L., Pecenková T., Toupalová H., Cole R., Drdová E., Nebesárová J., Sedinová M., Hála M., Fowler J.E., et al. The Arabidopsis Exocyst Complex Is Involved in Cytokinesis and Cell Plate Maturation. Plant Cell. 2010;22:3053–3065. doi: 10.1105/tpc.110.074351. PubMed DOI PMC
Synek L., Schlager N., Eliás M., Quentin M., Hauser M.-T., Zárský V. AtEXO70A1, a Member of a Family of Putative Exocyst Subunits Specifically Expanded in Land Plants, Is Important for Polar Growth and Plant Development. Plant J. 2006;48:54–72. doi: 10.1111/j.1365-313X.2006.02854.x. PubMed DOI PMC
Drdová E.J., Synek L., Pečenková T., Hála M., Kulich I., Fowler J.E., Murphy A.S., Zárský V. The Exocyst Complex Contributes to PIN Auxin Efflux Carrier Recycling and Polar Auxin Transport in Arabidopsis. Plant J. 2013;73:709–719. doi: 10.1111/tpj.12074. PubMed DOI
Tan X., Feng Y., Liu Y., Bao Y. Mutations in Exocyst Complex Subunit SEC6 Gene Impaired Polar Auxin Transport and PIN Protein Recycling in Arabidopsis Primary Root. Plant Sci. 2016;250:97–104. doi: 10.1016/j.plantsci.2016.06.001. PubMed DOI
Cole R.A., McInally S.A., Fowler J.E. Developmentally Distinct Activities of the Exocyst Enable Rapid Cell Elongation and Determine Meristem Size during Primary Root Growth in Arabidopsis. BMC Plant Biol. 2014;14:386. doi: 10.1186/s12870-014-0386-0. PubMed DOI PMC
Wen T.-J., Hochholdinger F., Sauer M., Bruce W., Schnable P.S. The roothairless1 Gene of Maize Encodes a Homolog of sec3, Which Is Involved in Polar Exocytosis. Plant Physiol. 2005;138:1637–1643. doi: 10.1104/pp.105.062174. PubMed DOI PMC
Kalmbach L., Hématy K., De Bellis D., Barberon M., Fujita S., Ursache R., Daraspe J., Geldner N. Transient Cell-Specific EXO70A1 Activity in the CASP Domain and Casparian Strip Localization. Nat. Plants. 2017;3:17058. doi: 10.1038/nplants.2017.58. PubMed DOI
Li S., Chen M., Yu D., Ren S., Sun S., Liu L., Ketelaar T., Emons A.-M.C., Liu C.-M. EXO70A1-Mediated Vesicle Trafficking Is Critical for Tracheary Element Development in Arabidopsis. Plant Cell. 2013;25:1774–1786. doi: 10.1105/tpc.113.112144. PubMed DOI PMC
Vukašinović N., Oda Y., Pejchar P., Synek L., Pečenková T., Rawat A., Sekereš J., Potocký M., Žárský V. Microtubule-Dependent Targeting of the Exocyst Complex Is Necessary for Xylem Development in Arabidopsis. New Phytol. 2017;213:1052–1067. doi: 10.1111/nph.14267. PubMed DOI
Marković V., Cvrčková F., Potocký M., Kulich I., Pejchar P., Kollárová E., Synek L., Žárský V. EXO70A2 Is Critical for Exocyst Complex Function in Pollen Development. Plant Physiol. 2020;184:1823–1839. doi: 10.1104/pp.19.01340. PubMed DOI PMC
Beuder S., Dorchak A., Bhide A., Moeller S.R., Petersen B.L., MacAlister C.A. Exocyst Mutants Suppress Pollen Tube Growth and Cell Wall Structural Defects of Hydroxyproline O-Arabinosyltransferase Mutants. Plant J. 2020;103:1399–1419. doi: 10.1111/tpj.14808. PubMed DOI PMC
Ogura T., Goeschl C., Filiault D., Mirea M., Slovak R., Wolhrab B., Satbhai S.B., Busch W. Root System Depth in Arabidopsis Is Shaped by EXOCYST70A3 via the Dynamic Modulation of Auxin Transport. Cell. 2019;178:400–412.e16. doi: 10.1016/j.cell.2019.06.021. PubMed DOI
Kulich I., Pečenková T., Sekereš J., Smetana O., Fendrych M., Foissner I., Höftberger M., Zárský V. Arabidopsis Exocyst Subcomplex Containing Subunit EXO70B1 Is Involved in Autophagy-Related Transport to the Vacuole. Traffic. 2013;14:1155–1165. doi: 10.1111/tra.12101. PubMed DOI
Hong D., Jeon B.W., Kim S.Y., Hwang J.-U., Lee Y. The ROP2-RIC7 Pathway Negatively Regulates Light-Induced Stomatal Opening by Inhibiting Exocyst Subunit Exo70B1 in Arabidopsis. New Phytol. 2016;209:624–635. doi: 10.1111/nph.13625. PubMed DOI
Zhao T., Rui L., Li J., Nishimura M.T., Vogel J.P., Liu N., Liu S., Zhao Y., Dangl J.L., Tang D. A Truncated NLR Protein, TIR-NBS2, Is Required for Activated Defense Responses in the exo70B1 Mutant. PLoS Genet. 2015;11:e1004945. doi: 10.1371/journal.pgen.1004945. PubMed DOI PMC
Pecenková T., Hála M., Kulich I., Kocourková D., Drdová E., Fendrych M., Toupalová H., Zársky V. The Role for the Exocyst Complex Subunits Exo70B2 and Exo70H1 in the Plant-Pathogen Interaction. J. Exp. Bot. 2011;62:2107–2116. doi: 10.1093/jxb/erq402. PubMed DOI PMC
Stegmann M., Anderson R.G., Ichimura K., Pecenkova T., Reuter P., Žársky V., McDowell J.M., Shirasu K., Trujillo M. The Ubiquitin Ligase PUB22 Targets a Subunit of the Exocyst Complex Required for PAMP-Triggered Responses in Arabidopsis. Plant Cell. 2012;24:4703–4716. doi: 10.1105/tpc.112.104463. PubMed DOI PMC
Synek L., Vukašinović N., Kulich I., Hála M., Aldorfová K., Fendrych M., Žárský V. EXO70C2 Is a Key Regulatory Factor for Optimal Tip Growth of Pollen. Plant Physiol. 2017;174:223–240. doi: 10.1104/pp.16.01282. PubMed DOI PMC
Acheampong A.K., Shanks C., Cheng C.-Y., Schaller G.E., Dagdas Y., Kieber J.J. EXO70D Isoforms Mediate Selective Autophagic Degradation of Type-A ARR Proteins to Regulate Cytokinin Sensitivity. Proc. Natl. Acad. Sci. USA. 2020;117:27034–27043. doi: 10.1073/pnas.2013161117. PubMed DOI PMC
Wang J., Ding Y., Wang J., Hillmer S., Miao Y., Lo S.W., Wang X., Robinson D.G., Jiang L. EXPO, an Exocyst-Positive Organelle Distinct from Multivesicular Endosomes and Autophagosomes, Mediates Cytosol to Cell Wall Exocytosis in Arabidopsis and Tobacco Cells. Plant Cell. 2010;22:4009–4030. doi: 10.1105/tpc.110.080697. PubMed DOI PMC
Ding Y., Wang J., Chun Lai J.H., Ling Chan V.H., Wang X., Cai Y., Tan X., Bao Y., Xia J., Robinson D.G., et al. Exo70E2 Is Essential for Exocyst Subunit Recruitment and EXPO Formation in Both Plants and Animals. Mol. Biol. Cell. 2014;25:412–426. doi: 10.1091/mbc.e13-10-0586. PubMed DOI PMC
Ostertag M., Stammler J., Douchkov D., Eichmann R., Hückelhoven R. The Conserved Oligomeric Golgi Complex Is Involved in Penetration Resistance of Barley to the Barley Powdery Mildew Fungus. Mol. Plant Pathol. 2013;14:230–240. doi: 10.1111/j.1364-3703.2012.00846.x. PubMed DOI PMC
Fujisaki K., Abe Y., Ito A., Saitoh H., Yoshida K., Kanzaki H., Kanzaki E., Utsushi H., Yamashita T., Kamoun S., et al. Rice Exo70 Interacts with a Fungal Effector, AVR-Pii, and Is Required for AVR-Pii-Triggered Immunity. Plant J. 2015;83:875–887. doi: 10.1111/tpj.12934. PubMed DOI
Kulich I., Vojtíková Z., Glanc M., Ortmannová J., Rasmann S., Žárský V. Cell Wall Maturation of Arabidopsis Trichomes Is Dependent on Exocyst Subunit EXO70H4 and Involves Callose Deposition. Plant Physiol. 2015;168:120–131. doi: 10.1104/pp.15.00112. PubMed DOI PMC
Kulich I., Vojtíková Z., Sabol P., Ortmannová J., Neděla V., Tihlaříková E., Žárský V. Exocyst Subunit EXO70H4 Has a Specific Role in Callose Synthase Secretion and Silica Accumulation. Plant Physiol. 2018;176:2040–2051. doi: 10.1104/pp.17.01693. PubMed DOI PMC
Zhang X., Pumplin N., Ivanov S., Harrison M.J. EXO70I Is Required for Development of a Sub-Domain of the Periarbuscular Membrane during Arbuscular Mycorrhizal Symbiosis. Curr. Biol. 2015;25:2189–2195. doi: 10.1016/j.cub.2015.06.075. PubMed DOI
Synek L., Pleskot R., Sekereš J., Serrano N., Vukašinović N., Ortmannová J., Klejchová M., Pejchar P., Batystová K., Gutkowska M., et al. Plasma membrane electrostatic signature targets the plant exocyst complex via the EXO70 subunit. Proc. Natl. Acad. Sci. USA. under review. PubMed PMC
Wu C., Tan L., van Hooren M., Tan X., Liu F., Li Y., Zhao Y., Li B., Rui Q., Munnik T., et al. Arabidopsis EXO70A1 Recruits Patellin3 to the Cell Membrane Independent of Its Role as an Exocyst Subunit. J. Integr. Plant Biol. 2017;59:851–865. doi: 10.1111/jipb.12578. PubMed DOI
Wang W., Liu N., Gao C., Cai H., Romeis T., Tang D. The Arabidopsis Exocyst Subunits EXO70B1 and EXO70B2 Regulate FLS2 Homeostasis at the Plasma Membrane. New Phytol. 2020;227:529–544. doi: 10.1111/nph.16515. PubMed DOI
Pourcel L., Irani N.G., Lu Y., Riedl K., Schwartz S., Grotewold E. The formation of anthocyanic vacuolar inclusions in Arabidopsis thaliana and implications for the sequestration of anthocyanin pigments. Mol. Plant. 2010;3:78–90. doi: 10.1093/mp/ssp071. PubMed DOI PMC
Pečenková T., Potocká A., Potocký M., Ortmannová J., Drs M., Drdová E.J., Pejchar P., Synek L., Soukupová H., Žárský V., et al. Redundant and Diversified Roles Among Selected Arabidopsis Thaliana EXO70 Paralogs During Biotic Stress Responses. Front. Plant Sci. 2020;11:960. doi: 10.3389/fpls.2020.00960. PubMed DOI PMC
Sabol P., Kulich I., Žárský V. RIN4 Recruits the Exocyst Subunit EXO70B1 to the Plasma Membrane. J. Exp. Bot. 2017;68:3253–3265. doi: 10.1093/jxb/erx007. PubMed DOI PMC
Vukašinović N., Cvrčková F., Eliáš M., Cole R., Fowler J.E., Žárský V., Synek L. Dissecting a Hidden Gene Duplication: The Arabidopsis Thaliana SEC10 Locus. PLoS ONE. 2014;9:e94077. PubMed PMC
Hála M., Cole R., Synek L., Drdová E., Pecenková T., Nordheim A., Lamkemeyer T., Madlung J., Hochholdinger F., Fowler J.E., et al. An Exocyst Complex Functions in Plant Cell Growth in Arabidopsis and Tobacco. Plant Cell. 2008;20:1330–1345. doi: 10.1105/tpc.108.059105. PubMed DOI PMC
Karimi M., Bleys A., Vanderhaeghen R., Hilson P. Building Blocks for Plant Gene Assembly. Plant Physiol. 2007;145:1183–1191. doi: 10.1104/pp.107.110411. PubMed DOI PMC
Clough S.J., Bent A.F. Floral Dip: A Simplified Method forAgrobacterium-Mediated Transformation ofArabidopsis Thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI