ESC working group on cardiac cellular electrophysiology position paper: relevance, opportunities, and limitations of experimental models for cardiac electrophysiology research

. 2021 Nov 08 ; 23 (11) : 1795-1814.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34313298

Cardiac arrhythmias are a major cause of death and disability. A large number of experimental cell and animal models have been developed to study arrhythmogenic diseases. These models have provided important insights into the underlying arrhythmia mechanisms and translational options for their therapeutic management. This position paper from the ESC Working Group on Cardiac Cellular Electrophysiology provides an overview of (i) currently available in vitro, ex vivo, and in vivo electrophysiological research methodologies, (ii) the most commonly used experimental (cellular and animal) models for cardiac arrhythmias including relevant species differences, (iii) the use of human cardiac tissue, induced pluripotent stem cell (hiPSC)-derived and in silico models to study cardiac arrhythmias, and (iv) the availability, relevance, limitations, and opportunities of these cellular and animal models to recapitulate specific acquired and inherited arrhythmogenic diseases, including atrial fibrillation, heart failure, cardiomyopathy, myocarditis, sinus node, and conduction disorders and channelopathies. By promoting a better understanding of these models and their limitations, this position paper aims to improve the quality of basic research in cardiac electrophysiology, with the ultimate goal to facilitate the clinical translation and application of basic electrophysiological research findings on arrhythmia mechanisms and therapies.

Department of Biotechnology and Bioscience University of Milano Bicocca Milano Italy

Department of Cardiology CARIM School for Cardiovascular Diseases Maastricht University Maastricht The Netherlands

Department of Cardiology University Hospital Birmingham NHS Trust Birmingham UK

Department of Cardiology University Hospital Heidelberg Heidelberg Germany; Heidelberg Center for Heart Rhythm Disorders University Hospital Heidelberg Heidelberg Germany

Department of Experimental Cardiology Amsterdam UMC location AMC Amsterdam The Netherlands

Department of Internal Medicine and Cardiology Charité Universitätsmedizin Berlin Campus Virchow Klinikum Berlin Germany

Department of Physiology Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic

DZHK Partner Site Berlin Germany

German Centre for Cardiovascular Research Partner Site Hamburg Kiel Lübeck Germany

German Centre for Cardiovascular Research Partner Site Heidelberg Mannheim Germany

Institut de Génomique Fonctionnelle Université de Montpellier CNRS INSERM Montpellier France

Institute for Experimental Cardiovascular Medicine University Freiburg Germany

Institute of Cardiovascular and Medical Sciences University of Glasgow UK

Institute of Cardiovascular Sciences University of Birmingham Birmingham UK

Institute of Experimental Cardiovascular Research University Medical Center Hamburg Eppendorf Hamburg Germany

Institute of Pharmacology West German Heart and Vascular Center University Duisburg Essen Essen Germany

Institute of Physiology University of Bern Bern Switzerland

National Institute of Optics and European Laboratory for Non Linear Spectroscopy Italy

Signaling and cardiovascular pathophysiology UMR S 1180 Inserm Université Paris Saclay 92296 Châtenay Malabry France

Translational Cardiology Department of Cardiology Inselspital Bern University Hospital Bern Switzerland

Zobrazit více v PubMed

Goette A, Auricchio A, Boriani G, Braunschweig F, Terradellas JB, Burri H  et al.; ESC Scientific Document Group. EHRA White Paper: knowledge gaps in arrhythmia management-status 2019. Europace  2019;21:993–4. PubMed

Kaese S, Frommeyer G, Verheule S, van Loon G, Gehrmann J, Breithardt G  et al.  The ECG in cardiovascular-relevant animal models of electrophysiology. Herzschrittmacherther Elektrophysiol  2013;24:84–91. PubMed

Killingsworth CR, Ritscher DE, Walcott GP, Rollins DL, Ideker RE, Smith WM.  Continuous telemetry from a chronic canine model of sudden cardiac death. J Cardiovasc Electrophysiol  2000;11:1333–41. PubMed

Verheule S, Sato T, Everett T, Engle SK, Otten D, Rubart-von der Lohe M  et al.  Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circ Res  2004;94:1458–65. PubMed PMC

Odening KE, Kirk M, Brunner M, Ziv O, Lorvidhaya P, Liu GX  et al.  Electrophysiological studies of transgenic long QT type 1 and type 2 rabbits reveal genotype-specific differences in ventricular refractoriness and His conduction. Am J Physiol Heart Circ Physiol  2010;299:H643–55. PubMed PMC

Cluitmans MJM, Bonizzi P, Karel JMH, Das M, Kietselaer B, de Jong MMJ  et al.  In vivo validation of electrocardiographic imaging. JACC Clin Electrophysiol  2017;3:232–42. PubMed

Hohmann S, Rettmann ME, Konishi H, Borenstein A, Wang S, Suzuki A  et al.  Spatial accuracy of a clinically established noninvasive electrocardiographic imaging system for the detection of focal activation in an intact porcine model. Circ Arrhythm Electrophysiol  2019;12:e007570. PubMed

Franz MR.  Current status of monophasic action potential recording: theories, measurements and interpretations. Cardiovasc Res  1999;41:25–40. PubMed

Lee P, Quintanilla JG, Alfonso-Almazan JM, Galan-Arriola C, Yan P, Sanchez-Gonzalez J  et al.  In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models. Cardiovasc Res  2019;115:1659–71. PubMed PMC

Langendorff O.  Untersuchungen am überlebenden Säugethierherzen. Pflügers Arch  1895;61:291–332.

Skrzypiec-Spring M, Grotthus B, Szelag A, Schulz R.  Isolated heart perfusion according to Langendorff—still viable in the new millennium. J Pharmacol Toxicol Methods  2007;55:113–26. PubMed

Bell RM, Mocanu MM, Yellon DM.  Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol  2011;50:940–50. PubMed

Neely JR, Liebermeister H, Battersby EJ, Morgan HE.  Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol  1967;212:804–14. PubMed

Coraboeuf E, Weidmann S.  Potentiel de repos et potentiels d'action du muscle cardiaque, mesures a l'aide d'electrodes internes. Comptes Rendus des Seances de la Societe de Biologie et de.  Ses Filiales  1949;143:1329–31.

Dong R, Mu UMR, Reith AJM, O'Shea C, He S, Duan K  et al.  A protocol for dual calcium-voltage optical mapping in murine sinoatrial preparation with optogenetic pacing. Front Physiol  2019;10:954. PubMed PMC

Martinez ME, Walton RD, Bayer JD, Haissaguerre M, Vigmond EJ, Hocini M  et al.  Role of the Purkinje-muscle junction on the ventricular repolarization heterogeneity in the healthy and ischemic ovine ventricular myocardium. Front Physiol  2018;9:718. PubMed PMC

Lee P, Bollensdorff C, Quinn TA, Wuskell JP, Loew LM, Kohl P.  Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue. Heart Rhythm  2011;8:1482–91. PubMed PMC

Quinn TA, Kohl P.  Cardiac mechano-electric coupling: acute effects of mechanical stimulation on heart rate and rhythm. Physiol Rev  2021;101:37–92. PubMed

Christoph J, Chebbok M, Richter C, Schroder-Schetelig J, Bittihn P, Stein S  et al.  Electromechanical vortex filaments during cardiac fibrillation. Nature  2018;555:667–72. PubMed

Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann CJ, Fleischmann BK  et al.  Optogenetic control of heart muscle in vitro and in vivo. Nat Methods  2010;7:897–900. PubMed

Yan GX, Shimizu W, Antzelevitch C.  Characteristics and distribution of M cells in arterially perfused canine left ventricular wedge preparations. Circulation  1998;98:1921–7. PubMed

Wilders R.  Dynamic clamp: a powerful tool in cardiac electrophysiology. J Physiol  2006;576:349–59. PubMed PMC

Berecki G, Wilders R, de Jonge B, van Ginneken AC, Verkerk AO.  Re-evaluation of the action potential upstroke velocity as a measure of the Na+ current in cardiac myocytes at physiological conditions. PLoS One  2010;5:e15772. PubMed PMC

Kettlewell S, Saxena P, Dempster J, Colman MA, Myles RC, Smith GL  et al.  Dynamic clamping human and rabbit atrial calcium current: narrowing ICaL window abolishes early afterdepolarizations. J Physiol  2019;597:3619–38. PubMed PMC

Lu HR, Hortigon-Vinagre MP, Zamora V, Kopljar I, De Bondt A, Gallacher DJ  et al.  Application of optical action potentials in human induced pluripotent stem cells-derived cardiomyocytes to predict drug-induced cardiac arrhythmias. J Pharmacol Toxicol Methods  2017;87:53–67. PubMed

Zhang XH, Morad M.  Calcium signaling in human stem cell-derived cardiomyocytes: evidence from normal subjects and CPVT afflicted patients. Cell Calcium  2016;59:98–107. PubMed PMC

Varro A, Tomek J, Nagy N, Virag L, Passini E, Rodriguez B  et al.  Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev  2021;101:1083–1176. PubMed

Nerbonne JM.  Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. J Physiol  2000;525: 285–98. PubMed PMC

Nerbonne JM, Kass RS.  Molecular physiology of cardiac repolarization. Physiol Rev  2005;85:1205–53. PubMed

Jost N, Virag L, Comtois P, Ordog B, Szuts V, Seprenyi G  et al.  Ionic mechanisms limiting cardiac repolarization reserve in humans compared to dogs. J Physiol  2013;591:4189–206. PubMed PMC

Varro A, Lathrop DA, Hester SB, Nanasi PP, Papp JG.  Ionic currents and action potentials in rabbit, rat, and guinea pig ventricular myocytes. Basic Res Cardiol  1993;88:93–102. PubMed

Patel SP, Campbell DL.  Transient outward potassium current, ‘Ito’, phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J Physiol  2005;569:7–39. PubMed PMC

Fedida D, Giles WR.  Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol  1991;442:191–209. PubMed PMC

Choi BR, Li W, Terentyev D, Kabakov AY, Zhong M, Rees CM  et al.  Transient outward K+ current (Ito) underlies the right ventricular initiation of polymorphic ventricular tachycardia in a transgenic rabbit model of long-QT syndrome type 1. Circ Arrhythm Electrophysiol  2018;11:e005414. PubMed PMC

Ravens U.  Ionic basis of cardiac electrophysiology in zebrafish compared to human hearts. Prog Biophys Mol Biol  2018;138:38–44. PubMed

Verkerk AO, Remme CA.  Zebrafish: a novel research tool for cardiac (patho)electrophysiology and ion channel disorders. Front Physiol  2012;3:255. PubMed PMC

Stankovicova T, Szilard M, De Scheerder I, Sipido KR.  M cells and transmural heterogeneity of action potential configuration in myocytes from the left ventricular wall of the pig heart. Cardiovasc Res  2000;45:952–60. PubMed

Verkerk AO, van Ginneken AC, Berecki G, den Ruijter HM, Schumacher CA, Veldkamp MW  et al.  Incorporated sarcolemmal fish oil fatty acids shorten pig ventricular action potentials. Cardiovasc Res  2006;70:509–20. PubMed

Hegyi B, Bossuyt J, Griffiths LG, Shimkunas R, Coulibaly Z, Jian Z  et al.  Complex electrophysiological remodeling in postinfarction ischemic heart failure. Proc Natl Acad Sci U S A  2018;115:E3036–E3044. PubMed PMC

Li GR, Du XL, Siow YL, O K, Tse HF, Lau CP.  Calcium-activated transient outward chloride current and phase 1 repolarization of swine ventricular action potential. Cardiovasc Res  2003;58:89–98. PubMed

Arlock P, Mow T, Sjoberg T, Arner A, Steen S, Laursen M.  Ion currents of cardiomyocytes in different regions of the Gottingen minipig heart. J Pharmacol Toxicol Methods  2017;86:12–8. PubMed

Laursen M, Olesen SP, Grunnet M, Mow T, Jespersen T.  Characterization of cardiac repolarization in the Gottingen minipig. J Pharmacol Toxicol Methods  2011;63:186–95. PubMed

Dixon JE, Shi W, Wang HS, McDonald C, Yu H, Wymore RS  et al.  Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res  1996;79:659–68. PubMed

Szentadrassy N, Banyasz T, Biro T, Szabo G, Toth BI, Magyar J  et al.  Apico-basal inhomogeneity in distribution of ion channels in canine and human ventricular myocardium. Cardiovasc Res  2005;65:851–60. PubMed

Szabo G, Szentandrassy N, Biro T, Toth BI, Czifra G, Magyar J  et al.  Asymmetrical distribution of ion channels in canine and human left-ventricular wall: epicardium versus midmyocardium. Pflugers Arch  2005;450:307–16. PubMed

Nagy N, Acsai K, Kormos A, Sebők Z, Farkas AS, Jost N  et al.  [Ca2+]i-induced augmentation of the inward rectifier potassium current (IK1) in canine and human ventricular myocardium. Pflugers Arch  2013;465:1621–35. PubMed

Liu DW, Gintant GA, Antzelevitch C.  Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res  1993;72:671–87. PubMed

Liu DW, Antzelevitch C.  Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res  1995;76:351–65. PubMed

Volders PG, Sipido KR, Carmeliet E, Spatjens RL, Wellens HJ, Vos MA.  Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation  1999;99:206–10. PubMed

O'Hara T, Rudy Y.  Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species. Am J Physiol Heart Circ Physiol  2012;302:H1023–1030. PubMed PMC

Caluori G, Wojtaszczyk A, Yasin O, Pesl M, Wolf J, Belaskova S  et al.  Comparing the incidence of ventricular arrhythmias during epicardial ablation in swine versus canine models. Pacing Clin Electrophysiol  2019;42:862–7. PubMed

Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA.  Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation  1995;92:1954–68. PubMed

Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M.  Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation  1997;96:3157–63. PubMed

Allessie M, Ausma J, Schotten U.  Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res  2002;54:230–46. PubMed

Vos MA, Verduyn SC, Gorgels AP, Lipcsei GC, Wellens HJ.  Reproducible induction of early afterdepolarizations and torsade de pointes arrhythmias by d-sotalol and pacing in dogs with chronic atrioventricular block. Circulation  1995;91:864–72. PubMed

Vos MA, de Groot SH, Verduyn SC, van der Zande J, Leunissen HD, Cleutjens JP  et al.  Enhanced susceptibility for acquired torsade de pointes arrhythmias in the dog with chronic, complete AV block is related to cardiac hypertrophy and electrical remodeling. Circulation  1998;98:1125–35. PubMed

Brunner M, Peng X, Liu GX, Ren XQ, Ziv O, Choi BR  et al.  Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome. J Clin Invest  2008;118:2246–59. PubMed PMC

Volders PG, Sipido KR, Vos MA, Spatjens RL, Leunissen JD, Carmeliet E  et al.  Downregulation of delayed rectifier K+ currents in dogs with chronic complete atrioventricular block and acquired torsades de pointes. Circulation  1999;100:2455–61. PubMed

Sipido KR, Volders PG, de Groot SH, Verdonck F, Van de Werf F, Wellens HJ  et al.  Enhanced Ca2+ release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis. Circulation  2000;102:2137–44. PubMed

Verduyn SC, Vos MA, van der Zande J, van der Hulst FF, Wellens HJ.  Role of interventricular dispersion of repolarization in acquired torsade-de-pointes arrhythmias: reversal by magnesium. Cardiovasc Res  1997;34:453–63. PubMed

Thomsen MB, Verduyn SC, Stengl M, Beekman JD, de Pater G, van Opstal J  et al.  Increased short-term variability of repolarization predicts d-sotalol-induced torsades de pointes in dogs. Circulation  2004;110:2453–9. PubMed

Sprenkeler DJ, Beekman JDM, Bossu A, Dunnink A, Vos MA.  Pro-arrhythmic ventricular remodeling is associated with increased respiratory and low-frequency oscillations of monophasic action potential duration in the chronic atrioventricular block dog model. Front Physiol  2019;10:1095. PubMed PMC

Ni L, Scott L Jr., Campbell HM, Pan X, Alsina KM, Reynolds J  et al.  Atrial-specific gene delivery using an adeno-associated viral vector. Circ Res  2019;124:256–62. PubMed PMC

Podliesna S, Bezzina CR, Lodder EM.  Complex genetics of cardiovascular traits in mice: F2-mapping of QTLs and their underlying genes. Methods Mol Biol  2017;1488:431–54. PubMed

Nicod J, Davies RW, Cai N, Hassett C, Goodstadt L, Cosgrove C  et al.  Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing. Nat Genet  2016;48:912–8. PubMed PMC

Adriaens ME, Lodder EM, Moreno-Moral A, Silhavy J, Heinig M, Glinge C  et al.  Systems genetics approaches in rat identify novel genes and gene networks associated with cardiac conduction. J Am Heart Assoc  2018;7:e009243. PubMed PMC

Kovoor P, Wickman K, Maguire CT, Pu W, Gehrmann J, Berul CI  et al.  Evaluation of the role of IKACh in atrial fibrillation using a mouse knockout model. J Am Coll Cardiol  2001;37:2136–43. PubMed

Cerrone M, Colombi B, Santoro M, di Barletta MR, Scelsi M, Villani L  et al.  Bidirectional ventricular tachycardia and fibrillation elicited in a knock-in mouse model carrier of a mutation in the cardiac ryanodine receptor. Circ Res  2005;96:e77-82. PubMed

Sanbe A, James J, Tuzcu V, Nas S, Martin L, Gulick J  et al.  Transgenic rabbit model for human troponin I-based hypertrophic cardiomyopathy. Circulation  2005;111:2330–8. PubMed PMC

Major P, Baczko I, Hiripi L, Odening KE, Juhasz V, Kohajda Z  et al.  A novel transgenic rabbit model with reduced repolarization reserve: long QT syndrome caused by a dominant-negative mutation of the KCNE1 gene. Br J Pharmacol  2016;173:2046–61. PubMed PMC

Odening KE, Bodi I, Franke G, Rieke R, Ryan de Medeiros A, Perez-Feliz S  et al.  Transgenic short-QT syndrome 1 rabbits mimic the human disease phenotype with QT/action potential duration shortening in the atria and ventricles and increased ventricular tachycardia/ventricular fibrillation inducibility. Eur Heart J  2019;40:842–53. PubMed

Park DS, Cerrone M, Morley G, Vasquez C, Fowler S, Liu N  et al.  Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias. J Clin Invest  2015;125:403–12. PubMed PMC

Jin G, Manninger M, Adelsmayr G, Schwarzl M, Alogna A, Schonleitner P  et al.  Cellular contribution to left and right atrial dysfunction in chronic arterial hypertension in pigs. ESC Heart Fail  2021;8:151–161. PubMed PMC

Pinto JM, Sosunov EA, Gainullin RZ, Rosen MR, Boyden PA.  Effects of mibefradil, a T-type calcium current antagonist, on electrophysiology of Purkinje fibers that survived in the infarcted canine heart. J Cardiovasc Electrophysiol  1999;10:1224–35. PubMed

Meysen S, Marger L, Hewett KW, Jarry-Guichard T, Agarkova I, Chauvin JP  et al.  Nkx2.5 cell-autonomous gene function is required for the postnatal formation of the peripheral ventricular conduction system. Dev Biol  2007;303:740–53. PubMed

Lin X, Liu N, Lu J, Zhang J, Anumonwo JM, Isom LL  et al.  Subcellular heterogeneity of sodium current properties in adult cardiac ventricular myocytes. Heart Rhythm  2011;8:1923–30. PubMed PMC

Schluter KD, Schreiber D.  Adult ventricular cardiomyocytes: isolation and culture. Methods Mol Biol  2005;290:305–14. PubMed

Molina CE, Leroy J, Richter W, Xie M, Scheitrum C, Lee IO  et al.  Cyclic adenosine monophosphate phosphodiesterase type 4 protects against atrial arrhythmias. J Am Coll Cardiol  2012;59:2182–90. PubMed

Brown H, Difrancesco D.  Voltage-clamp investigations of membrane currents underlying pace-maker activity in rabbit sino-atrial node. J Physiol  1980;308:331–51. PubMed PMC

Verheijck EE, van Kempen MJ, Veereschild M, Lurvink J, Jongsma HJ, Bouman LN.  Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution. Cardiovasc Res  2001;52:40–50. PubMed

Maier SK, Westenbroek RE, Yamanushi TT, Dobrzynski H, Boyett MR, Catterall WA  et al.  An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proc Natl Acad Sci U S A  2003;100:3507–12. PubMed PMC

Efimov IR, Nikolski VP, Rothenberg F, Greener ID, Li J, Dobrzynski H  et al.  Structure-function relationship in the AV junction. Anat Rec A Discov Mol Cell Evol Biol  2004;280:952–65. PubMed

Neco P, Torrente AG, Mesirca P, Zorio E, Liu N, Priori SG  et al.  Paradoxical effect of increased diastolic Ca2+ release and decreased sinoatrial node activity in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circulation  2012;126:392–401. PubMed PMC

Blinova K, Dang Q, Millard D, Smith G, Pierson J, Guo L  et al.  International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Rep  2018;24:3582–92. PubMed PMC

Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L, Kim K  et al.  Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ Res  2017;121:1323–30. PubMed PMC

Macadangdang J, Guan X, Smith AS, Lucero R, Czerniecki S, Childers MK  et al.  Nanopatterned human iPSC-based model of a dystrophin-null cardiomyopathic phenotype. Cell Mol Bioeng  2015;8:320–32. PubMed PMC

Martella D, Paoli P, Pioner JM, Sacconi L, Coppini R, Santini L  et al.  Liquid crystalline networks toward regenerative medicine and tissue repair. Small  2017;13:1702677. PubMed

Davis RP, Casini S, van den Berg CW, Hoekstra M, Remme CA, Dambrot C  et al.  Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation  2012;125:3079–91. PubMed

Casini S, Verkerk AO, Remme CA.  Human iPSC-derived cardiomyocytes for investigation of disease mechanisms and therapeutic strategies in inherited arrhythmia syndromes: strengths and limitations. Cardiovasc Drugs Ther  2017;31:325–44. PubMed PMC

Portero V, Casini S, Hoekstra M, Verkerk AO, Mengarelli I, Belardinelli L  et al.  Anti-arrhythmic potential of the late sodium current inhibitor GS-458967 in murine Scn5a-1798insD+/- and human SCN5A-1795insD+/- iPSC-derived cardiomyocytes. Cardiovasc Res  2017;113:829–38. PubMed

Lieu DK, Fu JD, Chiamvimonvat N, Tung KC, McNerney GP, Huser T  et al.  Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Arrhythm Electrophysiol  2013;6:191–201. PubMed PMC

Verkerk AO, Veerman CC, Zegers JG, Mengarelli I, Bezzina CR, Wilders R.  Patch-clamp recording from human induced pluripotent stem cell-derived cardiomyocytes: improving action potential characteristics through dynamic clamp. Int J Mol Sci  2017;18:1873. PubMed PMC

Lee YK, Sala L, Mura M, Rocchetti M, Pedrazzini M, Ran X  et al.  MTMR4 SNVs modulate ion channel degradation and clinical severity in congenital long QT syndrome: insights in the mechanism of action of protective modifier genes. Cardiovasc Res  2021;117:767–779. PubMed PMC

Ronchi C, Bernardi J, Mura M, Stefanello M, Badone B, Rocchetti M  et al.  NOS1AP polymorphisms reduce NOS1 activity and interact with prolonged repolarization in arrhythmogenesis. Cardiovasc Res  2021;117:472–483. PubMed PMC

Ma D, Wei H, Lu J, Huang D, Liu Z, Loh LJ  et al.  Characterization of a novel KCNQ1 mutation for type 1 long QT syndrome and assessment of the therapeutic potential of a novel IKs activator using patient-specific induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther  2015;6:39. PubMed PMC

Braam SR, Tertoolen L, van de Stolpe A, Meyer T, Passier R, Mummery CL.  Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res  2010;4:107–16. PubMed

Giles WR, Noble D.  Rigorous phenotyping of cardiac iPSC preparations requires knowledge of their resting potential(s). Biophys J  2016;110:278–80. PubMed PMC

Devalla HD, Schwach V, Ford JW, Milnes JT, El-Haou S, Jackson C  et al.  Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol Med  2015;7:394–410. PubMed PMC

Cyganek L, Tiburcy M, Sekeres K, Gerstenberg K, Bohnenberger H, Lenz C  et al.  Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes. JCI Insight  2018;3:e99941. PubMed PMC

Schaaf S, Eder A, Vollert I, Stohr A, Hansen A, Eschenhagen T.  Generation of strip-format fibrin-based engineered heart tissue (EHT). Methods Mol Biol  2014;1181:121–9. PubMed

Beauchamp P, Moritz W, Kelm JM, Ullrich ND, Agarkova I, Anson BD  et al.  Development and characterization of a scaffold-free 3D spheroid model of induced pluripotent stem cell-derived human cardiomyocytes. Tissue Eng Part C Methods  2015;21:852–61. PubMed

Noble D, Garny A, Noble PJ.  How the Hodgkin-Huxley equations inspired the Cardiac Physiome Project. J Physiol  2012;590:2613–28. PubMed PMC

Winslow RL, Cortassa S, O'Rourke B, Hashambhoy YL, Rice JJ, Greenstein JL.  Integrative modeling of the cardiac ventricular myocyte. Wiley Interdiscip Rev Syst Biol Med  2011;3:392–413. PubMed PMC

Heijman J, Erfanian Abdoust P, Voigt N, Nattel S, Dobrev D.  Computational models of atrial cellular electrophysiology and calcium handling, and their role in atrial fibrillation. J Physiol  2016;594:537–53. PubMed PMC

Benson AP, Stevenson-Cocks HJ, Whittaker DG, White E, Colman MA.  Multi-scale approaches for the simulation of cardiac electrophysiology: II - Tissue-level structure and function. Methods  2021;185:60–81. PubMed

Lyashkov AE, Behar J, Lakatta EG, Yaniv Y, Maltsev VA.  Positive feedback mechanisms among local Ca releases, NCX, and ICaL ignite pacemaker action potentials. Biophys J  2018;114:1176–89. PubMed PMC

Trovato C, Passini E, Nagy N, Varro A, Abi-Gerges N, Severi S  et al.  Human Purkinje in silico model enables mechanistic investigations into automaticity and pro-arrhythmic abnormalities. J Mol Cell Cardiol  2020;142:24–38. PubMed PMC

Ravagli E, Bucchi A, Bartolucci C, Paina M, Baruscotti M, DiFrancesco D  et al.  Cell-specific dynamic clamp analysis of the role of funny if current in cardiac pacemaking. Prog Biophys Mol Biol  2016;120:50–66. PubMed

Shim J, Hwang M, Song JS, Lim B, Kim TH, Joung B  et al.  Virtual in-silico modeling guided catheter ablation predicts effective linear ablation lesion set for longstanding persistent atrial fibrillation: multicenter prospective randomized study. Front Physiol  2017;8:792. PubMed PMC

Prakosa A, Arevalo HJ, Deng D, Boyle PM, Nikolov PP, Ashikaga H  et al.  Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nat Biomed Eng  2018;2:732–40. PubMed PMC

Boyle PM, Zghaib T, Zahid S, Ali RL, Deng D, Franceschi WH  et al.  Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat Biomed Eng  2019;3:870–9. PubMed PMC

Li Z, Ridder BJ, Han X, Wu WW, Sheng J, Tran PN  et al.  Assessment of an in silico mechanistic model for proarrhythmia risk prediction under the CiPA initiative. Clin Pharmacol Ther  2019;105:466–75. PubMed PMC

Li Z, Mirams GR, Yoshinaga T, Ridder BJ, Han X, Chen JE  et al.  General principles for the validation of proarrhythmia risk prediction models: an extension of the CiPA in silico strategy. Clin Pharmacol Ther  2020;107:102–11. PubMed PMC

Whittaker DG, Clerx M, Lei CL, Christini DJ, Mirams GR.  Calibration of ionic and cellular cardiac electrophysiology models. Wiley Interdiscip Rev Syst Biol Med  2020;12:e1482. PubMed PMC

Ni H, Morotti S, Grandi E.  A heart for diversity: simulating variability in cardiac arrhythmia research. Front Physiol  2018;9:958. PubMed PMC

Tomek J, Bueno-Orovio A, Passini E, Zhou X, Minchole A, Britton O  et al.  Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block. Elife  2019;8:e48890. PubMed PMC

Yang PC, DeMarco KR, Aghasafari P, Jeng MT, Dawson JRD, Bekker S  et al.  A computational pipeline to predict cardiotoxicity: from the atom to the rhythm. Circ Res  2020;126:947–64. PubMed PMC

Sutanto H, Lyon A, Lumens J, Schotten U, Dobrev D, Heijman J.  Cardiomyocyte calcium handling in health and disease: Insights from in vitro and in silico studies. Prog Biophys Mol Biol  2020;157:54–75. PubMed

Colman MA.  Arrhythmia mechanisms and spontaneous calcium release: bi-directional coupling between re-entrant and focal excitation. PLoS Comput Biol  2019;15:e1007260. PubMed PMC

Altomare C, Bartolucci C, Sala L, Bernardi J, Mostacciuolo G, Rocchetti M  et al.  IKr impact on repolarization and its variability assessed by dynamic clamp. Circ Arrhythm Electrophysiol  2015;8:1265–75. PubMed

Biliczki P, Virag L, Iost N, Papp JG, Varro A.  Interaction of different potassium channels in cardiac repolarization in dog ventricular preparations: role of repolarization reserve. Br J Pharmacol  2002;137:361–8. PubMed PMC

Pumir A, Arutunyan A, Krinsky V, Sarvazyan N.  Genesis of ectopic waves: role of coupling, automaticity, and heterogeneity. Biophys J  2005;89:2332–49. PubMed PMC

Bartolucci C, Altomare C, Bennati M, Furini S, Zaza A, Severi S.  Combined action potential- and dynamic-clamp for accurate computational modelling of the cardiac IKr current. J Mol Cell Cardiol  2015;79:187–94. PubMed

Qu Z, Weiss JN.  Dynamics and cardiac arrhythmias. J Cardiovasc Electrophysiol  2006;17:1042–9. PubMed

Jeron A, Mitchell GF, Zhou J, Murata M, London B, Buckett P  et al.  Inducible polymorphic ventricular tachyarrhythmias in a transgenic mouse model with a long Q-T phenotype. Am J Physiol Heart Circ Physiol  2000;278:H1891–1898. PubMed

Liu N, Rizzi N, Boveri L, Priori SG.  Ryanodine receptor and calsequestrin in arrhythmogenesis: what we have learnt from genetic diseases and transgenic mice. J Mol Cell Cardiol  2009;46:149–59. PubMed

Nishida K, Michael G, Dobrev D, Nattel S.  Animal models for atrial fibrillation: clinical insights and scientific opportunities. Europace  2010;12:160–72. PubMed

Schüttler D, Bapat A, Kääb S, Lee K, Tomsits P, Clauss S  et al.  Animal models of atrial fibrillation. Circ Res  2020;127:91–110. PubMed

Dobrev D, Wehrens XHT.  Mouse models of cardiac arrhythmias. Circ Res  2018;123:332–4. PubMed PMC

Aschar-Sobbi R, Izaddoustdar F, Korogyi AS, Wang Q, Farman GP, Yang F  et al.  Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFalpha. Nat Commun  2015;6:6018. PubMed PMC

Manninger M, Zweiker D, van Hunnik A, Alogna A, Prassl AJ, Schipke J  et al.  Arterial hypertension drives arrhythmia progression via specific structural remodeling in a porcine model of atrial fibrillation. Heart Rhythm  2018;15:1328–36. PubMed

Dobrev D, Aguilar M, Heijman J, Guichard JB, Nattel S.  Postoperative atrial fibrillation: mechanisms, manifestations and management. Nat Rev Cardiol  2019;16:417–36. PubMed

Miyauchi Y, Zhou S, Okuyama Y, Miyauchi M, Hayashi H, Hamabe A  et al.  Altered atrial electrical restitution and heterogeneous sympathetic hyperinnervation in hearts with chronic left ventricular myocardial infarction: implications for atrial fibrillation. Circulation  2003;108:360–6. PubMed

Alasady M, Shipp NJ, Brooks AG, Lim HS, Lau DH, Barlow D  et al.  Myocardial infarction and atrial fibrillation: importance of atrial ischemia. Circ Arrhythm Electrophysiol  2013;6:738–45. PubMed

Kettlewell S, Burton FL, Smith GL, Workman AJ.  Chronic myocardial infarction promotes atrial action potential alternans, afterdepolarizations, and fibrillation. Cardiovasc Res  2013;99:215–24. PubMed PMC

van Gorp PRR, Trines SA, Pijnappels DA, de Vries AAF.  Multicellular in vitro models of cardiac arrhythmias: focus on atrial fibrillation. Front Cardiovasc Med  2020;7:43. PubMed PMC

Ellinwood N, Dobrev D, Morotti S, Grandi E.  In silico assessment of efficacy and safety of IKur inhibitors in chronic atrial fibrillation: role of kinetics and state-dependence of drug binding. Front Pharmacol  2017;8:799. PubMed PMC

Schmidt C, Wiedmann F, Zhou XB, Heijman J, Voigt N, Ratte A  et al.  Inverse remodelling of K2P3.1 K+ channel expression and action potential duration in left ventricular dysfunction and atrial fibrillation: implications for patient-specific antiarrhythmic drug therapy. Eur Heart J  2017;38:1764–74. PubMed

Saour B, Smith B, Yancy CW.  Heart failure and sudden cardiac death. Card Electrophysiol Clin  2017;9:709–23. PubMed

Desai RV, Ahmed MI, Mujib M, Aban IB, Zile MR, Ahmed A.  Natural history of concentric left ventricular geometry in community-dwelling older adults without heart failure during seven years of follow-up. Am J Cardiol  2011;107:321–4. PubMed PMC

Gomes AC, Falcao-Pires I, Pires AL, Bras-Silva C, Leite-Moreira AF.  Rodent models of heart failure: an updated review. Heart Fail Rev  2013;18:219–49. PubMed

Shannon TR, Pogwizd SM, Bers DM.  Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ Res  2003;93:592–4. PubMed

O’Rourke B, Kass DA, Tomaselli GF, KäÄB S, Tunin R, Marbán E, Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res  1999;84:562–70. PubMed

Dries E, Santiago DJ, Gilbert G, Lenaerts I, Vandenberk B, Nagaraju CK  et al.  Hyperactive ryanodine receptors in human heart failure and ischaemic cardiomyopathy reside outside of couplons. Cardiovasc Res  2018;114:1512–24. PubMed PMC

Pinali C, Bennett H, Davenport JB, Trafford AW, Kitmitto A.  Three-dimensional reconstruction of cardiac sarcoplasmic reticulum reveals a continuous network linking transverse-tubules: this organization is perturbed in heart failure. Circ Res  2013;113:1219–30. PubMed

Milani-Nejad N, Janssen PM.  Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther  2014;141:235–49. PubMed PMC

Ambrosi CM, Yamada KA, Nerbonne JM, Efimov IR.  Gender differences in electrophysiological gene expression in failing and non-failing human hearts. PLoS One  2013;8:e54635. PubMed PMC

Lang D, Holzem K, Kang C, Xiao M, Hwang HJ, Ewald GA  et al.  Arrhythmogenic remodeling of beta2 versus beta1 adrenergic signaling in the human failing heart. Circ Arrhythm Electrophysiol  2015;8:409–19. PubMed PMC

Patel RB, Vaduganathan M, Shah SJ, Butler J.  Atrial fibrillation in heart failure with preserved ejection fraction: insights into mechanisms and therapeutics. Pharmacol Ther  2017;176:32–9. PubMed

Vaduganathan M, Patel RB, Michel A, Shah SJ, Senni M, Gheorghiade M  et al.  Mode of death in heart failure with preserved ejection fraction. J Am Coll Cardiol  2017;69:556–69. PubMed

Lourenco AP, Leite-Moreira AF, Balligand JL, Bauersachs J, Dawson D, de Boer RA  et al.  An integrative translational approach to study heart failure with preserved ejection fraction: a position paper from the Working Group on Myocardial Function of the European Society of Cardiology. Eur J Heart Fail  2018;20:216–27. PubMed

Cho JH, Zhang R, Kilfoil PJ, Gallet R, de Couto G, Bresee C  et al.  Delayed repolarization underlies ventricular arrhythmias in rats with heart failure and preserved ejection fraction. Circulation  2017;136:2037–50. PubMed PMC

Cho JH, Zhang R, Aynaszyan S, Holm K, Goldhaber JI, Marban E  et al.  Ventricular arrhythmias underlie sudden death in rats with heart failure and preserved ejection fraction. Circ Arrhythm Electrophysiol  2018;11:e006452. PubMed PMC

Primessnig U, Schonleitner P, Holl A, Pfeiffer S, Bracic T, Rau T  et al.  Novel pathomechanisms of cardiomyocyte dysfunction in a model of heart failure with preserved ejection fraction. Eur J Heart Fail  2016;18:987–97. PubMed

Primessnig U, Bracic T, Levijoki J, Otsomaa L, Pollesello P, Falcke M  et al.  Long-term effects of Na+/Ca2+ exchanger inhibition with ORM-11035 improves cardiac function and remodelling without lowering blood pressure in a model of heart failure with preserved ejection fraction. Eur J Heart Fail  2019;21:1543–52. PubMed

Mesquita TRR, Zhang R, de Couto G, Valle J, Sanchez L, Rogers RG  et al.  Mechanisms of atrial fibrillation in aged rats with heart failure with preserved ejection fraction. Heart Rhythm  2020;17:1025–33. PubMed PMC

Miyake CY, Teele SA, Chen L, Motonaga KS, Dubin AM, Balasubramanian S  et al.  In-hospital arrhythmia development and outcomes in pediatric patients with acute myocarditis. Am J Cardiol  2014;113:535–40. PubMed

Sagar S, Liu PP, Cooper LT Jr.  Myocarditis. Lancet  2012;379:738–47. PubMed PMC

Ali-Ahmed F, Dalgaard F, Al-Khatib SM.  Sudden cardiac death in patients with myocarditis: evaluation, risk stratification, and management. Am Heart J  2020;220:29–40. PubMed

D'Ambrosio A, Patti G, Manzoli A, Sinagra G, Di Lenarda A, Silvestri F  et al.  The fate of acute myocarditis between spontaneous improvement and evolution to dilated cardiomyopathy: a review. Heart  2001;85:499–504. PubMed PMC

Blyszczuk P.  Myocarditis in humans and in experimental animal models. Front Cardiovasc Med  2019;6:64. PubMed PMC

Neu N, Rose NR, Beisel KW, Herskowitz A, Gurri-Glass G, Craig SW.  Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol  1987;139:3630–6. PubMed

Hua X, Hu G, Hu Q, Chang Y, Hu Y, Gao L  et al.  Single-cell RNA sequencing to dissect the immunological network of autoimmune myocarditis. Circulation  2020;142:384–400. PubMed

Gianfranchesco Filippi M, de Castro Ferreira Lima M, Paes AC, Sarita Cruz Aleixo A, Oba E, Ferreira de Souza F  et al.  Evaluation of heart rate variability and behavior of electrocardiographic parameters in dogs affected by chronic Monocytic Ehrlichiosis. PLoS One  2019;14:e0216552. PubMed PMC

Mesirca P, Fedorov VV, Hund TJ, Torrente AG, Bidaud I, Mohler PJ  et al.  Pharmacologic approach to sinoatrial node dysfunction. Annu Rev Pharmacol Toxicol  2021;61:757–78. PubMed PMC

Peters CH, Sharpe EJ, Proenza C.  Cardiac pacemaker activity and aging. Annu Rev Physiol  2020;82:21–43. PubMed PMC

Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J  et al.  Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A  2003;100:5543–8. PubMed PMC

Lei M, Goddard C, Liu J, Leoni AL, Royer A, Fung SS  et al.  Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel gene Scn5a. J Physiol  2005;567:387–400. PubMed PMC

Baig SM, Koschak A, Lieb A, Gebhart M, Dafinger C, Nurnberg G  et al.  Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci  2011;14:77–84. PubMed

Hoesl E, Stieber J, Herrmann S, Feil S, Tybl E, Hofmann F  et al.  Tamoxifen-inducible gene deletion in the cardiac conduction system. J Mol Cell Cardiol  2008;45:62–9. PubMed

Mesirca P, Alig J, Torrente AG, Muller JC, Marger L, Rollin A  et al.  Cardiac arrhythmia induced by genetic silencing of ‘funny’ (f) channels is rescued by GIRK4 inactivation. Nat Commun  2014;5:4664. PubMed PMC

Alig J, Marger L, Mesirca P, Ehmke H, Mangoni ME, Isbrandt D.  Control of heart rate by cAMP sensitivity of HCN channels. Proc Natl Acad Sci U S A  2009;106:12189–94. PubMed PMC

Le Scouarnec S, Bhasin N, Vieyres C, Hund TJ, Cunha SR, Koval O  et al.  Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proc Natl Acad Sci U S A  2008;105:15617–22. PubMed PMC

Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO, Postma AV  et al.  HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol  2014;64:745–56. PubMed

Karnabi E, Qu Y, Mancarella S, Boutjdir M.  Rescue and worsening of congenital heart block-associated electrocardiographic abnormalities in two transgenic mice. J Cardiovasc Electrophysiol  2011;22:922–30. PubMed PMC

Royer A, van Veen TA, Le Bouter S, Marionneau C, Griol-Charhbili V, Leoni AL  et al.  Mouse model of SCN5A-linked hereditary Lenegre's disease: age-related conduction slowing and myocardial fibrosis. Circulation  2005;111:1738–46. PubMed

Zicha S, Fernandezvelasco M, Lonardo G, Lheureux N, Nattel S.  Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc Res  2005;66:472–81. PubMed

Verkerk AO, Wilders R, Coronel R, Ravesloot JH, Verheijck EE.  Ionic remodeling of sinoatrial node cells by heart failure. Circulation  2003;108:760–6. PubMed

Mackasey M, Egom EE, Jansen HJ, Hua R, Moghtadaei M, Liu Y  et al.  Natriuretic peptide receptor-C protects against angiotensin II-mediated sinoatrial node disease in mice. JACC Basic Transl Sci  2018;3:824–43. PubMed PMC

Yeh YH, Burstein B, Qi XY, Sakabe M, Chartier D, Comtois P  et al.  Funny current downregulation and sinus node dysfunction associated with atrial tachyarrhythmia: a molecular basis for tachycardia-bradycardia syndrome. Circulation  2009;119:1576–85. PubMed

Howarth FC, Al-Sharhan R, Al-Hammadi A, Qureshi MA.  Effects of streptozotocin-induced diabetes on action potentials in the sinoatrial node compared with other regions of the rat heart. Mol Cell Biochem  2007;300:39–46. PubMed

D’Souza A, Bucchi A, Johnsen AB, Logantha SJRJ, Monfredi O, Yanni J  et al.  Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nat Commun  2014;5:3775. PubMed PMC

Larson ED, St Clair JR, Sumner WA, Bannister RA, Proenza C.  Depressed paceJmaker activity of sinoatrial node myocytes contributes to the age-dependent decline in maximum heart rate. Proc Natl Acad Sci U S A  2013;110:18011–6. PubMed PMC

Shimizu W, Antzelevitch C.  Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade des pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation  1997;96:2038–47. PubMed

Milberg P, Reinsch N, Wasmer K, Monnig G, Stypmann J, Osada N  et al.  Transmural dispersion of repolarization as a key factor of arrhythmogenicity in a novel intact heart model of LQT3. Cardiovasc Res  2005;65:397–404. PubMed

Patocskai B, Yoon N, Antzelevitch C.  Mechanisms underlying epicardial radiofrequency ablation to suppress arrhythmogenesis in experimental models of Brugada syndrome. JACC Clin Electrophysiol  2017;3:353–63. PubMed PMC

Sendfeld F, Selga E, Scornik FS, Perez GJ, Mills NL, Brugada R.  Experimental models of Brugada syndrome. Int J Mol Sci  2019;20:2123. PubMed PMC

Rivolta I, Abriel H, Tateyama M, Liu H, Memmi M, Vardas P  et al.  Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J Biol Chem  2001;276:30623–30. PubMed

Remme CA, Verkerk AO, Nuyens D, van Ginneken AC, van Brunschot S, Belterman CN  et al.  Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human SCN5A-1795insD. Circulation  2006;114:2584–94. PubMed

Casini S, Albesa M, Wang Z, Portero V, Ross-Kaschitza D, Rougier JS  et al.  Functional consequences of the SCN5A-p.Y1977N mutation within the PY ubiquitylation motif: discrepancy between HEK293 cells and transgenic mice. Int J Mol Sci  2019;20:5033. PubMed PMC

Boukens BJ, Sylva M, de Gier-de Vries C, Remme CA, Bezzina CR, Christoffels VM  et al.  Reduced sodium channel function unmasks residual embryonic slow conduction in the adult right ventricular outflow tract. Circ Res  2013;113:137–41. PubMed

Kelly A, Salerno S, Connolly A, Bishop M, Charpentier F, Stolen T  et al.  Normal interventricular differences in tissue architecture underlie right ventricular susceptibility to conduction abnormalities in a mouse model of Brugada syndrome. Cardiovasc Res  2018;114:724–36. PubMed PMC

Rivaud MR, Baartscheer A, Verkerk AO, Beekman L, Rajamani S, Belardinelli L  et al.  Enhanced late sodium current underlies pro-arrhythmic intracellular sodium and calcium dysregulation in murine sodium channelopathy. Int J Cardiol  2018;263:54–62. PubMed

Zaza A, Rocchetti M.  The late Na+ current - origin and pathophysiological relevance. Cardiovasc Drugs Ther  2013;27:61–8. PubMed PMC

Remme CA, Scicluna BP, Verkerk AO, Amin AS, van Brunschot S, Beekman L  et al.  Genetically determined differences in sodium current characteristics modulate conduction disease severity in mice with cardiac sodium channelopathy. Circ Res  2009;104:1283–92. PubMed

Fabritz L, Damke D, Emmerich M, Kaufmann SG, Theis K, Blana A  et al.  Autonomic modulation and antiarrhythmic therapy in a model of long QT syndrome type 3. Cardiovasc Res  2010;87:60–72. PubMed PMC

Rivaud MR, Jansen JA, Postema PG, Nannenberg EA, Mizusawa Y, van der Nagel R  et al.  A common co-morbidity modulates disease expression and treatment efficacy in inherited cardiac sodium channelopathy. Eur Heart J  2018;39:2898–907. PubMed

Ma D, Wei H, Zhao Y, Lu J, Li G, Sahib NB  et al.  Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. Int J Cardiol  2013;168:5277–86. PubMed

Leong IU, Stuckey A, Lai D, Skinner JR, Love DR.  Assessment of the predictive accuracy of five in silico prediction tools, alone or in combination, and two metaservers to classify long QT syndrome gene mutations. BMC Med Genet  2015;16:34. PubMed PMC

Clerx M, Heijman J, Collins P, Volders PGA.  Predicting changes to INa from missense mutations in human SCN5A. Sci Rep  2018;8:12797. PubMed PMC

Xia L, Zhang Y, Zhang H, Wei Q, Liu F, Crozier S.  Simulation of Brugada syndrome using cellular and three-dimensional whole-heart modeling approaches. Physiol Meas  2006;27:1125–42. PubMed

Hoogendijk MG, Potse M, Vinet A, de Bakker JM, Coronel R.  ST segment elevation by current-to-load mismatch: an experimental and computational study. Heart Rhythm  2011;8:111–8. PubMed

Xu H, Guo W, Nerbonne JM.  Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. J Gen Physiol  1999;113:661–78. PubMed PMC

Nerbonne JM, Nichols CG, Schwarz TL, Escande D.  Genetic manipulation of cardiac K+ channel function in mice: what have we learned, and where do we go from here?  Circ Res  2001;89:944–56. PubMed

Charpentier F, Demolombe S, Escande D.  Cardiac channelopathies: from men to mice. Ann Med  2004;36: 28–34. PubMed

Demolombe S, Lande G, Charpentier F, van Roon MA, van den Hoff MJ, Toumaniantz G  et al.  Transgenic mice overexpressing human KvLQT1 dominant-negative isoform. Part I: phenotypic characterisation. Cardiovasc Res  2001;50:314–27. PubMed

London B, Baker LC, Petkova-Kirova P, Nerbonne JM, Choi BR, Salama G.  Dispersion of repolarization and refractoriness are determinants of arrhythmia phenotype in transgenic mice with long QT. J Physiol  2007;578:115–29. PubMed PMC

Arnaout R, Ferrer T, Huisken J, Spitzer K, Stainier DY, Tristani-Firouzi M  et al.  Zebrafish model for human long QT syndrome. Proc Natl Acad Sci U S A  2007;104:11316–21. PubMed PMC

Peal DS, Mills RW, Lynch SN, Mosley JM, Lim E, Ellinor PT  et al.  Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation  2011;123:23–30. PubMed PMC

Hassel D, Scholz EP, Trano N, Friedrich O, Just S, Meder B  et al.  Deficient zebrafish ether-a-go-go-related gene channel gating causes short-QT syndrome in zebrafish reggae mutants. Circulation  2008;117:866–75. PubMed

Odening KE, Choi BR, Liu GX, Hartmann K, Ziv O, Chaves L  et al.  Estradiol promotes sudden cardiac death in transgenic long QT type 2 rabbits while progesterone is protective. Heart Rhythm  2012;9:823–32. PubMed PMC

Lang CN, Koren G, Odening KE.  Transgenic rabbit models to investigate the cardiac ion channel disease long QT syndrome. Prog Biophys Mol Biol  2016;121:142–56. PubMed

Baczko I, Hornyik T, Brunner M, Koren G, Odening KE.  Transgenic rabbit models in proarrhythmia research. Front Pharmacol  2020;11:853. PubMed PMC

Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L  et al.  Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med  2010;363:1397–409. PubMed

Sala L, Yu Z, Ward-van Oostwaard D, van Veldhoven JP, Moretti A, Laugwitz KL  et al.  A new hERG allosteric modulator rescues genetic and drug-induced long-QT syndrome phenotypes in cardiomyocytes from isogenic pairs of patient induced pluripotent stem cells. EMBO Mol Med  2016;8:1065–81. PubMed PMC

Mehta A, Ramachandra CJA, Singh P, Chitre A, Lua CH, Mura M  et al.  Identification of a targeted and testable antiarrhythmic therapy for long-QT syndrome type 2 using a patient-specific cellular model. Eur Heart J  2018;39:1446–55. PubMed

Lawrence CL, Pollard CE, Hammond TG, Valentin JP.  Nonclinical proarrhythmia models: predicting Torsades de Pointes. J Pharmacol Toxicol Methods  2005;52:46–59. PubMed

Fernández-Velasco M, Rueda A, Rizzi N, Benitah J-P, Colombi B, Napolitano C  et al.  Increased Ca2+ sensitivity of the ryanodine receptor mutant RyR2-R4496C underlies catecholaminergic polymorphic ventricular tachycardia. Circ Res  2009;104:201–9, 212p following 209. PubMed PMC

Uchinoumi H, Yano M, Suetomi T, Ono M, Xu X, Tateishi H  et al.  Catecholaminergic polymorphic ventricular tachycardia is caused by mutation-linked defective conformational regulation of the ryanodine receptor. Circ Res  2010;106:1413–24. PubMed PMC

Zhao YT, Valdivia CR, Gurrola GB, Powers PP, Willis BC, Moss RL  et al.  Arrhythmogenesis in a catecholaminergic polymorphic ventricular tachycardia mutation that depresses ryanodine receptor function. Proc Natl Acad Sci U S A  2015;112:E1669–1677. PubMed PMC

Wang YY, Mesirca P, Marques-Sule E, Zahradnikova A Jr., Villejoubert O, D'Ocon P  et al.  RyR2R420Q catecholaminergic polymorphic ventricular tachycardia mutation induces bradycardia by disturbing the coupled clock pacemaker mechanism. JCI Insight  2017;2:e91872. PubMed PMC

Oberst L, Zhao G, Park JT, Brugada R, Michael LH, Entman ML  et al.  Dominant-negative effect of a mutant cardiac troponin T on cardiac structure and function in transgenic mice. J Clin Invest  1998;102:1498–505. PubMed PMC

Muthuchamy M, Pieples K, Rethinasamy P, Hoit B, Grupp IL, Boivin GP  et al.  Mouse model of a familial hypertrophic cardiomyopathy mutation in alpha-tropomyosin manifests cardiac dysfunction. Circ Res  1999;85:47–56. PubMed

Hasenfuss G.  Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res  1998;39:60–76. PubMed

Coppini R, Santini L, Olivotto I, Ackerman MJ, Cerbai E.  Abnormalities in sodium current and calcium homoeostasis as drivers of arrhythmogenesis in hypertrophic cardiomyopathy. Cardiovasc Res  2020;116:1585–99. PubMed

Santini L, Palandri C, Nediani C, Cerbai E, Coppini R.  Modelling genetic diseases for drug development: hypertrophic cardiomyopathy. Pharmacol Res  2020;160:105176. PubMed

Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC  et al.  A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science  2016;351:617–21. PubMed PMC

Olivotto I, Oreziak A, Barriales-Villa R, Abraham TP, Masri A, Garcia-Pavia P  et al.  Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet  2020;396:759–69. PubMed

Marian AJ, Wu Y, Lim DS, McCluggage M, Youker K, Yu QT  et al.  A transgenic rabbit model for human hypertrophic cardiomyopathy. J Clin Invest  1999;104:1683–92. PubMed PMC

van der Voorn SM, Te Riele A, Basso C, Calkins H, Remme CA, van Veen TAB.  Arrhythmogenic cardiomyopathy: pathogenesis, pro-arrhythmic remodelling, and novel approaches for risk stratification and therapy. Cardiovasc Res  2020;116:1571–84. PubMed PMC

Lodder EM, Rizzo S.  Mouse models in arrhythmogenic right ventricular cardiomyopathy. Front Physiol  2012;3:221. PubMed PMC

Rizzo S, Lodder EM, Verkerk AO, Wolswinkel R, Beekman L, Pilichou K  et al.  Intercalated disc abnormalities, reduced Na+ current density, and conduction slowing in desmoglein-2 mutant mice prior to cardiomyopathic changes. Cardiovasc Res  2012;95:409–18. PubMed

Kim JC, Perez-Hernandez M, Alvarado FJ, Maurya SR, Montnach J, Yin Y  et al.  Disruption of PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...